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ABSTRACT This paper considers the event-triggered distributed fixed-time consensus control problem of
leader-following multi-agent systems with nonlinear dynamics and inherent disturbances. First, an event-
triggered distributed strategy, that is used to decide when to update states by agents, is proposed. Under the
proposed strategy, each agent receives its neighbors’ state to make decisions only if the measurement error
exceeds a certain threshold. Second, we design a nonsingular terminal sliding mode consensus protocol so
that all followers reach the leader’s state in a fixed-time. Particularly, the gain in the consensus protocol is
determined by the settling time, whichmakes devising and tuning the gain conveniently. Simulation examples
are worked out to demonstrate the effectiveness of our theoretical results.

INDEX TERMS Multi-agent systems, event-triggered control, consensus, dynamics and disturbances,
fixed-time.

I. INTRODUCTION
In recent years, the cooperative control problem of
multi-agent systems has received significant attention within
control community [1], [2], [3]. The core task of cooperative
control in multi-agent systems is to design suitable control
scheme to achieve the consensus agreement on the states
or outputs for each agent. Distributed control algorithms
have been used in the literature [4] to study the asymptotic
consensus of multi-agent systems. The literature [5] proposed
a consensus fuzzy control method with preset performance
for high-order strict feedback multi-agent systems.

However, for practical systems, the design of the control
protocol should consider the speed of convergence. Finite-
time convergence is always expected, rather than asymptotic
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convergence [4], [5], which has been discussed for a long
time in system control. To achieve finite-time convergence
in system control, many efficient methods have been pro-
posed [6], [7], [8], [9], [10]. For example, [6] studied the
distributed finite-time consensus protocol in a time-varying
topology of first-order linear multi-agent systems. Refer-
ence [7] designed a non-smooth sampled-data control method
for second-order multi-agent systems. References [8] and [9]
respectively designed different finite-time consensus control
methods for nonlinear systems based on robust fuzzy control
and neural networks. Reference [10] studied the finite-time
consensus control method for second-order nonlinear multi-
agent switching systems. Although many invariants have
been proposed to improve convergence speed, the conver-
gence time usually depends on the initial conditions and
can be arbitrarily large, which is not advisable. Therefore,
researchers and scholars are paying more attention to the
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convergence of fixed-time, where there is an upper bound on
the convergence time with arbitrary initial conditions [11].
In addition, note that most of existing results are related to
linear systems, it is difficult to directly apply the existing
results of linear systems to nonlinear systems. Therefore,
the fixed-time consensus of uncertain nonlinear systems has
become an attractive and hot issue within control research
area. Recently, several fixed-time consensus algorithms for
nonlinear multi-agent systems were proposed in [12], [13],
[14], [15], [16], and [17]. Among them, [12] and [13] stud-
ied the fixed-time consensus tracking problem of first-order
nonlinear multi-agent systems. Reference [14] designed an
observer-based consensus control method for second-order
multi-agent systems with disturbance. Reference [15] studied
a fixed-time consensus tracking control method for hetero-
geneous multi-agent systems. In [16] and [17], fixed-time
consensus control for high-order nonlinear multi-agent sys-
tems were developed.

On the other hand, due to the highly complexity and
inter-connectivity of multi-agent systems, in practical appli-
cations where resources and communication bandwidth are
limited, researchers and scholars have developed two effec-
tive control strategies to decrease the communication burden:
time-triggered control strategy [18] and event-triggered con-
trol strategy [19], [20]. Between them, the time-triggered
scheme depends on the sampling time period for achieving
the control objectives. However, it often leads to unnecessary
sampling, which in turn results in additional communication
burden and cost. Subsequently, an event-triggered strategy is
developed, in which triggering control tasks are only exe-
cuted when certain predefined conditions are triggered. Some
significative results for reducing the communication burden
have been proposed, which focus on the event-triggered
control strategy of multi-agent systems with static event-
triggered strategies [21], [22] and dynamic event-triggered
strategies [23], [24], [25], [26], [27]. Among them, [22], [23],
and [24] studied uncertain nonlinear multi-agent systems
based on event-triggered control mechanisms. References
[21], [25], [26], and [27] proposed event-triggering strate-
gies for linear multi-agent systems. These researches include
leader-following problems, switching topologies, system dis-
turbances, and so on. There are still many issues that
require further research. This paper will further focus on the
event-triggered fixed- time consensus control for multi-agent
systems with nonlinear uncertainties.

Motivated by above discussions, this paper investigates
the event-triggered distributed fixed-time consensus con-
trol problem of leader-following multi-agent systems with
nonlinear dynamics and inherent disturbances. Under the
framework of Lyapunov stability theorem, a novel dis-
tributed consensus control scheme and event-triggered con-
trol strategy is developed. The main contribution of this
article is:

1) Different from [20], we design a stable event-triggered
mechanism, i.e., frequent switching of the controller will not
cause undesirable phenomena such as chattering.

2) A new event-triggered distributed fixed-time consen-
sus method is developed, where controller updates are
event-driven under a predetermined event-triggered strategy.
The proposed control scheme effectively reduces the commu-
nication burden between the agent and the controller, while
ensuring the stability of the system and achieving the goal of
consensus tracking control.

3) This article provides a new controller design method
to reduce the conservatism of convergence time bound esti-
mation, which can reduce controller gain and avoid actuator
saturation as much as possible, and the minimum setting
value is obtained and less conservative.

4) The control gain can be directly determined from the
specified time, which is beneficial for the design and tuning
of the control gain.

Finally, simulation examples verified the effectiveness of
the theoretical results.
Notations: Throughout this paper, the symbol R is

the set of real numbers. The symbol R+ is the set
of nonnegative real numbers. D∗ω (t) denotes the upper
right-hand derivative of a function ω (t), i.e. D∗ω (t) :=

suplimh→0+
ω(t+h)−ω(t)

h .1M denotes M -dimensional vectors
whose all elements are 1. Denote xi = [xi1, · · ·, x iM ]T ∈RM ,

and sign (xi) = [sign(x i1), · · ·, sign(x iM )]T , where sign (xi)
is the signum function. If s> 0, sign (s) = 1; else if s< 0,
sign (s) = −1; else sign (s) = 0. For z∈R+, we define
z[k] = sign (·) |z|k . Given a matrix P, PT , λmax (P) and
λmin (P) respresent its transposition, its maximum and mini-
mum eigenvalues respectively.

II. PREPARATION AND PROBLEM FORMULATIONS
A. GRAPH THEORY
The interaction among followers can be modeled by a
graph G = (V ,E,A), where V = {v1, v2, · · ·vN } is the set
of nodes, and E ⊆ V × V is the set of edges. A directed
edge

(
vj, vi

)
∈ E indicates that node vi can receive infor-

mation from node vj, but not necessarily vice versa. Among
them, node vj is called parent node, node vi is called child
node. Denote A =

[
aij
]

∈ RN×N as the adjacency matrix,
whose elements can be defined as that aij > 0 if

(
vj, vi

)
∈E

and aij = 0 otherwise. The degree matrix is defined as
D = diag {d1, d2, · · · ,dN }, where di =

∑N
j=1,j ̸=i aij. The

Laplacian matrix L =
[
lij
]
N×N of graph G is defined as

L = D− A.
For a leader-following multi-agent systems, assume that

the leader is labeled as v0 and the follower is represented by
v1, v2, · · · vN . The directed graph consisting of N + 1 agents
can be represented as Ĝ, and N + 1 agents can be viewed as
N + 1 nodes. V̂ = {v0, · · · ,vN } represents the set of nodes,
Ê∈V̂×V̂ represents the set of edges. Let L̂ denote the Lapla-
cian matrix of Ĝ. Graph Ĝ can be represented by a weight
matrix L̂ = L + B, where B = diag {a10, a20 · · · , aN0}.
A path from node vi to vj refers to a sequence of edges
{(vj, vi1), (vj1, vi2), · · ·, (vjl, vj)} composed of different nodes
vik , k = 1, 2, · · ·, l. If a root node exists so that it has at least a
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directed path to each other node, then graph Ĝ is said to have
a spanning tree.

B. FIXED-TIME STABILITY
For a general differential equation system:

ẋ (t) = g (t, x (t)) , x (0) = x0 (1)

where x (t)∈RM is the state vector and g (t, x (t)) :R+

×RM
→RM is a nonlinear function. Suppose that the orgin

zero is an equilibrium point of (1).
Definition 1 ([6]): The equilibrium point of system (1)

is said to be globally finite-time stable if it is globally
Lyapunov stable and any solution of the equation reaches
equilibrium at a finite time, i.e., x (t, x0) = 0,∀t ≥

T (x0), where x (t, x0)∈RM is the solution of system (1) and
T (x0) :RM

→R+
∪ {0} is the setting time function.

Definition 2 ([22]): The equilibrium point of system (1)
is said to be globally fixed-time stable if it is globally Lya-
punov stable with bounded time T (x0), i.e., ∃Tmax > 0 :

T (x0)≤Tmax,∀x0∈RM .
Remark 1: Consider systems ż = −z1/3, z (0) = z0 and

ẏ = −y1/3−y3, y (0) = y0, respectively, an arbitrary solution
z (t, z0) = 0 for ∀t≥T (z0) = (3/4) z4/30 is finite-time stable

and y (t, y0) for ∀t ≥ T (y0), T (y0) ≤ Tmax =

(
3
√
2π
)
/8

is fixed-time stable, respectively. As can be seen from the
above definitions and examples, the main difference between
finite-time stability and fixed-time stability is the conver-
gence time, i.e., the convergence time of finite-time stability
depends on the initial value, while the upper bound of the
convergence time for fixed-time stability is a constant.
Lemma 1 ([22]): If there exists a continuous radially

unbounded function V : RM
→R+

∪ {0} such that V (x (t)) =

0 ⇔ x (t) = 0 and any solution x (t) satisfies the inequality
D∗V (x (t)) ≤ −αV (x (t))p−βV (x (t))q for some constants
α, β> 0, p = 1− 1

µ
, q = 1+ 1

µ
, µ> 1, then globally

fixed-time stable can be achieved and the settling time T
holds:

T (x0) ≤
πµ

2
√
αβ
.

Lemma 2 ([18]): For w1,w2, · · · ,wM ≥ 0 and 0 <b≤ 1,
we have

M∑
i=1

wbi ≥

(
M∑
i=1

wi

)b
.

Lemma 3 ([18]): For w1,w2, · · · ,wM≥ 0 and c> 1, one
has (

M∑
i=1

wi

)c
≥

M∑
i=1

wci ≥ M1−c

(
M∑
i=1

wi

)c
.

C. PROBLEM FORMULATION
Consider a directed connected graph Ĝ with N followers
and one leader. The dynamic model of each follower can be

described as

ẋi (t) = ui (t)+ g (t, xi (t))+ di (t, xi (t)) , i ∈ {1, · · · ,N } ,

(2)

where xi (t) denotes the state of the agent i, ui (t) is the
ith agent’ control input. g:R+

×RM
→RM is the nonlinear

function, and di:R+
×R →RM is the uncertain disturbance.

The dynamic model of a leader is represented as

ẋ0 (t) = u0 (t)+ g (t, x0 (t)) , (3)

where x0 (t) is the leader’s state. g (t, x0 (t)) is the nonlinear
function, and u0 (t) is the control input for the leader.
Assumption 1: The leader’s control input is bounded, i.e.,

one can find a constant θ ∈ R+ such that

|u0| ≤ θ. (4)

Assumption 2: There exist ρ> 0 and dmax> 0 satisfying

|g (t, ω)− g (t, ς)| ≤ ρ |ω − ς | ,∀ω, ς ∈ R,∀t≥ 0. (5)

and

di (t, ζ )≤dmax, i = 0, 1, 2, · · · ,N . (6)

where the uncertain disturbance di (t, ζ ) is a continuous func-
tion with respect to time t and the state ζ .
Definition 3: For given input ui (t) , i = 1, 2, · · · ,N ,

if there exists a setting time function T (x0) ∈ [0,∞]
bounded by some positive number Tmax, i.e., T (x0) < Tmax,
∀x (0)∈ R regardless of initial states, such that

lim
t∈T (x0)

∣∣xi (t)− xj (t)
∣∣ = 0,xi (t) = x0 (t) ,∀t ≥ T (x0) . (7)

The fixed-time consensus tracking of the multi-agent sys-
tem (2), (3) is achieved.

D. EVENT-TRIGGERED DISTRIBUTED FIXED-TIME
CONSENSUS ALGORITHMS
The event-triggered function is proposed as

ϕi (t) = |ei (t)| −ℓ |χi (t)| , (8)

where |ei (t)| =
∣∣xi (t ik ′

)
− xi (t)

∣∣, it represents the error
value when the event action is triggered. |χi (t)| =∣∣∣∑N

j=0 aij
(
xi (t)− xj (t)

)∣∣∣ represents the total errors of all
agents. ℓ is a positive constant and will be designed later.
k ′ ≜ argminl∈R+:t>t jl

(
t − t jl

)
refers to the event time of agent

j.
For consensus tracking algorithms triggered by distributed

events, each agent has its own sampling time series, which is
determined by its own distributed event triggering function.
Suppose that graph Ĝ contains a directed spanning tree, where
the root node is the leader and the subgraph formed by N
followers is a strongly connected graph. For any follower
i (i = 1, 2, · · · ,N ), we construct the following controller

ui (t) = −k1

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
[

µ
2q−µ

]

30418 VOLUME 12, 2024



X. Chen et al.: New Event-Triggered Distributed Fixed-Time Consensus Strategy

− k2

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
[
2q−µ
µ

]

− γ sign

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
−2ℓ

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

)) , (9)

where k1, k2, and ℓ are positive constants, γ = dmax+θ .µ and
q are the odd numbers, where q > µ, and s[k] = sign (·) |s|k .
For each t ∈

[
t ik , t

i
k+1

)
, t jk ′ is the last event time of agent

j. Agent i only updates the control input at time t i0, t
i
1, · · ·,

similarly, agent j only updates the control input at time t j0,
t j1, · · ·, where agent j is a neighbor of agent i. Note that the
leader is independent and the trajectory is not influenced by
their followers. Therefore, it has no triggering moment when
j = 0, x0

(
t0k ′

)
= x0 (t).

FIGURE 1. Diagram of event-triggered control.

The distributed event triggering algorithm is to pre-establish
an event-triggering function and then design appropriate
control inputs to ensure consensus tracking characteristics.
The diagram of event-triggered consensus control strategy is
given in Figure 1. For each agent i, an event is triggered when
ϕi (t) exceeds zero. At the nth event moment of intelligent
agent i, it will sample its state and update its controller by
using the newly sampled state. Then, it will send the state to
its neighbors, who will use the received state to update their
controller.

III. MAIN RESULTS
Our main result will be stated and the proofs will be given in
detail.
Lemma 4 ([12]): If a directed graph composed of N fol-

lowers is strongly connected and one can find a path between
each follower and the leader in Ĝ, then L̂ is nonsingular
matrix. Further, define

[ε1, ε2· · ·εN ]T HT
= 1N

W = diag {ε1, ε2, · · · ,εN }

Q = WL̂ + L̂TW , (10)

then the positive definite W and Q can be satisfied.

Theorem 1: Consider a directed connected graph Ĝ, and
suppose Assumptions 1- 2 hold under communication rule (2)
- (3) and control input (9), if the following condition is
designed as:

Nρ

λ2

(
L̂
) ≤ ℓ. (11)

and the parameters satisfy

c1 =
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

)µ
q

c2 =
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

) 2q−µ
q


min

{
k2N

3− 4q
µ , k1

}
, if 0 < 2µ

2q − µ< 1

min
{
k2N

3− 4q
µ , k1N

1− 2µ
2q−µ

}
, if 2µ2q − µ ≥ 1

Q = WL̂ + L̂TW

with positive-definitematricesQ andW =diag {ε1, ε2, · · ·, εN }

and εmax = max {εi}, λ2

(
L̂
)
is the second smallest eigen-

value of matrix L̂ and the settling time T is bounded by:

T ≤ Tmax:=
qπ[

(q− µ) λmin (Q)
√
c1c2

] . (12)

Proof. Construct a candidate of Lyapunov function as

V (t) =

N∑
i=1

εi
2q− µ

2q
|χi|

2q
2q−µ

+

N∑
i=1

εi
µ

2q
|χi|

2q
µ
. (13)

Differentiating (13), there holds

V̇ (t) =

N∑
i=1

εisig (χi)
µ

2q−µ χ̇i +

N∑
i=1

εisig (χi)
2q−µ
µ χ̇i

=

(
χ

[
µ

2q−µ

])T
W χ̇i+(χ

[
2q−µ
µ

]
)
T

W χ̇i

=

((
χ

[
µ

2q−µ

])T
+(χ

[
2q−µ
µ

]
)
T
)
W χ̇i. (14)

where χ (t) = [χ1 (t) , · · · ,χN (t)]T .
The tracking error of agent i is defined as

x̂i (t) = xi (t)− x0 (t) , (15)

and define χi (t) =
∑N

j=0 aij
(
xi (t)− xj (t)

)
. Let x̂ (t) =[

x̂1 (t) , · · · ,x̂N (t)
]T , then we have χ (t) = L̂x̂ (t).

The derivative of x̂i (t) is

˙̂x (t) = ẋi (t)− ẋ0 (t)

= −k1

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
[

µ
2q−µ

]
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− k2

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
[
2q−µ
µ

]

− γ sign

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
−2ℓ

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
+ ĝ (t)+ d̂ (t)− 1Nu0. (16)

The measurement error of agent i is defined as

ei (t) = k1

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
[

µ
2q−µ

]

− k1χi (t)

[
µ

2q−µ

]

+ k2

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
[
2q−µ
µ

]

− k2χi (t)

[
2q−µ
µ

]

−2ℓ

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))+2ℓχi (t)

− γ sign

 N∑
j=0

aij
(
xi
(
t ik
)

− xj
(
t jk ′

))
+ γ sign (χi (t)) . (17)

From (3), (4), (16) and (17), there holds

˙̂x (t) = −e (t)− k1χ (t)

[
µ

2q−µ

]
− k2χ (t)

[
2q−µ
µ

]
− γ sign (χ (t))− 2ℓχ (t)+ ĝ (t)+ d̂ (t)− 1Nu0.

(18)

where ĝ (t) =
[
ĝ (x1, t)− ĝ0 (x0, t) , · · · ,ĝ (xN , t)

−ĝ0 (xN , t)
]T , d̂ (t) = [d (x1, t) , · · · ,d (xN , t)]T .

Furthermore, (14) is equivalent to:

V̇ (t)

≤

(
χ (t)

[
µ

2q−µ

]
+ χ (t)

[
2q−µ
µ

])T W (−L)+ (−L)T W
2

×

(
k1χ (t)

[
µ

2q−µ

]
+ k2χ (t)

[
2q−µ
µ

]
+ e (t)+ γ sign(χ (t)

+2ℓχ (t)− ĝ (t)− d̂ (t)+ 1Nu0
)

≤ −
1
2

λmin (Q)
(
χ (t)

[
µ

2q−µ

]
+ χ (t)

[
2q−µ
µ

])T
×

(
k1χ (t)

[
µ

2q−µ

]
+ k2χ (t)

[
2q−µ
µ

]

+e (t)+ γ sign (χ (t))+ 2ℓχ (t)− ĝ (t)− d̂ (t)+ 1Nu0
)

≤ −
1
2

λmin (Q)

(
k1

N∑
i=1

|χi (t)|
2µ

2q−µ + k2
N∑
i=1

|χi (t)|
2(2q−µ)

µ

+ (k1 + k2)
N∑
i=1

|χi (t)|
µ

2q−µ+
2q−µ
µ

)

≤ −
1
2

λmin (Q)

(
k1

N∑
i=1

|χi (t)|
2µ

2q−µ + k2
N∑
i=1

|χi (t)|
2(2q−µ)

µ

+ (k1 + k2)
N∑
i=1

|χi (t)|
µ

2q−µ+
2q−µ
µ

)

+
1
2

λmin (Q)
N∑
i=1

(
d̂i (t)− u0 − γ

)
×

(
|χ i(t) |

µ
2q−µ + |χ i(t) |

2q−µ
µ

)
+

1
2

λmin (Q)
N∑
i=1

∣∣ĝi (t)− ĝ0 (t)
∣∣

×

(
|χ i(t) |

µ
2q−µ+|χi(t) |

2q−µ
µ

)
−

1
2

λmin (Q)
N∑
i=1

|ei (t)|
(

|χi(t) |
µ

2q−µ + |χ i(t) |
2q−µ
µ

)

−
1
2

λmin (Q) 2ℓ
N∑
i=1

|χ i(t)|
(

|χ i(t) |
µ

2q−µ + |χ i(t) |
2q−µ
µ

)
.

(19)

Note that

V (t) =

N∑
i=1

εi
2q− µ

2q
|χi|

2q
2q−µ

+

N∑
i=1

εi
µ

2q
|χi|

2q
µ

≤
2q− µ

2q
εmax

(
N∑
i=1

|χi|
2q

2q−µ +

N∑
i=1

|χi|
2q
µ

)
. (20)

Let

V1 (t) =

N∑
i=1

|χi|
2q

2q−µ +

N∑
i=1

|χi|
2q
µ . (21)

Invoking Lemmas 2 and 3, 2q
2q − µ> 1, 2(2q−µ)

µ
> 1, let

g1 (χ) = V1 (t)
µ
q + V1 (t)

2q−µ
q , we have

g1 (χ) = V1 (t)
µ
q + V1 (t)

2q−µ
q

=

(
N∑
i=1

|χi|
2q

2q−µ +

N∑
i=1

|χi|
2q
µ

)µ
q

+
1

N
µ−q
q

(
N∑
i=1

|χi|
2q

2q−µ +

N∑
i=1

|χi|
2q
µ

) 2q−µ
q

≤

(
N∑
i=1

|χi|

) 2µ
2q−µ

+

(
1 + 2

q−µ
q

)( N∑
i=1

|χi|

)2
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+ 2
q−µ
q

(
N∑
i=1

|χi|

) 2(2q−µ)
µ

. (22)

By the first term in (19), one has

g2 (χ) = k1
N∑
i=1

|χi (t)|
2µ

2q−µ + (k1 + k2)
N∑
i=1

|χi (t)|
µ

2q−µ+
2q−µ
µ

+ k2
N∑
i=1

|χi (t)|
2(2q−µ)

µ . (23)

1) If 2µ
2q − µ> 1, 2(2q−µ)

q > 1, then using Lemmas 2 and 3
yields

g2 (χ) ≥ k1N
2q−3µ
2q−µ

(
N∑
i=1

|χi (t)|

) 2µ
2q−µ

+ k2N
3− 4q

µ

(
N∑
i=1

|χi (t)|

) 2(2q−µ)
µ

+ (k1 + k2)N
1− µ

2q−µ+
2q−µ
µ

×

(
N∑
i=1

|χi (t)|

) µ
2q−µ+

2q−µ
µ

. (24)

If
∑N

i=1 |χi (t)| ≥ 1, then

g2 (χ)≥k2N
3−4q
µ

(
N∑
i=1

|χi (t)|

) 2(2q−µ)
µ

,

and the equation holds by the facts that 2µ2q −µ< 2 < 2(2q−µ)
µ

,
then

g1 (χ) ≤ 2
(
1 + 2q−µ

) ( N∑
i=1

|χi (t)|

) 2(2q−µ)
µ

.

It implies that

g2 (χ) ≥ k2N
3− 4q

µ

(
N∑
i=1

|χi (t)|

) 2(2q−µ)
µ

≥
k2N

3− 4q
µ

2
(
1 + 2q−µ

) (V1 (t)µq + V1 (t)
2q−µ
q

)
. (25)

If
∑N

i=1 |χi (t)| ≤ 1, then

g2 (χ)≥k1N
2q−3µ
2q−µ

(
N∑
i=1

|χi (t)|

) 2µ
2q−µ

,

and

g1 (χ) ≤ 2
(
1 + 2q−µ

) ( N∑
i=1

|χi (t)|

) 2µ
2q−µ

.

It implies that

g2 (χ) ≥ k1N
2q−3µ
2q−µ

(
N∑
i=1

|χi (t)|

) 2µ
2q−µ

≥
k1N

2q−3µ
2q−µ

2
(
1 + 2q−µ

) (V1 (t)µq + V1 (t)
2q−µ
q

)
. (26)

Therefore, combing all these cases results in that

g2 (χ) ≥
h

2
(
1 + 2q−µ

) (V1 (t)µq + V1 (t)
2q−µ
q

)
≥

h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

V (t)
)µ

q

+

(
2q

(2q− µ) εmax
V (t)

) 2q−µ
q

≥
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

)µ
q

V (t)
µ
q

+
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

) 2q−µ
q

V (t)
2q−µ
q

≥ c1V (t)
µ
q + c2V (t)

2q−µ
q , (27)

where

c1 =
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

)µ
q

c2 =
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

)2q−µ
q

h = min
{
k2N

3− 4q
µ , k1N

2q−3µ
2q−µ

}
.

2) If 2µ
2q − µ< 1, 2(2q−µ)

q > 1. Exploiting Lemma 2

and Lemma 3 similarly, consider
∑N

i=1 |χi (t)| ≤ 1 and∑N
i=1 |χi (t)| ≥ 1 separately, we have

g2 (χ) ≥ c1V (t)
µ
q + c2V (t)

2q−µ
q ,

where

c1 =
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

)µ
q

c2 =
h

2
(
1 + 2q−µ

) ( 2q
(2q− µ) εmax

)2q−µ
q

h = min
{
k2N

3− 4q
µ , k1

}
.

From the inequalities above, it follows that

V̇ (t)

≤ −
1
2

λmin (Q) c1V (t)
µ
q −

1
2

λmin (Q) c1V (t)
2q−µ
q

+
1
2

λmin (Q) |ei (t)|
N∑
i=1

∣∣∣∣(|χi(t) |
µ

2q−µ + |χ i(t) |
2q−µ
µ

)∣∣∣∣
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+
1
2

λmin (Q)
N∑
i=1

∣∣ĝi (t)− ĝ0 (t)
∣∣

×

(
|χi(t) |

µ
2q−µ+|χi(t) |

2q−µ
µ

)
−

1
2

λmin (Q) ∗2ℓ
N∑
i=1

χi (t)
(

|χ i(t) |
µ

2q−µ + |χ i(t) |
2q−µ
µ

)
≤ −

1
2

λmin (Q) c1V (t)
µ
q −

1
2

λmin (Q) c1V (t)
2q−µ
q

+
1
2

λmin (Q)

∣∣∣∣ ei (t)χi (t)

∣∣∣∣
∣∣∣∣∣
N∑
i=1

(
|χ i(t) |

2q
2q−µ+|χi(t) |

2q
µ

)∣∣∣∣∣
+

1
2

λmin (Q) ρ
N∑
i=1

|x̄i (t)|
(

|χ i(t) |
µ

2q−µ+|χi(t) |
2q−µ
µ

)

−
1
2

λmin (Q)×2ℓ
N∑
i=1

χi (t)
(

|χ i(t) |
µ

2q−µ+|χi(t) |
2q−µ
µ

)

≤
1
2

λmin (Q)

∣∣∣∣ ei (t)χi (t)
−ℓ

∣∣∣∣
∣∣∣∣∣
N∑
i=1

(
|χi(t) |

2q
2q−µ + |χ i(t) |

2q
µ

)∣∣∣∣∣
−

1
2

λmin (Q) c1V (t)
µ
q −

1
2

λmin (Q) c1V (t)
2q−µ
q

+
1
2

λmin (Q)
Nρ

λ2

(
L̂
) ∣∣∣∣∣

N∑
i=1

(
|χ i(t) |

2q
2q−µ+|χi(t) |

2q
µ

)∣∣∣∣∣
−
u
4

λmin (Q)
(

|χ i(t) |
µ

2q−µ+|χi(t) |
2q−µ
µ

)

≤
1
2

λmin (Q)

 Nρ

λ2

(
L̂
)−ℓ

∣∣∣∣∣
N∑
i=1

(
|χi(t) |

2q
2q−µ + |χ i(t) |

2q
µ

)∣∣∣∣∣
−

1
2

λmin (Q) c1V (t)
µ
q −

1
2

λmin (Q) c2V (t)
2q−µ
q . (28)

By (11), we have

V̇ (t) ≤ −
1
2

λmin (Q) c1V (t)
µ
q −

1
2

λmin (Q) c2V (t)
2q−µ
q .

(29)

By (29), there holds

dV
dt
V (t)−

µ
q = −

1
2

λmin (Q) c1 −
1
2

λmin (Q) c2V (t)
2q−2µ

q ,

⇒
dV 1−µ

q

dt
= −

(
1 −

µ

q

)
(
1
2

λmin (Q) c1

+
1
2

λmin (Q) c2V (t)
2
(
1−µ

q

)
. (30)

Let Z = V 1−µ
q , (30) can be written as

dZ = −

(
1 −

µ

q

)(
1
2

λmin (Q) c1 +
1
2

λmin (Q) c2Z2
)
dt.

(31)

FIGURE 2. The communication graph.

Integrating both sides of (31) yields

1√
1
2λmin (Q) c1 12λmin (Q) c2

tan−1


√√√√ 1

2λmin (Q) c2
1
2λmin (Q) c1

z (t)


=

1
1
2λmin (Q)

√
c1c2

tan−1
(√

c2
c1
z (0)

)
−
q− µ

q
t. (32)

As a result, the convergence time bound is achieved as follows

t0 ≤ lim
z(0)∈∞

q
q− µ

1
1
2λmin (Q)

√
c1c2

tan−1
(√

c2
c1
z (0)

)
=

q
q− µ

π

λmin (Q)
√
c1c2

. (33)

Remark 2: The convergence time is independent of the
initial conditions, but depends on the positive definite matrix
Q given in Lemma 1 and the parameters in the controller (9).
In practical applications, when the convergence time of the
system is required, the gain of the controller can be adjusted
according to equation (12). The convergence speed can also
be adjusted by changing the parameters of the controller, such
as c1, c2, µ, and q.
Theorem 2: On the basis of Assumptions 1-2, consid-

ering the multi-agent system (2)-(3) by using the control
protocols (9) and the event-triggering function (8), and the
parameters satisfy the condition (11), then the agent does not
have Zeno behavior under any initial conditions.
Proof. Define ψi (t) =

∣∣∣ ei(t)χi(t)

∣∣∣, the derivative of ψi (t) is
ψ̇i (t) =

|ei (t)|′ |χi (t)| − |ei (t)| |χi (t)|′

|χi (t)|2

≤ (ψi (t)+ k1
µ

2q− µ
|χi (t)|

−2q
2q−µ

+
2q− µ

µ
k2 |χi (t)|

2q−2µ
µ +2l+γ )∥L̂∥(ψi (t)

+ k1
µ

2q− µ
|χi (t)|

−2q
2q−µ +

2q− µ

µ
k2 |χi (t)|

2q−2µ
µ

+2ℓ+γ + ρx̂i (t)+ d̂ (t) |χi (t)|−1 ). (34)
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FIGURE 3. State trajectories.(a) Proposed event-triggered strategy (8). (b) Event-triggered strategy in [20].

FIGURE 4. Inputs of the followers.(a) Proposed event-triggered strategy (8). (b) Event-triggered strategy in [20].

As
∑N

i=1 χ
2
i (t) =

((
L̂

1
2 x̂ (t)

)
L̂
(
L̂

1
2 x̂ (t)

))
≤ 2λN

(
L̂
)

V (t) ≤ 2λN

(
L̂
)
V (0), then one has

|χi (t)| < ∥χi (t) ∥ ≤

√
2λN

(
L̂
)
V (0),

where χi (t) ̸= 0, λN

(
L̂
)
is the largest eigenvalue of matrix

L̂. ξi is defined as

ξi = k1
µ

2q− µ
|χi (t)|

−2q
2q−µ + k2

2q− µ

µ
|χi (t)|

2q−2µ
µ

+ d̂ (t) |χi (t)|−1 .

As χi (t) is bounded, ξi exists a maximum value. Denote ξ̄ =

max {ξi}, then we have

ψ̇i (t) ≤
(
ψi (t)+ ξ̄+2ℓ+γ

)
∥L̂∥

×

(
ψi (t)+ ξ̄+2ℓ+γ + Nρ/∥L̂∥

)
≤ ∥L̂∥

(
ψi (t)+ ξ̄+2ℓ+γ + Nρ/∥L̂∥

)2
. (35)

Therefore,

ψi (t) ≤ φi

(
t, φi0

)
. (36)

where φi
(
t, φi0

)
is the solution of the differential equation

ψ̇i = β (σ + ψi)
2 , ψi

(
0,ψ i

0

)
= ψ i

0, β = ∥L̂∥, σ =

ξ̄+2ℓ+γ +
Nρ
∥L̂∥

.

The solution of the above inequality is φi (τi, 0) =
τiσ

2β
1−τiσβ

.
Based on the (9), we have φi (τi, 0) = ℓ.
The minimum time interval for event-triggering can be

obtained:

τi =
ℓ

σ 2β+ℓσβ
. (37)

VOLUME 12, 2024 30423



X. Chen et al.: New Event-Triggered Distributed Fixed-Time Consensus Strategy

FIGURE 5. Triggering instants of the followers.(a) Proposed event-triggered strategy (8).(b) Event-triggered strategy in [20].

Obviously, τi is strictly greater than 0. Then there is no
Zeno behavior. Thus, this completes the proof.
Remark 3: According to Theorem 1 and Theorem 2,

the problem of distributed event-triggered control design for
multi-agent system can be solved in a bound of settling time
T .

IV. SIMULATION RESULTS
In this section, we study a simple numerical example to verify
the effectiveness of the control algorithm proposed in this
paper. Consider a network with four followers and one virtual
leader, the communication graph is shown in Figure 2. The
relevant parameters are set as follows g (xi (t) , t) = 0.2xi (t),
g (x0 (t) , t) = 0.2x0 (t), d (xi (t) , t) = 0.3cos (t), k1 = 0.7,
k2 = 1.4, γ = 0.2, ℓ = 0.7, µ = 5, q = 7. The simulation is
conducted by assuming that the initial states of the followers
are x (0) = [−1.21.52 − 0.8]T and the initial state of the
leader is x0 (0) = 0. From Figure 2, L̂ is given by

L̂ =


2 0 0 −1

−1 2 0 0
−1 0 1 0
−1 −1 0 2

 .

And there holds λ2

(
L̂
)

= 0.6753. Taking the parameters
into (12), it can be easily calculated that Tmax is = 3.14s.

The trajectories are shown in Figure 3. (a) and Figure 4.
(a). It can be seen that the control input is a piecewise con-
stant value. In addition, when the system error is small, the
control input is also small, and when the control input tends
to zero, the system reaches an equilibrium state. Obviously,
the settling time is about T = 1.2s, which is smaller than
Tmax . Figure 5. (a) shows the triggered interval of each agent
under control scheme (9). Figure 6 illustrates the error in
observation of the four followers under the controllers (9).

FIGURE 6. The error in observation of the four followers under the
controllers (8).

The event-triggered results for agent 1 and agent 3 are shown
in Figure 7. It is apparent that the update time of the controller
is all less than the sampling times. For comparison, the simu-
lation results with the event-triggered strategy in [20] are also
shown in Figure 3, Figure 4 and Figure 5. We can see that the
states of the agents versus time and the inputs of the followers
versus time are not smooth, but jitter.

Compared with the algorithm in [20], which also studied
the fixed-time consensus for nonlinear multi-agent system
with event-triggered scheme. It can be observed that the
inputs of the followers chattered. Obviously, in this paper,
there is no jitter at the inputs of the followers with the
proposed control protocol (9). For nonlinear multi-agent
systems with disturbances, [2] studied formation control of
multi-agent systems with minimum energy constraints. Ref-
erence [29] provided a formation control algorithm for the
gain matrix of the control protocol by compensating for the
disturbance term. However, unlike this, this article focuses on
saving communication bandwidth and computing resources,
proposing a new event triggering mechanism to determine
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FIGURE 7. Comparison chart of the threshold value and measurement
error value of agent 1 and agent 3.

FIGURE 8. The state trajectories of each intelligent agent under another
set of initial values.

when control signals should be updated to improve efficiency,
enabling the entire system to complete tasks more efficiently.

Finally, to demonstrate that the convergence time no longer
depends on the initial state of the system, here selects a
larger initial state of the system, x(0) = [−50 40 20 −30].
Figure 8 shows that the convergence time of the system is not
significantly affected by the different initial states.

V. CONCLUSION
A distributed fixed-time event-triggered algorithm is pro-
posed in this article for a class of leader-followingmulti-agent
system with inherent nonlinear dynamics and uncertain
disturbances. An event-triggered distributed strategy is pro-
posed, which can substantially reduce energy consumption
and the update frequency of the controller. The fixed-time
consensus strategy can ensure that the setting time is bounded
under any initial condition. Besides, the proposed algorithm
can effectively restrain the jittering effect in the control input.
Finally, a simulation example is provided to verify the effec-
tiveness of the results.
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