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ABSTRACT Overhead lines act as the basic media for electricity transmission, and their stable operation
remains really important to the whole power systems. As a result, real-time monitoring towards the operation
status and fast discovery towards the device fault are in urgent demand. To deal with such issue, this work
presents design and optimization of an intelligent monitoring system for overhead lines based on common
information model (CIM). Firstly, tree format data structure is established using CIM, and analysis of
CIM-XML data files are completed based on CIM. Then, the necessary relational tables without affecting
database performance are established, in order to ensure that the mapped relational database can fully express
all kinds of relationships in CIM. Finally, the abnormal temperature rise at the connection of overhead lines
in traction power supply systems is selected as the object. And some simulation is conducted to evaluate
performance of the designed prototype system. The results show that the system can accurately detect the
voltage value from normal working state to the limit state of human safety voltage, with relatively small
errors (about 3%-6%). Compared with inductive high-voltage detection technology, this system has higher
detection capability. The intelligent monitoring of overhead lines based on the Common Information Model
(CIM) optimizes the combined contact force characteristic values of pantographs and dynamic schemes of
overhead lines, reducing the average risk loss.

INDEX TERMS Intelligent monitoring, database development, optimal design, common informationmodel.

I. INTRODUCTION
Before or after running a railway, the locomotive needs to be
prepared, and OL (Overhead lines) residual voltage detection
step is a necessary step before climbing to the summit in the
preparation process [1]. The use of autotransformer and other
reasons make the short-circuit current constantly increase [2].
At the same time, the short-circuit current changes with the
running state of the switch [3]. And the short-circuit current
on the circuit breaker may approach or exceed its interrupting
capacity at any time, which becomes a serious hidden danger
for the safe operation of the power grid [4]. In order to
overcome the deficiency of traditional artificial fault identi-
fication efficiency and accuracy, the OL non-contact image
detection and monitoring system of high-speed railway based
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on deep learning has been widely used in high-speed railway
operation and maintenance [5].

With the rapid development of electrified railway, it is
urgent to realize long-distance centralized monitoring of
load switches and electric disconnectors scattered in stations
and sections [6]. Theodosoglou et al. can judge the abnor-
mal temperature of this part by observing the change of
the color-changing paint on the clamp or the attached tem-
perature measuring piece through telescope or naked eyes,
and this method has many limitations [7]. Li et al. intro-
duced the design and application of unmanned aerial vehicle
autonomous detection system for high-voltage transmission
lines. By using an infrared thermal imager to detect the cir-
cuit and analyzing the temperature distribution in the image,
it was found that there was a heating fault at the joint of
a certain section of the circuit. In response to this issue,
maintenance personnel promptly replaced and repaired it [8].

31386

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-6150-5240
https://orcid.org/0000-0002-5169-9232


Y. Wang, P. Sai: Design and Optimization of an Intelligent Monitoring System for OL Based on CIM

Luo et al. explored the application of drones in transmission
line detection, as well as the development of related technolo-
gies and algorithms. By performing preprocessing, feature
extraction, and other operations on the images captured by
drones, important information such as the appearance damage
of the line and insulator contamination can be extracted.

In recent years, with the development of deep learning
technology, some advanced convolutional neural network
(CNN) models have also been applied in image processing,
greatly improving the accuracy and efficiency of detec-
tion [9]. In addition, the framework can also be used to
monitor and manage renewable energy generation facilities,
as well as evaluate andmanage the performance of power net-
works [10]. Mei proposed a joint simulation method of finite
element model and multi-body model based on continuous
contact force model, which comprehensively considered the
simulation requirements of each subsystem [11]. Xiangchao
et al. think that the interaction between pantograph and
catenary mainly depends on the static geometric parameters
of suspension device. The maximum entropy principle and
maximum likelihood method are used to solve the statisti-
cal inverse problem, and the selection method of relevant
geometric parameters is determined according to statistical
information [12]. Lee et al. analyzed the dynamic character-
istics of the pantograph when it passed through through OL
modeling, and proposed that the service life of the pantograph
can be predicted according to the influence of vehicle speed,
pantograph-catenary system parameters on the fatigue life of
the pantograph [13].

In order to ensure the safety of railway traffic, an intel-
ligent monitoring system is necessary [14]. How can the
object-oriented nature of CIM model be combined with the
relational database that is popular all over the world at
present, so that the universality and expansibility of CIM
model can be truly realized, and the data access efficiency
can meet the requirements of power production [15], [16].
In addition, CIM unified semantic standard is adopted to
describe the power grid, which makes it possible to trans-
fer information and share data across the network, and can
realize the interoperability and splicing of power grid mod-
els. Combining sensor technology, embedded technology,
mobile communication technology and Internet technology,
this paper puts forward an intelligent monitoring system and
optimization method of OL based on CIM algorithm, and
realizes the remote online monitoring of the state of OL
compensation device.

As an abstract model based on object-oriented technology,
CIM unifies the power entity model, and the component
interface regulates the standard way of information exchange
and access to common data interfaces between applica-
tions/components and other applications/components. CIM
is extensible. As CIM covers most fields of power system,
it is only necessary to implement the CIM model of his
concerned fields for applications [17]. With the appearance
of new devices and devices in the description objects, CIM
can be extended by itself before the CIM standard of these

new devices comes out. The reserved application software is
encapsulated to complete the exchange of existing data model
and CIMmodel, so as to ensure the data to interact with other
applications in CIM form.

This article can improve the real-time performance of the
system by optimizing data processing processes and algo-
rithms, thereby monitoring the status of overhead lines in real
time, discovering problems in a timely manner, and taking
corresponding measures. Can accurately detect the voltage
value from normal working state to safe voltage limit state.
Innovation contributions include:

1. This article studies an OL intelligent monitoring system
based on the CIM algorithm. The system can accurately
detect the voltage value from normal working state to the limit
state of human safety voltage, with relatively small errors.
Compared with inductive high-voltage detection technology,
this system has higher detection capability.

2. Based on the CIM model and data standards, the system
can integrate multiple sources of data, including electrical
parameters of the line, environmental factors, etc., to provide
comprehensive background information for the analysis of
abnormal temperatures. Through a single objective optimiza-
tion algorithm, the system can automatically identify patterns
and trends of abnormal temperatures, issue early warnings,
and reduce the likelihood of accidents.

3. Compared with traditional monitoring systems, the
intelligent monitoring system for overhead lines based on
CIM has stronger adaptability and intelligence capabilities.
It can automatically adjust monitoring parameters, optimize
warning thresholds, and even perform remote control and
operation based on actual situations. This intelligent capa-
bility greatly enhances the flexibility and adaptability of the
system. It helps to reduce the demand for manual inspections,
reduce energy consumption and maintenance costs, and is in
line with the development trend of green power grids.

Section I of the article elaborates on the background of
remote monitoring of load switches in stations and sections
under the rapid development of electrified railways. Section II
provides a summary of intelligent power equipment fault
diagnosis and more optimized customer management. Ana-
lyzed the design and application of autonomous detection
systems for some high-voltage transmission lines. Section III
provides an overview of the CIM model. Solved the problem
of difficult real-time measurement of OL wear in OL wire
breakage faults. Section V validated the multi-user response
capability of the system and tested the response perfor-
mance from a single task request to 150 concurrent tasks.
Section 5 summarizes the entire text, and the results indicate
that the system’s functionality should be able to monitor the
accuracy of data in real-time and detect and process erroneous
data in a timely manner.

II. RELATED WORK
Each CIM package contains multiple classes, and UML’s
classes illustrate all the classes in the package and their
relationships. When a class has a relationship with classes in
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other packages, those classes will also be displayed with an
annotation to show which package they belong to [18] and
[19]. Classes have properties that describe the characteristics
of objects. Each class in CIM contains attributes that describe
and identify a specific instance of the class. However, there
are many additional data types in CIM. The capacitor bank
has the property of maximum voltage, and its data type is
voltage. The definition of this data type is in the domain
package. The existing TFL modeling methods almost all rely
on the load data monitored by the motion weighing system
(WIM system).

However, the WIM system has natural defects such as
unsatisfactory low-speed measurement accuracy and inabil-
ity to measure the length and lateral position of vehicles
on the lane, which limits the improvement of TFL simula-
tion accuracy. For this purpose, Ge et al. developed a TFL
monitoring system that integrates machine vision and WIM
system functions. In this system, a deep learning method is
applied to accurately detect vehicles and wheels in the video,
and key parameters for TFL modeling are extracted based
on the detection results [20]. The successful application of
integrated circuits in road construction is still plagued by
the accuracy and stability of their quality assessment. Ma et
al. proposed the AICV acceleration intelligent compaction
value, which is a new harmonic intelligent compaction quality
evaluation index with higher accuracy than the commonly
used CMV compaction measurement value [21].

Intelligent power equipment fault diagnosis and more
optimized customer management, among which power grid
automation is one of the most important issues to ensure
the safe operation of the power grid. In recent years, intel-
ligent scheduling methods based on big data analysis have
been applied to power intelligent scheduling and have been
significantly promoted. However, intelligent scheduling for
big data analysis requires a large amount of historical data,
which is sometimes not easily obtainable. Xiao proposed
a new intelligent scheduling model based on reinforcement
learning, which is more robust, secure, and efficient [22],
[23]. The development time is different, the hardware and
software adopted may come from different manufacturers,
and the data and report formats may be incompatible with
each other [24].

In the years after the publication of the draft standard,
electric power workers all over the world have done a lot
of in-depth research on it [25]. And they have completed the
experimental verification of data import and export based on
CIM (Common Information Model) [26]. For example, com-
bined with CIM, some graphic support platforms with certain
openness can be designed. This is expected to complete the
integration of power system graphic drawing and topology
structure [27]. With the rapid development of the power
industry, the detection andmaintenance of high-voltage trans-
mission lines have become particularly important. Traditional
manual detection methods have problems such as low effi-
ciency and safety hazards, therefore, unmanned aerial vehicle

autonomous detection systems have become a new solu-
tion [28].

The power management system framework based on cloud
computing is a platform that can process and analyze large
amounts of data in a short period of time, providing more
effective decision support for the energy industry [29]. This
system framework adopts distributed computing and stor-
age technology, which can quickly process and analyze data
from different sources, such as operational data of power
companies, market data, and weather data [30]. Currently,
many power companies have adopted a cloud based power
management system framework for big data analysis [31].
For example, some companies use this framework to pre-
dict electricity demand, optimize energy consumption, and
improve operational efficiency [32]. The overhead line intel-
ligent monitoring system of the public information model
can use multiple databases to store and manage data [33].
Real time database is a database used to process real-time
data, which can quickly process and store real-time data, and
provide real-time query and analysis functions [34].

Structured databases typically support one or more query
languages, such as SQL (Structured Query Language). These
query languages allow users to query and filter data based
on specific conditions, such as searching for data from spe-
cific devices during specific time periods. Common real-time
databases include Oracle Real Time Database and SQL
Server [35]. In summary, some studies may not fully utilize
the advantages of public information models, resulting in
limited data processing capabilities and inability to process
large amounts of data or achieve real-time monitoring. This
may lead to unsatisfactory monitoring performance or delay
issues. The design and research of intelligent monitoring
systems for overhead lines based on public information mod-
els may lack real-time performance. They may not be able
to quickly process and analyze data, thus preventing timely
detection of problems and taking corresponding measures.
The lack of necessary security measures and encryption tech-
nology makes data vulnerable to attacks and leaks.

Failure to consider the scalability of the system makes it
unable to adapt to the needs of business development and
technological progress. This may limit the future applica-
tion and development of the system. In the past, it was
difficult to fuse overhead line monitoring data, and data
from different sensors needed to be fused to provide more
comprehensive and accurate monitoring information. But the
format, precision and frequency of data collected by differ-
ent sensors are different, which leads to difficulties in data
fusion. Although cloud computing and IoT technology are
currently being used, further optimization may be needed in
large-scale data transmission and processing. When integrat-
ing systems, compatibility issues between different systems
may be encountered. Based on this research, this article uti-
lizes a public information model to achieve standardization
and consistency of data, improving the accuracy and relia-
bility of the data. The introduction of advanced data fusion
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FIGURE 1. CIM model category.

technology has improved the comprehensiveness and accu-
racy of monitoring. Adopting a modular design facilitates
system expansion and maintenance, while reducing system
complexity.

III. RESEARCH METHOD
A. CIM MODEL OVERVIEW
Using UML (Unified Modeling Language), the entity type of
power system is abstracted as a group of packages containing
one or more class diagrams, and all classes in the package
and their relationships are represented graphically. Then,
according to the attributes of classes and their relationships
with other classes, each class is defined in words, and the
attributes of specific instances of classes are described and
identified. According to the class used in the short-circuit
current program defined by CIM, the short-circuit current
real-time monitoring software based on CIM model runs
after responding to the trigger. Firstly, the required data
is read from the memory base based on CIM, and the
zero-sequence electrical island is formed according to the
network topology; The solution to this problem is to analyze
the topology of zero-sequence network of the whole network
before solving admittance matrix, and establish the rela-
tionship between nodes and zero-sequence electrical islands,
which can improve the running speed of the program.

CIM model is a collection of computer system classes,
which defines the relationships among systems, constructs an
abstract framework that is easy to understand by designers,
and forms tiny information. At present, there are three types
of CIM models. Figure 1.

Core model: Analyze and describe the basic vocabulary of
themanagement system, define eachmanagement field on the
system platform, which is the part of functional association
under the basic category, and extend the feasible starting point
of the public model based on the basic vocabulary within the
system.

General model: by defining the general model of a specific
management domain, the related technologies independent

of the system can be realized, which is helpful to develop
management applications.

Extended model: as a technical extension of a general
model, it is mostly used in a specific environment.

Aggregation relationship indicates that the relationship
between classes is global and local. The global class ‘‘con-
sists’’ of local classes, or the global class ‘‘contains’’ local
classes. The local classes are part of the global class, and
the local classes are not inherited from the global class as in
generalization relationship. A composite aggregate belongs
to its own part. As shown in Figure 2. Sharing is used to
simulate the whole relationship, where the composite diver-
sity is greater than 1. A shared aggregate is shared by several
aggregates. Through generalization, a more specific class can
inherit all attributes and relationships from a more general-
ized class at the upper level. Generalization or inheritance is
a powerful technique to simplify the object graph.

B. OVERALL DESIGN OF OL INTELLIGENT MONITORING
SYSTEM
This system is designed to solve the problem that OL wear
is difficult to measure in real time in the solution of OL
disconnection fault. Because of the large coverage of OL, low
power consumption, low cost and safety must be given prior-
ity. This system also applies the idea and characteristics of
Agent technology, which makes the system more intelligent
and easy to modify and maintain. In the process of system
design, everything from a complete device to a component is
an Agent, and these agents are combined together to form a
multi-agent system throughmutual connection. Router Agent
not only has the function of terminal node, but also has the
function of forwarding data.

This system can correctly judge whether the OL pull-out
value or conduction height exceeds the limit. The amount
of data measured by geometric measuring equipment is
very large, and it is impossible to send all these data by
wireless communication. Therefore, it is necessary for the
vehicle-mounted system to have the ability to judge the
overrun, and only transmit the judged overrun data. Vehicle-
mounted equipment needs to meet the requirements of
automatic operation and unmanned operation. On-line mon-
itoring can’t be equipped with enough on-board operators,
so the system should be able to work completely indepen-
dently.

Along the railway line, the router/terminal equipment of
this system is installed on each pillar, and the distance
between adjacent pillars of OL is less than 65 meters. ZigBee
wireless technology can be used for data transmission, and a
small ZigBee network with about 31 nodes can be established
by two kilometers. And transmits the collected parameters
to coordinator agent in real time through ZigBee network.
The online monitoring system of OL compensation device
consists of monitoring terminal, GPRS data transmission
platform and monitoring center. The monitoring terminal
mainly includes data acquisition unit, control unit, trans-
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FIGURE 2. Example of composite polymerization.

FIGURE 3. The overall structure of the system.

mission unit and power supply. The overall structure of the
system is shown in Figure 3.

Monitor the environmental temperature of the terminal
fixed-size dyeing site, and process the collected data sepa-
rately for storage. In case of disconnection fault, take the
initiative to send the report information to the monitoring
center. The monitoring center stores, analyzes and displays
the received data. The monitoring center sequentially sends
telemetry commands to each monitoring terminal for data
acquisition. The network topology of the whole system is star
topology. There is no data interaction between monitoring
terminals, and communication only takes place between the
monitoring center and each monitoring terminal. The moni-
toring terminal doesn’t send any information when it doesn’t
receive the inquiry information or when there is no over-limit
disconnection fault.

The equipment in the testing part of the system is portable
and mobile, and the testing personnel can connect it with the

OL line according to their needs. Before the high-voltage
electricity inspection, the self-checking function of the sys-
tem can be used to judge whether the whole circuit is
qualified, and the performance of the OL residual voltage
detection can be improved through auxiliarymeasures such as
nonlinear temperature compensation technology and instan-
taneous overvoltage protection technology. After the signal
processing operation, the input analog signal is converted to
analog.

The theoretical analysis and calculation are carried out in
the plane perpendicular to the OL distribution. In the study,
the height L is set to within 10 m. In the field of power fre-
quency electromagnetic field, there are the following physical
relations:

ω ≤
1
τs

(1)

whereω is the angular frequency, τs is the propagation time of
electromagnetic wave within the scope of the research object.
If τs is much smaller than t, the delay effect can be ignored and
the propagation time of electromagnetic wave can be ignored.

As an interference source, the contact system can influence
the biological and engineering systems of adjacent railways
through various coupling. According to the length of unit
impulse response, digital filters are divided into two types:
infinite unit impulse response digital filters and finite unit
impulse response digital filters. The unit impulse response
lengths of the two digital filters are different, so the system
function forms and implementation structures are different,
and the design methods are fundamentally different.

The difference equation of aN -order recursive digital filter
is:

y (n) =

M∑
i=0

bix (n− i) −

N∑
i=0

bix (n− i) (2)

The corresponding system function is:

H (z) =

M∑
r=0

brz−r

1 +

N∑
k=1

akz−k
(3)

It can be seen that the recursive digital filter has feedback
from the output to the input, and the system function H (z)
has poles in the finite z plane.

The monitoring device is in the OL high voltage and strong
electric field, and the opening and closing of the relay in the
circuit will cause certain electromagnetic interference to the

31390 VOLUME 12, 2024



Y. Wang, P. Sai: Design and Optimization of an Intelligent Monitoring System for OL Based on CIM

circuit, so it is necessary to design a low-pass filter circuit
to reduce the interference to the sensor monitoring signal.
The monitoring system adopts the second-order Butterworth
filter, which gradually drops to zero in the stop band, and the
filtering result is relatively stable. When calculating negative
entropy, because the probability density function of the signal
is unknown, the approximate calculation formula is usually
adopted:

J (y) = {E [g (y)] − E [g (yGauss)]}2 (4)

where yGauss is a Gaussian random variable with the same
mean and covariance matrix as the variable y, g is a nonlinear
function, and E is the mean operation.

The router/end node Agent of the system uses strain sen-
sors to measure the tension. Strain sensor is mainly used to
measure the strain of an object. The commonly used sensing
element is resistance strain gauge, which can convert the
strain of an object into the change of its own resistance.

For a metal wire with resistivity ρ, length L, radius R and
cross-sectional area A, its resistance value R can be expressed
by the following formula:

R = ρ
L
A

= ρ
L

πR2
(5)

As long as the resistance change R of the strain gauge is
measured, the strain value of the wire rope can be obtained.
According to the relationship between strain and stress, the
stress value can be calculated as follows:

σ = E · ε (6)

The stress σ is proportional to the strain ε, and the strain ε of
the wire rope is proportional to the resistance change, so the
stress σ is proportional to the resistance change. This is the
basic principle of measuring the strain of an object with a
strain gauge. In practical application, the change of resistance
can be converted into the change of output voltage by bridge
measuring circuit.

C. SYSTEM OPTIMIZATION METHOD
The characteristics of grid monitoring are multi-source, high-
dimensional, prior and heterogeneous. Nowadays, OL intelli-
gent monitoring system mainly collects information monitor-
ing data for power grid monitoring, and constructs integrated
intelligent alarm to realize the diversification of technical
monitoring, so as to ensure the reliability of application sys-
tem. Optimize multiple systems to form an aggregate, ensure
comprehensive regulation and control of relevant data, and
unify data sharing, so as to ensure that the optimized power
grid monitoring system built on CIM model can be compat-
ible with various formats and realize high-quality regulation
and control; Generally, it is handled manually by power grid
management personnel on site; If the equipment is compli-
cated and abnormal, the relevant maintenance workers should
be informed to carry out supporting investigation and treat-
ment. And record detailed abnormal conditions and alarm
data, and after the abnormal problems are disposed, carry

out matching updating and archiving operations for abnormal
conditions again.

Similar to CIM model’s abstraction of actual power sys-
tem objects into classes, Java programs also abstract each
component into classes, encapsulate the characteristics of
each component in Java classes using private data members,
and define their own methods for other classes or users.
While each actual element in CIM/XML (extensible markup
language) file is represented by a class object, and the data
is also stored in the corresponding object. In this way, the
analysis of all power system elements in CIM/XML file has
been completed, and the Java program has obtained all the
information.

In this way, after learning CIM Model, analyzing
CIM/XML file structure and 7-layer tree data structure,
CIM/XML file analysis is completed through three main
classes: Model, ModelFactory and Plant. The specific work
of the three classes is shown in Figure 4. CIMmodel is just an
abstract model, which neither defines the specification of data
in the model nor the format of data exchange. In engineering
application, it is necessary to make clear and feasible regula-
tions on the implementation of CIMmodel. The emergence of
XML has solved this problem. The definition of RDF syntax
based on CIM model standardizes the structure/markup def-
inition of the corresponding XML document, so that it can
be understood consistently in different environments. This
makes XML widely used, which can simplify data sharing,
data transmission and data upgrading of the system, and can
also broaden the application fields of data.

CIM/XML language needs to deal with a very huge data
pattern, so it will be problematic to express CIM pattern
directly with DTD (Document Type Definition) definition.
CIM is an object model established by object-oriented
method. Classes are connected by the relationship between
classes, while XML provides a hierarchical structure. In addi-
tion, Schema supports namespaces, built-in many simple and
complex data types, and supports custom data types. Because
there are so many advantages, Schema has gradually become
a unified specification for XML applications. CIM/XML lan-
guage defined by CIM RDF Schema can describe the power
gridwell, and its description language based onRDF (Remote
Distribution Frame) framework can conveniently realize data
transmission on computers.

The lifting force on the pantograph can make the pan-
tograph head closely contact with the contact wire, and
continuously provide power for the train. The coupling
vibration of pantograph -OL system will occur due to
the interaction between the pantograph-OL system and the
pantograph-OL system. The tension of the string itself, the
gravity of the string and the gravity of the clamp. Therefore,
its expression can be written as:

Fmd,i = σ
(
x − xd,i

) (
1
2
md,ig+ mcl,ig+ fd,i

)
(7)

Fcd,i = σ
(
x − xd,i

) (
1
2
md,ig+ mcl,ig− fd,i

)
(8)
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FIGURE 4. Schematic diagram of parsing program.

where xd,i represents the position of the ith hanger on the x
axis, md,i represents the mass of the ith hanger, mcl,i repre-
sents the mass of the ith clamp, g represents the acceleration
of gravity, and fd,i represents the tension of the hanger.
Replacement and preventive maintenance are the main

ways of OL systemmaintenance. In order to bemore targeted,
this paper divides preventive maintenance into minor repair
and major repair. Minor repair refers to the improvement of
the external working environment of the equipment. Improve
the operation condition of the equipment, but it will not
restore the equipment as new; Maintenance refers to the
overall replacement of equipment. This kind of maintenance
requires the most maintenance resources, which will restore
the equipment state to a new initial state. In each maintenance
cycle, it is limited by railway materials, funds, manpower and
technology, and the maintenance plan in each cycle is bound
by maintenance resources.

The maintenance resources in the k maintenance cycle of
the system are the sum of the maintenance resources required
by all equipment in different maintenance modes, as shown
in formula (9):

Mk =

m∑
i=1

ui,k (9)

where k = 1, 2, · · · ,Np, ui,k is the maintenance mode
variable of equipment i in the kth maintenance cycle: no
maintenance is 0, preventive minor repair is 1, preventive
overhaul is 2, and replacement maintenance is 3.

When the vibration encounters a non-uniform particle,
it will reflect, which will not increase the amplitude of the
passive contact suspension. But when this reflected wave
meets the pantograph running at high speed along the contact
line, the situation will be completely different. This kind of

interaction, restriction and interaction between pantograph
and catenary caused by vibration waves is called Doppler
effect, which is expressed by Doppler coefficient α. Doppler
factor α is a coefficient related to wave propagation speed and
running speed, and its theoretical calculation formula is:

α =
Cp − v
Cp + v

(10)

It can be seen that the propagation and reflection of waves
along the contact line will change the contact force of panto-
graph and catenary, and the ratio of the contact force between
adjacent times is usually expressed by γ .

γ =
r
ε

(11)

If γ > 1 is used, the contact force increment of
pantograph-catenary will be larger than the original contact
force and jump; if γ < 1 is used, the vibration of the
contact line will gradually ease. When γ = 1, the amplitude
will neither increase nor decrease, and the contact force will
remain the same.

Figure 5 shows the receiving data processing flowchart.
Monitoring messages typically consist of a single transmis-
sion control character or a single transmission control word
guided by several other characters. The guiding characters are
collectively referred to as prefixes, which contain identifier
sequence numbers, address information, status information,
and other required information. The monitoring terminal
receives the query req command sent by the center and
responds to the command to upload data. The sendingmethod
completes the upload of alarm information: the monitoring
terminal determines the fault, sends the alarm information
to the center, and waits for confirmation from the upper
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computer. The communication establishment is initiated by
the remote data concentrator, and the central communication
server is in a waiting state. After the link is established, the
data concentrator first sends its ID number to the central
server for registration. The communication server will only
send commands to read data after successful registration.
The design of the service software adopts multi-threaded
processing and event driven technology.

When the pantograph and OL are not off-line, the coupling
between pantograph and catenary is realized by static lifting
force F0 in static state and contact force Fpc in dynamic state.
At this point, the vertical displacement of the bow head is
equal to the vertical displacement of the contact point on the
contact line, namely:

wh = wc (x, t) |x=Vt (12)

It should be emphasized that at this moment, the velocity and
acceleration of the pantograph head are not equal to those of
the contact point on the contact line. The formula (12) is used
to obtain the first-order and second-order full differential of
time t , and the additional constraint relationship of velocity
and acceleration between the bow head and the contact point
on the contact line is obtained, namely:

ẇh = w′
cV + w′

c |x=Vt (13)

ẅh = ẅc + 2Vẇ′
c + w

′′

cV
2
|x=Vt (14)

In the iterative process of the algorithm, the w can be dynam-
ically adjusted to ensure that the algorithm can search for a
better area in the global range at a faster speed in the early
stage, and can perform fine optimization near the extreme
point in the later stage.

The strategy of linear decreasing dynamic inertia weight is
adopted, as shown in formula (15):

w = wmax −
(wmax − wmin) × T

Tmax
(15)

where Tmax is the maximum number of iterations, wmax is the
maximum inertia weight,wmin is theminimum inertia weight,
and T is the current number of iterations. The research
shows that the initial population has great influence on the
optimization effect, and the better the diversity of the initial
population, the better the optimization effect. In this paper,
a chaotic initial population method is proposed, which uses
chaotic Logistic model to generate the initial population. The
model is expressed as:

xk+1 = λxk (1 − xk) (16)

where λ is the control parameter, and when λ = 3, xk is in a
completely chaotic state between [0,1].

IV. RESULT ANALYSIS
Based on the results of the requirements analysis, the struc-
ture of the database can be designed in this article. The
intelligent monitoring system for transmission lines analyzes

various device information stored on overhead lines, such as
device type, location, manufacturer, etc. Store sensor infor-
mation installed on the device, such as sensor type, location,
measurement range, etc. While storing data, we also consider
how to extract useful information from the data. Use the
Pandas library in Python for data cleaning and processing,
and use the matplotlib library for data visualization. When
storing data in a database, this article considers data integrity.
Ensure the accuracy and consistency of data, for example,
each device should have only one corresponding sensor, and
each sensor should have only one corresponding measure-
ment value. To improve query efficiency, create indexes for
commonly used query fields. For example, query fields for
timestamp, device ID, and sensor ID.

The upper computer that meets the system requirements
is used to display and control the output of the develop-
ment interface. Compared with the direct output of ordinary
liquid crystal displays, the test equipment is used to take
the voltage output source as the detection signal. Figure 6
shows the residual voltage output data during stable oper-
ation with relatively appropriate contact time. The relative
fluctuation of data is small, and the system can accurately
detect the voltage value from the normal working state
to the limit state of human safe voltage, with the relative
errors of 5.70% and 3.37%, respectively. Compared with the
inductive high-voltage detection technology, this system has
higher detection performance. Experimental data show that
the monitoring system can effectively detect the existence of
dangerous residual voltage source, and its working accuracy
and stability are good.

In the task of OL image detection, it is often faced with the
situation of identifying and reasoning a large amount of image
data, which will consume a lot of resources of the background
operation server. TF Serving is an open-source software
for deploying machine learning models, which provides
high-performance inference services, supports multiple types
of models, and can be easily extended. Its distributed com-
puting function can help allocate computing tasks between
multiple servers, effectively utilizing system resources and
improving processing speed. This system realizes the com-
puting service through the distributed computing function of
TF Servicing component. To verify the multi-user response
capability of the system, the response performance from
single task request to 150 concurrent tasks was tested respec-
tively, and the results are shown in Figure 7. It can be seen
from the figure that, for different concurrent task requests,
the system can respond to tasks well, and there is no system
request blocking. The average response time of a single task
is less than 12 ms and 25 ms on cluster server and embedded
system, respectively.

For the performance test of the monitoring system, the key
point is to run with the help of the functions of the host, thus
reflecting some key performance of the system. If the power
monitoring system is faced with corresponding risks and
problems in the working stage, it will transmit signals in the
shortest time, and study the fault types through professional
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FIGURE 5. Flow chart of receiving data processing.

FIGURE 6. Residual network voltage data curve.

systems and staff. In addition, some measures are taken to
ensure the safety and stability of the working system. The
performance test results of the monitoring system refer to
Table 1, which provides the general response time of different
processing links under different concurrency and user scale,
and has been carefully sorted out at the same time. The unit
is seconds.

In terms of response time, it is considered as meeting the
expectation. In addition, in terms of performance require-
ments, the limit user concurrency scale that the system needs
to deal with is 100. Combined with the contents of Table 1,
it can be observed that when dealing with 100 users, it can
still meet the actual demand of response time, so it is con-

FIGURE 7. Multi-user concurrent testing.

sidered that the detection of this part meets the conditions.
For intelligent monitoring systems, real-time performance is
crucial. The monitoring data of overhead lines needs to be
processed and analyzed quickly in order to promptly iden-
tify problems and take corresponding measures. Therefore,
the system adopts efficient algorithms and data processing
techniques to reduce processing latency.

In addition, network latency is also a factor that needs to be
considered, and it should be reduced by optimizing network
communication protocols and reducing data transmission vol-
ume. To ensure the accuracy and reliability of monitoring
data, the system has error rate monitoring function. This

31394 VOLUME 12, 2024



Y. Wang, P. Sai: Design and Optimization of an Intelligent Monitoring System for OL Based on CIM

TABLE 1. Monitoring system performance test results.

FIGURE 8. Predicted value monitoring results.

function should be able to monitor the accuracy of data in
real-time and detect and process erroneous data in a timely
manner. Use reliable communication protocols to transmit
data, verify and inspect data, and regularly maintain and
inspect equipment. As is shown in Figure 8, P1 is the pre-
dicted value of the compensation device falling from the
forecast air temperature, P2 is the predicted value of the com-
pensation device falling from the measured air temperature,
and P3 is the predicted value of the compensation device
falling from the field monitoring.

It can be seen that although there are some differences
between the field monitoring values and the values fitted
according to the measured air temperature, the differences
are not significant. Combined with the analysis of the actual
situation, besides the error of the monitoring device itself
and the fitting error, it is considered that it is influenced by
pantograph-catenary vibration and natural wind speed when
high-speed rail is running, and this error can be continuously
corrected by averaging a large number of data.

In this paper, the single-objective optimization algorithm is
also used to calculate the maintenance plan. The characteris-
tic of single objective is that only one objective is optimized,
the other objective is taken as a constraint condition, and
only one optimal result can be obtained in each calculation.
The optimization with maintenance cost as the constraint
condition and the optimization with maintenance cost as the
optimization target and OL system reliability as the constraint

FIGURE 9. Comparison of optimization results.

condition are compared with the results of double-objective
optimization of system reliability using multi-objective opti-
mization algorithm. The results are shown in Figure 9.

Figure 9 compares the validation results of the target opti-
mization algorithm with the highest reliability and lowest
cost. For optimization constrained by maintenance costs,
this means minimizing maintenance costs as much as pos-
sible while meeting other conditions. In optimization with
maintenance costs as the optimization objective, the goal
is to minimize maintenance costs as much as possible.
In optimization with OL system reliability as a constraint,
it is necessary to minimize maintenance costs while meet-
ing system reliability requirements. The results of using
multi-objective optimization algorithms for dual objective
optimization of system reliability can consider two or more
objectives simultaneously, such as minimizing maintenance
costs while meeting system reliability requirements. This
optimizationmethod can find a relatively optimal equilibrium
point, rather than optimizing only one objective while ignor-
ing other objectives.

It can be seen that the result of multi-objective optimization
gives the limit boundary of single-objective optimization. The
optimization result with the lowest cost for a given reliabil-
ity is very close to the multi-objective optimization result,
while the optimization result with the highest reliability for
a given maintenance cost approaches to the multi-objective
optimization result from a poor direction. In addition, the
multi-objective optimization algorithm can get the com-
plete distribution of the optimal front-end once, while the
single-objective optimization algorithm can only get one
optimal solution each time, so it must be calculated many
times. Therefore, the multi-objective optimization algorithm
has great advantages over the single-objective optimization
algorithm in computational efficiency.

Single objective optimization problem is the most common
optimization problem, which aims to minimize or maximize
a specific objective function. This algorithm is simple and
clear, easy to understand and apply. The disadvantage is that
it can only handle a single goal and cannot balance multiple
goals. For complex multivariate functions, finding the global
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TABLE 2. Risk loss value under different maintenance calculation
schemes.

optimal solution may require a significant amount of com-
putational time and resources. Multi objective optimization
problems are even more complex, involving multiple con-
flicting objectives that require simultaneous optimization and
finding a relatively optimal solution. Multiple objectives can
be considered simultaneously to achievemore comprehensive
optimization. For complex problems with multiple con-
flicting objectives in practical applications, multi-objective
optimization is more practical. The disadvantage is that there
are multiple optimal solutions and no global optimal solution.
It is necessary to balance the conflicts between different goals
and provide additional decision-making basis. For large-scale
multi-objective optimization problems, the computational
complexity is usually high.

The maintenance cost of multi-objective optimized main-
tenance plan is obviously lower than that of single objective,
because the multi-objective maintenance plan gives full play
to the value of different maintenance methods during the
operation period. It shows that more preventive minor repairs
are adopted for the power supply equipment in OL system,
and the preventive overhaul and replacement maintenance
times of some power supply equipment with low risk loss
such as insulators and positioners are reduced. The specific
risk values obtained from 1-10 maintenance cycles are shown
in Table 2.

The average risk values of the two models are similar, but
the multi-objective optimization model takes the average risk
loss of the system as the target, which makes the fluctuation
of optimization results smaller and the optimization strategy
of maintenance plan more reasonable. There are many factors
that affect the dynamic performance of pantograph-catenary
system, such as contact suspension type, thread tension and
material, span, length and tension of elastic sling, etc. In order
to improve the significance of the target parameters, the train
running speed is increased to 330 km/h. Firstly, the level table
of pantograph factors is established. The pantograph factors
include: equivalent mass and stiffness of pantograph head,
equivalent mass and stiffness of upper frame, equivalent mass
and damping of lower arm. Through pantograph-catenary
dynamic simulation, statistical test, original scheme and

optimal combination contact force characteristic values, see
Table 3.

Through orthogonal test analysis of several panto-
graph parameters, it is concluded that the equivalent
mass of pantograph head is the most sensitive parameter
of pantograph-catenary dynamic response, and the opti-
mal combination parameters of pantograph can obviously
improve the dynamic performance, and the test index does
not linearly change with single pantograph factor. The
pantograph-catenary contact force of the pantograph with
the optimal horizontal combination parameters obtained from
the experiment fluctuates less than that of the pantograph
with the original parameters. The orthogonal test results show
that changing the parameters of pantograph can improve the
dynamic performance of pantograph-catenary, and this con-
clusion can provide theoretical basis for the optimal design
of pantograph.

The optimized model may find a more stable level of
pantograph coefficient. This means that the power system
will not experience significant fluctuations in its pantograph
coefficient when dealing with power loads, responding to
emergencies, or under various operating conditions, thereby
enhancing the stability of the power system. The model
will find a coefficient level that improves the efficiency of
pantograph use. This means that under the same operating
conditions, the optimized model can better utilize the panto-
graph, keeping it in working condition for more time, thereby
improving the operational efficiency of the power system.
The optimized model may find a safer level of pantograph
coefficient. This is reflected in less damage to the contact
network or less wear on the pantograph itself. In either case,
this is a positive impact on the entire power system, as it can
extend the service life of the overhead contact system and
pantograph. At the same time, the model will find a more
adaptable pantograph coefficient level. This means that in the
face of different operating conditions, such as temperature
changes, wind changes, etc., the model can better adjust the
working status of the pantograph, thereby better responding
to these changes.

Based on the above, the system can provide decision-makers
with more accurate and comprehensive information support
by collecting and analyzing a large amount of real-time
data. This data-driven decision-making method can improve
the accuracy and reliability of decision-making. Compared
with traditional monitoring systems, the intelligent monitor-
ing system for overhead lines based on CIM has stronger
adaptability and intelligence capabilities. It can automatically
adjust monitoring parameters, optimize warning thresholds,
and even perform remote control and operation based on
actual situations. This intelligent capability greatly enhances
the flexibility and adaptability of the system. The system
adopts a modular and scalable design concept, which can
be customized and expanded according to actual needs. This
means that the system is not only suitable for monitoring
overhead lines in traction power supply systems, but can
also be applied to other types of overhead line monitoring
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TABLE 3. Comparison of statistical eigenvalues of contact force.

scenarios. The intelligent monitoring system for overhead
lines based on CIM fully considers the principles of sustain-
ability and green environmental protection in the design and
implementation process. It helps to reduce the demand for
manual inspections, reduce energy consumption and mainte-
nance costs, and is in line with the development trend of green
power grids.

V. CONCLUSION
With the continuous development of high-speed railway trac-
tion power supply system intelligence, this paper studies OL
intelligent monitoring system and optimization method based
on CIM algorithm. Because of the existence of virtual classes
in CIM, some virtual tables will be generated in relational
database correspondingly, and there are many foreign keys
in relational tables, which makes it troublesome and ineffi-
cient for programmers to operate the database. At the same
time, it also realizes multi-task concurrency and distributed
computing services of user clusters, which increases the
expansibility of the system and can flexibly adapt to various
application scenarios.

The system can accurately detect the voltage value from
the normal working state to the limit state of human safe
voltage, with the relative errors of 5. 70% and 3. 37%, respec-
tively. Compared with the inductive high-voltage detection
technology, the system has higher detection performance. The
system can accurately detect the voltage value from normal
working state to the limit state of human safety voltage, with
relatively small errors. Comparedwith inductive high-voltage
detection technology, this system has higher detection capa-
bility. The intelligent monitoring of overhead lines based
on the Common Information Model (CIM) optimizes the
combined contact force characteristic values of pantographs
and dynamic schemes of overhead lines, reducing the average
risk loss. This article proposes that changing the parameters
of the pantograph can improve its dynamic performance,
providing a theoretical basis for optimizing the design of the
pantograph.

However, research still has certain limitations. Real time
monitoring of overhead lines requires efficient communica-
tion and data processing technologies.While processing large
amounts of data, ensuring the real-time and stability of the
system places high demands on both hardware and software.
In the future, it is necessary to improve the compatibility
between different systems and reduce the difficulty of inte-
gration through standardized and open architecture design.
At the same time, explore new integration methods to achieve
more efficient information sharing and system linkage.
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