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ABSTRACT Location estimation in indoor environments using radiofrequency (RF) has garnered
considerable attention in recent years owing to the widespread adoption of mobile devices. RF-based
fingerprinting—a direct approach that allows location estimation based on observed signals—relies on
manual surveys during the offline phase to create a radio map with coordinates and RF measurements
at multiple locations. The accuracy of RF fingerprint-based localization is proportional to the number of
reference points. However, conventional site survey procedures incur substantial expenses. To alleviate
the workload of site surveys and address the challenge of incomplete fingerprint databases, we propose
a data-augmentation method to complement existing fingerprint data. Our approach leverages a conditional
generative adversarial networkwith long short-termmemory (CGAN-LSTM) predictionmodel to effectively
learn the intricate patterns inherent in the initial training data and generate high-quality synthetic data that
align with the underlying data distribution. In an experimental evaluation conducted on a real testbed,
our data augmentation framework increased the average localization accuracy by 15.74% compared with
fingerprinting without data augmentation. Compared with linear interpolation, inverse distance weighting,
and Gaussian process regression, the proposed approach demonstrates an average accuracy improvement
ranging from 1.84% to 14.04%, achieving average accuracies of 1.065 and 1.956 m in both scenarios.
In experiments conducted in two typical indoor environments using sparse data, the proposed approach
substantially reduced localization error and proved comparable to state-of-the-art data-augmentation
methods.

INDEX TERMS Bluetooth low energy (BLE), fingerprint, data augmentation, generative adversarial
network (GAN), location estimation.

I. INTRODUCTION
Recently, the scope of location-based services (LBSs) has
expanded from outdoor to indoor settings. This expansion
is driven by the recognition that individuals spend approx-
imately 80% of their time indoors [1], [2], which has led
to the emergence of indoor mobile applications, such as
indoor navigation and smart building solutions. Although
global navigation satellite systems are widely used for
outdoor location tracking, their indoor effectiveness is limited
because of signal attenuation. Consequently, research efforts
have focused on leveraging radiofrequency (RF) signals,
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including Wi-Fi and Bluetooth low energy (BLE), for indoor
LBS, given the widespread deployment of wireless devices
and RF sensors in indoor environments [3].

Compared with Wi-Fi-based approaches, which depend
on Wi-Fi access points (APs) for localization, BLE-based
methods provide enhanced deployment flexibility. BLE
beacons can be easily installed in less-visited areas and
operate on batteries. The advantages of Bluetooth technology
include low energy consumption, cost-effectiveness, ease
of deployment, and the capability to achieve accurate
localization. Thus, Bluetooth has emerged as a competitive
technology in various domains, including the Internet of
Things (IoT) [4], and has the potential to gain a larger market
share in indoor localization.
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RF-based indoor positioning systems (IPSs) employ sev-
eral methods, including the angle of arrival, the time of
arrival, the time difference of arrival, and fingerprint-based
approaches [5]. RF-based fingerprint indoor positioning
technology is widely utilized owing to its simplicity and
minimal hardware requirements, offering user convenience
through the extensive use of wireless devices such as
smartphones.

One of the primary challenges faced by RF-based finger-
print positioning systems is the extensive scale of surveying
needed to collect sufficient received signal strength (RSS)
data at multiple reference points (RPs) to construct an
indoor radio map. In large-scale deployments, survey efforts
are expensive. In addition, the radio map changes over
time, necessitating periodic calibration. As the area and
RSS measurement time increase, the dataset size required
for calibration increases. Despite the time-consuming and
labor-intensive nature of site surveying, fingerprinting-based
approaches continue to be popular owing to their applicability
to IPSs [6], [7].

To address the challenge of data collection costs,
researchers have explored various approaches, such as
crowdsourcing, interpolation, signal propagation models,
and simultaneous localization and mapping (SLAM). Their
localization accuracies are significantly affected by both the
number of RSS values per fingerprint and the fingerprint
density within a specific area [8]. The positioning accuracy
can be increased by increasing the number of RPs collected
in the offline phase [9]. However, this approach incurs
substantial costs associated with the offline data collection.
To mitigate this challenge, fingerprint augmentation is
an effective solution to reduce costs while maintaining
positioning accuracy [10]. Yet, these existing methods have
limitations when it comes to generating diverse synthetic
data. Moreover, augmenting Bluetooth fingerprint data faces
significant challenges due to noise, device variability, and
environmental changes [11].
The Conditional Generative Adversarial Network (CGAN)

stands as one of the most popular GAN methods, proficient
in generating synthetic data under specific conditions or
scenarios within various environments. This synthetic data
exhibits remarkable diversity and closely mimics real-world
data, owing to its innate capability to adapt to various
conditional settings [12], [13]. Additionally, the CGAN
approach proves highly effective in addressing this challenge
by enabling data generation based on specific class labels,
facilitating the targeted generation of data for a particular
type. The CGAN framework requires the generator and
discriminator to be conditioned on auxiliary information,
such as class labels. This conditioning acts as an extension to
the latent space, enabling the generation and discrimination
of synthesized data [14].
In this study, we considered a scenario in which

only a small amount of labeled data was available, and
data augmentation was used to interpolate the miss-
ing fingerprint data and extend the fingerprint database.

The main contributions of this study are summarized as
follows.

1) A CGAN-based localization system is proposed for
generating supplementary data by leveraging exclu-
sively labeled data. This approach facilitates generating
RSS measurements and corresponding positions to
extend coverage to new areas, increasing the position-
ing accuracy—particularly in unsurveyed locations.

2) This paper introduces a CGAN-based long short-
term memory (LSTM) network to find the best RSS
prediction and augment the fingerprints. The proposed
model was compared with other CGAN deep learning
prediction models.

3) Furthermore, a comparative analysis was performed
to evaluate the proposed algorithm against three state-
of-the-art algorithms in two distinct scenarios, encom-
passing rooms of varying dimensions and interference
levels. The experimental results indicated that the
proposed approach achieved satisfactory localization
performance.

The remainder of the paper is structured as fol-
lows. Section II provides an overview of the related work.
Section III presents the design of the proposed scheme.
Section IV presents the experimental results and comparisons
with those of state-of-the-art methods. Finally, we summarize
the study in Section V and outline future work.

II. RELATED WORK
Compared with outdoor localization, indoor localization
using RSS-based fingerprints presents more significant chal-
lenges owing to the unpredictable nature of environmental
factors. When utilizing RSS-based fingerprints, we must
consider two critical components: 1) the selection of RF
technologies for fingerprinting and 2) the method employed
for fingerprint data collection. This section summarizes
related studies focusing on three key aspects: general RF
indoor localization technologies, fingerprinting systems, and
data-augmentation methods.

A. GENERAL RF INDOOR LOCALIZATION TECHNOLOGIES
In recent years, various smartphone-oriented IPSs have
been investigated, including commonly used technologies
such as Wi-Fi, Bluetooth, ultra-wideband (UWB), ZigBee,
and cellular networks, each of which has strengths and
limitations.

In addition to the localization algorithm, the selection
of wireless technology plays a crucial role in designing an
effective localization system. Among the various wireless
technologies, Wi-Fi has gained significant popularity and is
widely employed in localization systems [20]. Furthermore,
with recent advancements in Bluetooth technology,many sys-
tems leverage BLE beacons for indoor localization [21], [22].
Another promising communication technology for IPS is
UWB [23], which offers advantages such as low power
consumption, high data rates (up to 1 Gb), and remarkable
accuracy. The results of the survey conducted in [24]
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TABLE 1. RF technologies for indoor localization.

highlight a remarkable surge in BLE-based research during
2021 and 2022, surpassing research in the domains of Wi-Fi
and UWB in comparison to previous years.

Although less prevalent than Wi-Fi and Bluetooth, ZigBee
has attracted attention for localization applications owing
to its low power consumption and widespread use in IoT
deployments. Alternatively, cellular signals such as 3G, 4G,
and 5G collected by smartphones offer the advantage of
cost reduction—by eliminating the need for additional hard-
ware installation—and widespread availability. However, the
adoption of 5G technology remains limited owing to a lack
of widespread infrastructure. Each of these technologies has
advantages and disadvantages when utilized in localization
systems. Table 1 summarizes the approaches for RF tech-
nologies used in indoor localization, including the accuracies,
advantages, and disadvantages of these methods.

Considering the cost, energy consumption, and deploy-
ment, Wi-Fi and BLE can be good choices. BLE beacons
require less energy than Wi-Fi APs because of their IoT
design, which allows them to operate for years using
traditional batteries. Additionally, the advertisement period
in BLE is far shorter than that in Wi-Fi, allowing multiple
RSS readings per second. These characteristics make BLE
a suitable substitute for Wi-Fi in fingerprinting applica-
tions [25]. Other reasons for using BLE beacons are their
ubiquity and the ease of measuring RSS values using modern
smartphones. Because most smartphones have Bluetooth
technology built-in, BLE has become a suitable choice for
indoor localization.

B. OVERVIEW OF FINGERPRINTING SYSTEM
In traditional fingerprint-based methods, constructing a radio
map involves collecting a set of RSS values at grid points
from the surrounding APs. This process includes annotating
fingerprints with location tags during the offline phase to
create an RSS radio map of the area of interest. In the
online phase, the system estimates the user’s location by
matching the observed fingerprint with the fingerprints stored
on the radio map. Owing to its comparable or even superior
localization performance without additional hardware or

infrastructure costs, fingerprinting localization can be widely
adopted in real-life scenarios, despite the labor-intensive and
time-consuming features of radio-map construction.

To minimize the costs associated with site surveys, finger-
prints are collected dynamically while walking. This dynamic
approach to data collection relies on either landmarks
or floor plans, along with the assumption of a constant
walking speed. The surveyor follows a predesigned path
between landmarks while maintaining a constant walking
speed. To overcome the limitation of a constant walking
speed, the pedestrian dead reckoning (PDR) algorithm is
employed to track the movement of pedestrians. Using
PDR-based methods, fingerprints can be collected while
walking, significantly reducing the time required for radio-
map construction. However, it is essential to note that the
PDR approach is subject to drift error, necessitating complex
algorithms to compensate for this error [26].

Crowdsourcing offers an efficient and cost-effective
approach for collecting RF fingerprints using smartphones,
allowing the generation and updating of RF fingerprint
databases through the collective effort of individuals [27].
For example, as discussed in [28], the authors have inte-
grated labeled fingerprints with a crowdsourcing system
that incorporates indoor floor plans and pedestrian walking
traces to construct a comprehensive Wi-Fi radio map.
The map-assisted approach to generate fingerprints was
introduced in [29]. It utilizes crowdsourced fingerprints
that are calibrated with supplementary map information.
However, constructing an accurate RF map in dynamic
crowdsourcing scenarios is challenging—particularly when
users move freely without additional sensors. Although previ-
ous studies have focused on offline database creation through
crowdsourcing, collecting data from freely moving users
poses challenges, as they may include unqualified inertial
data that compromise localization accuracy. Moreover, the
distributions of crowdsourced participants in space and time
are often uneven, resulting in incomplete signal data collected
through these methods [30].
As the indoor RF environment undergoes changes over

time, such as the replacement of faulty BLE beacons,
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furniture relocation, and the movement of people, periodic
updates to the radio map become essential [31], [32].
An outdated fingerprint database can lead to a deterioration
in localization performance [33]. Directly collecting indoor
radio maps is a time-consuming and costly endeavor,
particularly in larger spaces. Additionally, constructing a
comprehensive radio map is challenging, especially in
dynamic and crowdsourced scenarios where users move
arbitrarily.

Adapting to these dynamic changes requires frequent
model retraining, resulting in significant computational
overhead. Therefore, data augmentation offers a solution to
extend the training database, especially in cases where only
limited labeled data is available [34]. By implementing data
augmentation, the deep learning (DL) model can learn from
the labeled data and expand its database. It is well-suited
for scenarios where obtaining ample labeled training data
is challenging and expensive [35]. This approach involves
generating new synthetic data to complement the real col-
lected data, enhancingmodel training, improving localization
accuracy, and simultaneously reducing measurement time
and human effort. These advantages further enhance the
practicality and applicability of our proposed approach.

C. DATA AUGMENTATION-BASED APPROACH FOR
FINGERPRINT DATABASE CONSTRUCTION
Data augmentation plays a critical role in enhancing the
localization performance by increasing the training data
diversity and sample size [36]. Although it is widely used
in image classification tasks [37], its effectiveness has been
demonstrated in various domains, including natural language
processing, speech recognition, object detection, and human
activity recognition [36].
Research has focused on data augmentation for fingerprint

generation to address the challenge of acquiring sufficient
radio fingerprints for indoor localization under labor and
time constraints. Various approaches have been proposed,
such as Gaussian process regression (GPR) [15], [38], [39],
inverse distance weighting (IDW) [40], and linear interpo-
lation (LI) [41]. However, these methods have limitations
in accurately augmenting fingerprinting data for indoor
localization because of their assumptions and limited ability
to capture complex spatial relationships and nonlinearities in
radio signal propagation.

Recently, graph-based data-augmentation techniques [20],
[42], [43] have been used to construct large-scale fingerprint
data. In [42], radio fingerprints were modeled as graph
signals, and virtual RPs were interpolated into the graph
to solve the radio-map reconstruction problem. In another
approach [20], graph convolutional networks (GCNs) and
domain adversarial training are integrated to learn robust
and domain-invariant features for localization. However, the
use of graph-based methods for data augmentation in indoor
localization requires prior knowledge of the spatial structure,
a well-defined graph representation, and the assumption of a

consistent spatial structure across different domains, which
may only occasionally hold true in real-world scenarios.

Machine learning (ML) approaches like K-nearest neigh-
bor, support vector machines, and random forests are
highly effective for regression and classification tasks [44].
However, they may encounter challenges when dealing with
complex, nonlinear relationships in data. The RSS fingerprint
data, being both complex and high-dimensional, can pose
limitations on the performance of ML approaches. These
methods can experience significant performance degradation
when RSS values in the fingerprint vector are unstable due to
unforeseen environmental changes [45]. Tree-based models,
including Random Forests and decision trees, exhibit robust
predictive capabilities. However, their construction demands
substantial time and computational resources, particularly
when numerous trees are involved [46]. As networks become
more complex in indoor settings, there is a demand for
more sophisticated ML methods compared to traditional
supervised ML to address localization challenges [47]. In
contrast, DL shows great promise for improving localization
accuracy in complex environments where feature extraction
is challenging, and data exhibits high dimensionality [48].
Moreover, GAN, which leverages DL models, excels in
managing complex RSS-based fingerprint environments
through data augmentation for fingerprint reconstruction [49]
despite being computationally more complex [50].

III. SYSTEM MODELING
A. SYSTEM OVERVIEW
Fig. 1 illustrates the proposed positioning system. In the
initial stage, the RSS of BLE is collected using a mobile
device. Concurrently, the coordinates of various locations
and their corresponding RSS fingerprints are collected
during an offline site survey. Multiple site surveys are
conducted to ensure sufficient data collection. The red circle
represents the original data (real data) at a fixed location.
To enrich the fingerprint RSS database, the system uti-
lizes conditional generative adversarial networks (CGANs)
to generate synthetic RSS fingerprints. The blue circle
represents the augmented data, which has been randomly
augmented to cover the entire area. Data augmentation is
achieved by implementing the CGAN architecture, which
comprises two essential components: a discriminator and a
generator. In contrast to traditional generative adversarial
networks (GANs), CGANs incorporate conditional labels to
facilitate the targeted generation of fingerprints specific to
particular floors or buildings.

Fig. 2 illustrates the layers of the discriminator and
generator model, along with the number of units and details
of the activation function. The generator network comprises
LSTM and dense layers with 32 and 16 units, respectively.
In CGAN-LSTM, noise and labels are required at the
generator input, while real data and labels are necessary
at the discriminator input. Both components operate in a
mutually adversarial manner. In contrast, the discriminator
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FIGURE 1. BLE-based fingerprint IPS.

layer consists of one LSTM layer and three dense layers
with 128 units, 64 units, 16 units, and 1 unit, respectively.
Each LSTM unit comprises four components: 1) Cell State,
2) Input Gate, 3) Forget Gate, and 4) Output Gate, as shown
in Fig. 3. The LSTM unit is essential for maintaining long-
term dependencies, thereby improving overall outcomes [51].
Both the discriminator and the generator employ the rectified
linear unit (ReLU) activation function for all layers, except
the last one, to disregard the negative weighted values.
In addition, a sigmoid activation function is applied to the
output layer.

B. BLE BEACON-BASED FINGERPRINT LOCALIZATION
The RSS vector at distinct locations in indoor settings
exhibits noticeable differences due to varying distances from
BLE beacons to smartphones, thereby delineating unique

location fingerprints. The RSS demonstrates a characteristic
where the signal increases as the user approaches the
beacon and decreases as the user moves away from it.
The comprehensive set of RSS fingerprints for all RPs
within the indoor environment is denoted as the radio map.
As depicted in Fig. 1, the BLE fingerprint positioning
algorithm progresses two stages—an offline stage followed
by online one. This study focuses explicitly on location
fingerprinting, employing RSS values garnered from BLE
beacons.

During the offline phase, mobile communication devices,
such as smartphones with Bluetooth modules, gather RSS
information from various BLE beacons. This data, accom-
panied by their respective Media Access Control (MAC)
addresses and coordinates, establishes a radio fingerprint
database for subsequent online localization processes.
The database, encapsulating information about RPs and their
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FIGURE 2. Discriminator and generator model.

FIGURE 3. LSTM cell.

corresponding fingerprints, is then pre-stored for utilization
in the online phase.

The online phase sees the smartphone acquiring the RSS
vector and relatedMAC addresses from an uncharted position
before uploading to the server. Subsequently, the server,
in turn, compares the present RSS information with the stored
fingerprints in the database to estimate the location. The
system utilizes the weighted K-nearest neighbor (WKNN)
matching algorithm to compare the query with the radio
map, returning the most similar fingerprint as the estimated
location.

Assume a set of BLEs (B = BLE1,BLE2, . . . ,BLEM )
and RPs (RPi = RP1,RP2, . . . ,RPN ), where M represents
the total number of BLE beacons, and N indicates the total
number of deployed RPs in the indoor environment. Let NR
be the number of offline RPs andMB be the number of BLEs.
The offline fingerprint RSSi at RPi is denoted as:

RSSi =
(
MAC1

i ,RSS
1
i

)
, . . . ,

(
MACMB

i ,RSSMB
i

)
(1)

where MAC j
i and RSS

j
i represent the MAC address and RSS

value of the BLEj at RPi, respectively. Let Pi = (xi, yi)
represent the 2D location coordinate of the i-th RP, and t
express the sampling amount of the k-th BLE, respectively.
The RSS of the m-th BLE in the i-th RP can be defined by
RmPi =

∑t
i=1 R

m,i
Pi /t . The fingerprints of RPs in the location

space can be represented by RPi = [R1Pi ,R
2
Pi , . . . ,R

M
Pi ]

T .
Consequently, the fingerprints of RPs at the grid point in a
given location are denoted by:

R =


R1P1 R1P2 · · · R1PN
R2P1 R2P2 · · · R2PN
...

...
. . .

...

RMP1 RMP2 · · · RMPN

 (2)

In the online phase, a fresh RSS measurement denoted
as RSe = [R1Se ,R

2
Se , . . . ,R

M
Se ]

T is obtained and concurrently
compared with R. Subsequently, the positioning scheme is
employed further to determine the estimated coordinates of
the localization device.

C. CGAN
In 2014, [52] introduced CGAN, which enhanced traditional
GANs by incorporating additional information into the
encoded class labels. The class labels are fed to both the
generator and discriminator along with the prior noise and
real data, respectively. This conditioning of class labels
allows CGANs to generate data that are specific to each class.
The cost function is defined as

min
G

max
D

L(D,G) = Ex∼Pdata(x)

[
logD

(
x|y

)
+ Ex∼Pdata(x) log

(
1− D

(
G(z|y)

))]
,

(3)

where the term Ex∼Pdata(x)[logD(x|y)] indicates the dis-
criminator’s ability to correctly distinguish real data sam-
ples (x) from generated data samples (G(z|y)) given the
corresponding class labels (y). The generator aims to
minimize this term to ensure that the generated sam-
ples are indistinguishable from the real samples. Con-
versely, Ex∼Pdata(x)[log(1 − D(G(z|y)))] indicates how well
the discriminator correctly identifies generated samples
as fake. The discriminator seeks to maximize this term
to improve its ability to differentiate between real and
generated data.
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The losses of the discriminator and generator are expressed
as follows:

L(D, θd ) = Ex∼Pdata(x)

[
logD

(
x|y; θd

)
+ Ez∼Pz(z) log

(
1− D

(
G(z|y; θg)

))]
(4)

L(D, θg) = Ez∼Pz(z)log
(
1− D

(
G(z|y; θg)

))]
(5)

In (4), L(D, θd ) represents the discriminator loss, with θd
denoting the weighted parameters adjusted during training.
Ex∼Pdata(x) estimates the average over real data points x (input
data) sampled from the distributionPdata. logD

(
x|y; θd

)
is the

logarithm of the probability assigned by the discriminator D
to the input x given the condition y and current weighted
parameters θd . In the last part, which is common to both (4)
and (5), the goal is to determine the logarithm of the
probability assigned by the discriminator to the fake input
G(z|y; θg) under a specific condition y. This logarithmic
probability is averaged over all noise samples z from the noise
distribution Pz(z).
In summary, the training of CGANs is focused on

accurately distinguishing between real and fake data under
a specified condition, denoted as y. To achieve this, it is
essential to minimize the discriminator loss (L(D, θd )). Con-
versely, maximizing the generator loss (L(D, θg)) contributes
to the generation of highly realistic samples, making it
challenging for the discriminator to differentiate them from
real data under the same condition y. Hence, the CGAN
training aims to minimize the discriminator loss (L(D, θd ))
while maximizing the generator loss (L(D, θg)), leading to
a balanced training process that results in the generation of
high-quality samples by the generator.

During training, we use different hyperparameters (e.g.,
learning rate, batch size, sequence length of LSTM) to
fine-tune our proposedmodel. The values of these parameters
are selected in a heuristic manner to improve the proposed
model during training.

D. RSS AUGMENTATION MODELS WITH CGAN FOR
RADIO-MAP CONSTRUCTION
Algorithm 1 presents the process of data augmentation
using a conditional generative adversarial network with long
short-term memory (CGAN-LSTM). This algorithm aims
to augment a given dataset containing random positions
and the corresponding RSS measurements observed from n
BLE beacons with MAC addresses. The goal is to generate
additional data samples that can be used to improve the
performance of the radio-map-based fingerprinting.

The algorithm begins by initializing the LSTM-based
generator (G) and discriminator (D) networks. In addition,
the categorical cross-entropy loss function and Adam opti-
mizer loss for both networks are defined. The algorithm
sequentially processes each entry (row) within the dataset
to fetch the RSS value of each MAC address. It calculates
the actual labels (RL) by averaging the RSS values of the

Algorithm 1 Data Augmentation Using CGAN-
LSTM
Input : Random positions, RSS measurements from

n BLE beacons with MAC addresses
Output: Generated augmented dataset

1 // Initialization
2 Initialize LSTM-based generator (G) and

discriminator (D) networks
3 Define the categorical cross-entropy loss function and

Adam optimizer for G and D, along with other
hyperparameters like learning rate and batch size

4 for each entry in the dataset do
5 sum← 0
6 count ← number of RSS values in the current

entry
7 for each RSS value, RSSi, in the current entry do
8 sum← sum+ RSSi
9 end
10 RL ← sum

count
11 ▷ Calculate the average RSS value in the current

entry, where count denotes the total number of
RSS in one row

12 return RL
13 for each epoch (ep = 1 to epochtotal) do
14 RS = {RSS1,RSS2, . . . ,RSSn}
15 ▷ Obtain real samples (RS) with their

corresponding conditional labels in batches
16 N = Generator_Noise()
17 FL = Random_Fake_Labels()
18 FS = G(N ,FL)
19 ▷ Generate fake samples based on noise and

fake labels
20 Authenticity_RS = D(RS)
21 ▷ Discriminator predicts the authenticity

based on actual RSS samples
22 Loss_RS_RL = Loss_function(RS,RL)
23 Authenticity_FS = D(FS)
24 Loss_FS_FL = Loss_function(FS,FL),

L(D, θd ) = RL + FL
25 WD = WD − D_optimizer(L(D, θd )).

L(D, θg) = Loss_function(FS,RL)
26 WG = WG − G_optimizer(L(D, θg))
27 if current epoch is equal to epochtotal then
28 Save newly generated augmented data as a

new dataset
29 end
30 end
31 end

respective entries. Within each entry, the algorithm enters
an epoch loop, updating the generator and discriminator
networks iteratively. During each epoch, real samples (RS)
with their corresponding labels are obtained in batches, and
noise (N ) is generated to feed the generator. The generator (G)
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then generates fake samples (FS) by processing the noise and
fake labels (FL) usingG. Subsequently, the discriminator (D)
predicts the authenticity of the real samples (RS), and the
loss is computed according to the real samples (RS) and their
corresponding real labels (RL). Similarly, the authenticity
of the fake samples (FS) is predicted by D, and the loss
is calculated according to the fake samples (FS) and their
corresponding fake labels (FL).
The discriminator loss (L(D, θd )) is formulated as the sum

of the real loss (RL) and the fake loss (FL). To update
the weights of the discriminator (WD), the discriminator
loss (L(D, θd )) is used in conjunction with the discrimina-
tor optimizer (D_optimizer). Similarly, the generator loss
(L(G, θg)) is computed according to the fake samples (FS)
and real labels (RL). To update the generator weights (WG),
the generator loss (L(G, θg)) is used in conjunction with the
generator optimizer (G_optimizer). The algorithm iterates
through multiple epochs, and when it reaches the specified
epochtotal , the newly generated augmented data are saved as
a new dataset.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents a comprehensive performance analysis
of the proposed fingerprint augmentation method. First,
we outline the experimental setup. Next, we discuss the
performance of various CGAN models in comparison with
state-of-the-art data-augmentation methods.

A. EXPERIMENTAL SETTINGS
We developed an Android application using the interface
provided by Android Studio to measure the RSS of
the beacon messages from multiple BLE devices. This
application, implemented in Java, is designed to run on
Android smartphones. Our solution consists of a client
application for smartphones and a processing server running
on a PC. Notably, the client application is optimized for
Android 10 (API level 30) and can collect sensor readings,
including signal strengths from various beacons, along with
their corresponding timestamps. The extracted RSS values
are expressed in dBm, denoting signal power levels in
decibels (dB) relative to one milliwatt (mW). For BLE
beacons whose signals were too weak to be detected by our
Android app, we set the RSS to a minimum value of -99 dBm
by default.

During the offline stage of our experiment, we collected
raw RSS data in typical indoor environments comprising a
corridor and a laboratory (as shown in Fig. 4). The corridor
spanned 45 m in length and 3 m in width, whereas the
laboratory covered an area of 12 m in length and 10 m in
width. The laboratory environment included various types
of furniture and obstacles. Individuals moved randomly
within the corridor, making the experimental settings closely
resemble real-life scenarios.

In developing a BLE fingerprinting-based positioning
system, the typical process involves conducting radio scans,
supplemented by ground-truth data collected by a user

FIGURE 4. Layouts of two indoor environments.

or surveyor. In this context, the ground-truth information
corresponding to the radio scans is known to the user and can
be regarded as labeled data. During the static data collection
phase, the user stands at specific points for 4 to 5 minutes,
and RSS data is collected at each predefined reference point
using a smartphone.

To create the radio map, we divided it into grids, each
with an average edge width of 2.0 m and height ranging
from 1.5 to 2.0 m. Each grid point was assigned a unique
fingerprint containing the RSS values measured from n BLE
beacons. In total, 17 BLE beacons were deployed for these
experiments, with 10 placed in the corridor and 7 in the
laboratory (as indicated by the purple circles in Fig. 4).

Each beacon was set to broadcast a signal every 300 ms,
and the transmission power level was set to +4 dBm to provide
good signal coverage. Data collection was performed for
5 min to gather numerous RSSmeasurements at each RP. The
purpose of employing an extended scanning period during the
onsite fingerprint survey was to ensure a sufficient number of
signals for the construction of a fingerprint database.

B. LOCATION ESTIMATION WITH WEIGHTED K-NEAREST
NEIGHBORS
In this study, we applied a widely adopted WKNN algorithm
to evaluate the similarity between RSS vectors [53], [54].
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TABLE 2. Comparison of RSS estimation errors (in dBm) for CGAN models with data augmentation and without augmentation in two scenarios.

In the online phase, the user’s location is estimated by
evaluating the similarity between the recently acquired
fingerprint and the fingerprints recorded in the database. The
WKNN algorithm computes distances, typically Euclidean
distances derived from RSS, by comparing each fingerprint
in the database with the recorded fingerprint at location i of
the point of interest. Subsequently, it identifies k fingerprints
with the smallest distances, determining a match with the
most probable position of the device. The estimation is
achieved through the calculation of the weighted average of
the positions of these k fingerprints, expressed as:

ˆpos =
k∑
i=1

wi ˆposi (6)

wi =
1/di∑k
i=1 1/di

, (7)

where ˆpos represents the estimated location, ˆposi represents
the position at the i-th neighbor, and di signifies the distance
between the measured RSS value at BLE of a point of
interest and the pre-recorded fingerprint of RSS at location i.
(7) calculates the weights (wi) assigned to each neighbor
based on the inverse of their respective distances. Smaller
distances are accorded relatively larger weights, ensuring
that the nearest neighbors, selected based on the smallest
Euclidean distance and highest similarity, correspond to both
offline and online RPs.

C. RSS ESTIMATION ACCURACY
To evaluate the accuracy of RSS estimation, we utilized a
set of randomly chosen RPs in which the fingerprints were
measured. Subsequently, we compared the predicted RSS
values (selected from 500 newly generated data samples) at
these RPs with the corresponding ground-truth values. The
localization performance was quantified using the following
equation:

ei =
∣∣∣∣Rg − Re∣∣∣∣ , (8)

where ei represents the error in the RSS estimation error,
Rg represents the ground-truth RSS value, and Re represents
the estimated RSS value.

The collected RSS values in the experimental environ-
ments were compared with CGAN-estimated RSS values
based on three different models (fully convolutional neural
network (FCNN), LSTM, and BiLSTM) employed for
data augmentation, as well as the case without any data

augmentation method. The average RSS errors in Scenar-
ios 1 and 2 are presented in Table 2. As an example, for
BLE 4, Figs. 5 and 6 present the RSS estimation errors at the
locations of 40 RPs for Scenario 1 and 25 RPs for Scenario 2,
respectively.

As shown in Table 2, the CGAN-LSTM model outper-
formed the other models with regard to RSS prediction,
with RSS estimation errors of 3.036 and 2.951 dBm
for Scenarios 1 and 2, respectively. Additionally, LSTM
exhibited reductions of 20.94% and 10.57% in the average
RSS estimation error compared with FCNN and BiLSTM,
respectively, in Scenario 1. In Scenario 2, LSTM exhibited
error reductions of 12.09% and 3.88%, respectively. The RSS
estimation errors of different deep learning models as a data
augmentation method showed better performance in RSS
prediction than those without data augmentation approaches.
For Scenario 1 and Scenario 2, as shown in Table 2, the
case without a data augmentation method produced the worst
RSS estimation errors of 4.040 and 3.634 dBm, respectively,
compared to the case with data augmentation methods.

D. PERFORMANCE EVALUATION AND COMPARISON OF
LOCALIZATION
Using data augmentation, we employed CGAN-LSTM to
generate radio maps for three BLE devices (BLE 2, BLE 4,
and BLE 5) in Scenario 2, as illustrated in Fig. 7. The
signal map reconstructed after data augmentation using
the proposed method captured detailed RSS expressions,
in contrast to the signal without data augmentation (see
Fig. 8), which appeared excessively rough and failed to reflect
normal signal characteristics.

The overall cumulative error of our method, along with
comparisons with state-of-the-art methods for each scenario,
is presented in Fig. 9. To ensure a fair comparison,
we augmented the dataset to 500 points, encompassing the
entire area for both the proposed approach and state-of-the-art
data augmentationmethods. The proposed approach achieved
average accuracies of 1.065 and 1.956m in Scenarios 1 and 2,
respectively, corresponding to improvements of at least
15.74% compared with fingerprinting without the data-
augmentation method. Moreover, in Scenario 1, the proposed
method outperformed GPR, IDW, and LI by 1.84%, 7.31%,
and 14.04%, respectively. Across all scenarios, the proposed
approach reduced the 90th-percentile errors to < 3.80 m.

We noticed an increase in the localization accuracy for all
the augmented datasets compared with classical localization
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FIGURE 5. RSS estimation errors for BLE 4 at 40 RP locations in Scenario 1. Three CGAN-based prediction models (FCNN, LSTM, BiLSTM) are compared
with the case without any data augmentation method.

using a dataset limited solely to real data. The augmented
data presented in Figs. 10 and 11 consist of newly generated
positions and RSS values of BLE beacons. We generated
500, 750, and 1000 data points to cover the entire area in
Scenarios 1 and 2, respectively. The enhancements in the
localization accuracy varied by up to 10% across 250–1000
data augmentations. The highest localization accuracy was
achieved when the dataset was augmented with 750 and
500 data samples in Scenarios 1 and 2, respectively, resulting
in average errors of 1.058 and 1.956 m, as shown in Fig. 12.
Surprisingly, the generation of additional fake data beyond
this point did not lead to further improvements. Notably,
when the number of generated samples reached 1000, the
localization accuracy reached saturation, and no further
improvement was observed.

E. DISCUSSION
Data augmentation plays a crucial role in improving the
performance of the fingerprinting models for BLE indoor
localization. In this study, we compared the performance of
three different data augmentation techniques: CGAN-LSTM,
CGAN-BiLSTM, and CGAN-FCNN, in the context of BLE
fingerprinting. Our results indicated that the CGAN-LSTM
model outperformed the other two models with regard to
localization accuracy.

The superiority of the CGAN-LSTM model is attributed
to its ability to capture both the spatial dependencies
of fingerprint data and the temporal dynamics of signal
variations. By combining the GAN and LSTM architectures,
the CGAN-LSTM model effectively learns the complex
relationships between the input BLE fingerprints and the
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FIGURE 6. RSS estimation errors for BLE 4 at 25 RP locations in Scenario 2. Three CGAN-based prediction models (FCNN,
LSTM, BiLSTM) are compared with the case without any data augmentation method.

FIGURE 7. Heatmaps of three BLEs generated by the CGAN-LSTM data-augmentation model for Scenario 2.

corresponding locations. The GAN component of the model
allows the generation of realistic and diverse synthetic
fingerprints, which enhances the training data and reduces the
degree of overfitting.

Furthermore, the LSTM component of the CGAN-LSTM
model allows it to capture the temporal dependencies present
in the BLE signal variations. This is particularly impor-
tant in indoor environments, where signal characteristics

can change over time owing to various factors such as
human presence and environmental conditions. The LSTM
component effectively learns sequential patterns based on
forward contexts and long-term dependencies in the data.
Moreover, LSTM leads to high localization accuracy because
of maintaining sequential training ability in one direction
within a few number of training parameters for small number
of data in our data set. Although the CGAN-BiLSTM model
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FIGURE 8. Heatmaps of three BLEs without data augmentation for Scenario 2.

FIGURE 9. CDFs for two scenarios with 500 augmented data points.

FIGURE 10. Generated positions in Scenario 1 with the corresponding RSS for data augmentation.

incorporates bidirectional processing to capture both past
and future contexts, it may face limitations in modeling

long-term dependencies. Because of this nature, the training
complexity becomes higher during training in modeling
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FIGURE 11. Generated positions in Scenario 2 with the corresponding RSS for data augmentation.

FIGURE 12. Effect of the amount of generated data on the localization accuracy.

FIGURE 13. Localization model accuracy.

long-term dependencies for our sequential dataset; when
gradients become too small, the training’s parameter updates
very slowly for distant time steps in both the forward and
backward directions. As a result, the training outcome does
not achieve the expected higher localization accuracy similar
to CGAN-LSTM.

In contrast, CGAN-FCNN models, which do not incor-
porate the LSTM architecture, may struggle to capture the
temporal dynamics of the BLE signals. The CGAN-FCNN
model relies solely on the feedforward nature of the fully

connected neural network, which may not effectively capture
the sequential nature of the BLE signal variations.

The proposed BLE-based data augmentation using
CGAN-LSTM outperformed the other data-augmentation
methods. LI data augmentation assumes linear relationships
between two sample points and cannot capture the intricate
nonlinearities present in indoor environments. Similarly,
IDW data augmentation was affected by the relative weights
and spatial correlations between close points. GPR performed
well as the second-best data-augmentation method by
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inferring the posterior RSS mean and variance to build a
complete radio map.

As shown in Fig. 13, the training and validation accuracies
increased with an increase in the number of epochs in both
scenarios for the CGAN-LSTM model, indicating that the
model achieved effective learning and generalization to new
data while avoiding overfitting.

The average localization error can be reduced by aug-
menting RPs during offline fingerprinting construction of
the radio map. By increasing the number of augmented
RPs, the localization performance was improved, i.e., the
localization accuracy was increased. However, adding too
many points may introduce interference nodes and reduce the
localization accuracy, as shown in Fig. 12. This suggests that
an optimal number of RPs may exist for a specific indoor
environment.

Overall, the ability of the proposed CGAN-LSTM model
to capture both spatial and temporal dependencies and
generate diverse training data through the GAN component
contributed to its superior performance in BLE fingerprinting
data augmentation. These findings highlight the importance
of considering architectural choices and integrating relevant
techniques when designing data-augmentation models for
BLE indoor localization.

V. CONCLUSION AND FUTURE WORK
In this study, we demonstrated that synthetic data can
increase the average accuracy of fingerprint-based localiza-
tion in a deep-learning context, where data collection is
time-consuming and expensive. Specifically, we propose the
use of a CGAN to generate synthetic data. To investigate
the characteristics of RSS fingerprints, we assessed CGAN-
based RSS data augmentation using different deep-learning
models. Experimental results indicated that CGAN-LSTM
achieved average estimation errors of 3.036 and 2.951 dBm
in Scenarios 1 and 2, respectively, outperforming the
CGAN-FCNN and CGAN-BiLSTM models. Additionally,
the proposed algorithm outperformed the non-augmentation
approach by at least 15.74%. Compared with the baseline
data-augmentation method, the proposed CGAN-LSTM
system reduced the localization error by up to 14.04% in
both scenarios. Therefore, given the constraints of limited
fingerprints, data augmentation is a viable means of increas-
ing the average accuracy of BLE-based indoor localization
while alleviating the burdensome demands of site surveys.
In the future, we aim to develop further into the following
directions. For example, exploring alternative machine learn-
ing approaches for data augmentation, including advanced
methods for comparative analysis, holds promise. Addi-
tionally, scrutinizing the performance of lazy learners and
their viability as fingerprints for data augmentation while
considering the dynamic indoor environment that may require
periodic fingerprint updates could yield valuable insights for
the field of indoor localization.
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