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ABSTRACT AI-powered robots contain many sensors, such as vision devices like 2D/3D cameras, vibration
sensors, proximity sensors, accelerometers, and other environmental sensors. These sensors enable real-time
sensing data to be obtained and analyzed. Here, the discussion of robot selection AI-field. In this work,
we aim to examine AI robotic systems based on a bipolar complex fuzzy soft set (BCFSS) with Power dombi
aggregation operators (PDAO). Moreover, we aim to examine BCFS power dombi average AOs and BCFS
power dombi geometric AOs. Three BCFS power dombi average (PDA) AOs are identified in this work,
namely the BCFS power dombi weighted average (BCFSPDWA) AO, BCFS power dombi hybrid average
(BCFSPDHA) AO and BCFS power dombi ordered weighted average (BCFSPDOWA) AO. Likewise, three
types of BCFS power dombi geometric AOs have been identified, namely: BCFS power dombi weighted
geometric (BCFSPDWG) AO, BCFS power dombi order-weighted geometric (BCFSPDOWG) AO and
BCFS power dombi hybrid geometric (BCFSPDHG) AO. Subsequently, we will propose a numerical model
for the proposed operators, as well as a multi-attribute decision-making (MADM) model that can be used to
select the best robot in AI. Finally, we will compare the results of the numerical model with the prevailing
outcomes in terms of supremacy and dominance.

INDEX TERMS Bipolar complex fuzzy soft set, fuzzy set, MADM method, power dombi aggregation
operators, soft set.

INTRODUCTION
Within artificial intelligence, robotics is a distinct field that
studies the development of intelligent machines or robots.
Robotics combines computer science, engineering, electri-
cal and mechanical engineering, and programming language.
Many people believe that robotics is a subset of artificial
intelligence (AI), even though the two have different pur-
poses and objectives. Robots that mimic humans in both
appearance and logic can be created using AI. Robotic
applications were extremely limited in the past, but with
the integration of artificial intelligence, they have grown
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in sophistication and efficiency. AI has become indispens-
able in the industrial sector, surpassing human productivity
and quality. The numerous uses, benefits, distinctions, and
other aspects of robotics and AI will be covered in these
problems.

The uncertainty and intricacy typically contain a great
deal of conundrums. The professionals also attempt to solve
these conundrums. In response to this, Zadeh [1] started FS.
Truth grade (TG) in FS is classified as belonging to [1, 0].
FS deals with every problem that has complexity and uncer-
tainty involved. The majority of things are handled by more
than just FS. Consequently,Mardani et al. [2] started using the
DM approach to apply some AOs over FS. Nowadays, FS is
failing to handle an increasing number of issues. We only
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have one TG in the FS. Many conundrums are composed of
two-sided operations. Intuitionistic FS (IFS), which addresses
issues of ambiguity and uncertainty, was first introduced by
Atanassov [3]. IFS currently consists of false grades (FG) and
TG, where FG and TG belong to [1, 0]. Moreover, Xu [4]
initiated the deployment of the IFS AO. To make the AOs’
difficulties easier to understand, use mathematics to solve
them. Prioritized IFAOs (PIFAOs) were demonstrated by Yu
and Xu [5]. Improved language IFAOs and their use with
MADM were indicated by Liu and Wang [6], based on IFSs,
Xu and Yager [7] created a few geometric AOs (GAOs). The
IFS Dombi AOs (DAOs) and their application to MADM
were invented by Seikh and Mandal [8]. Kutlu Gundogdu
and Kahraman [9] introduced the use of spherical FSs (SFSs)
in the extension of WASPAS. In addition, many problems
have both positive and negative aspects. Zhang [10] used a
computational framework for multi-agent decision analysis
and cognitive modeling along with bipolar FSs (BFSs) and
relations. Positive TG (PTG) and negative TG (NTG) in
BFS are defined as follows: PTG belongs to [1, 0], NTG
to [−1, 0], and their sum to [−1, 1]. BF DAOs (BFDAOs)
and its application in MADM approach were introduced by
Jana et al. [11]. BF Hamacher AOs (BFHAOs) in MADM by
Wei et al. [12]. In MADM, BFD prioritized AOs (BFDPAOs)
were shown by Jana et al. [13]. In MADM, Wei et al. [12]
denoted (BFHAOs). BFDPAOs were introduced in MADM
by Jana et al. [13]. Bipolar neutrosophic DAOs (BNDAOs)
are new and can be used in MADM problems, according to
Mahmood et al. [14]. Furthermore, BF graphs (BFGs) were
started by Akram [15].

We also noticed that the majority of the problems have
two dimensions. Ramot et al. [16] addressed two-dimensional
conundrums, demonstrating complex FSs (CFSs). Both real
and unreal components are present in CFS. Real and unreal
parts are located in the complex membership grade [1, 0],
where ι =

√
−1. There is a polar shape in this CFS.

Following this, a new interpretation of the complex mem-
bership grade was proposed by Tamir et al. [17]. This CFS
is composed of real and unreal components that pertain to
[1, 0] and is in Cartesian form. Additionally, their sum con-
tains [1, 0]. An outline of the theory and uses of CFSs and
CF logic were indicated by Rishe et al. [18]. CF AAOs
and GAOs were started by Bi et al. [19], [20]. Complex
hesitant FSs (CHFSs) and their applications to DM with
various and creative distance measures (DM) were denoted
by Garg et al. [21]. An innovative method for complex
dual hesitant FSs (CDHFSs) and their applications in pattern
recognition (PR) and medical diagnosis (MD) were started
by Rehman et al. [22]. The DM algorithm and new CF N-soft
sets were introduced by Mahmood et al. [23]. Additionally,
under the influence of BCFSs, Mahmood and Rehman [24],
[25] developed DAOs and generalized similarity measures
(GSMs). The categorization of renewable energy and its
sources using a DM technique based on BCF frank power
AOs was indicated by Naeem et al. [26]. Mahmood et al. [27]

also looked into BCFHAOs and how they could be used in
MADM.

The soft set (SS), which plays a crucial role in resolving
ambiguity and vagueness concerns, is one of the greatest
achievements after FS. Due to requirements of dilemmas,
Molodtsov [28] initiated the first results of the SS theory.
Due to SS all dilemmas have been handled easily and fruit-
fully. Maji et al. [29] demonstrated some operations in SS.
Ali et al. [30] signified some novel operations in SS theory.
By defining the operations of SS is so easy for extension in
SS. Therefore most of the experts are started work on the
SS. Babitha and Sunil [31] initiated SS relations and map-
pings. Herawan and Deris [32] demonstrated SS technique
for related conditions mining. Moreover, SS can sort out all
dilemmas which are associated with SS, although many of
them have drawbacks. Therefore, the significance of bipolar
SS (BSS) is fruitful. For thisMahmood [33] presented a novel
technique of BSS and their applications. There is a new notion
developed by combining FS and SS. This work has been
done by Roy and Maji [34] and created fuzzy soft (FSS).
For more extension Abdullah et al. [35] demonstrated bipolar
FSS (BFSS) and its applications inDMdilemmas. Therewere
facing one-dimensional FSS but Thirunavukarasu et al. [36]
remove these dilemmas and propound by adding complex
to FSS and created complex FSS (CFSS) with applications.
Alcantud [37] signified FSS in the basis of DM. Selvachan-
dran and Singh [38] designed interval-valued CFSS with
application. FSS was consist of one dimension but by adding
complex become 2-dimensional. Now, the work is not run-
ning by only 2-dimensional and required negative aspect. For
this, Mahmood et al. [39] initiated bipolar CFSSs (BCFSSs)
and DM applications. In this article, experts defined all oper-
ational laws for extension of this idea. Keeping in mind the
above idea Mahmood et al. [40] designed PR and MD based
on trigonometric SMs for BCFSS. On this idea Jaleel [41]
used WASPAS approach on the DAOs under the effect of
BCFSS for Agricultural robot technology. This publication
aims to identify the most influential robot selection in the
AI field by first deducing AOs under the BCFSS environ-
ment, which are BCFSPDGA and BCFSPDAA operators.
Additionally, this pertains to the power aggregation operator
(PAO). The main advantage of the inferred operators is that
the assistance parameterization aspect allows them to mimic
real-world problems. The supplied data, as described by the
experts or decision-makers, is aggregated by AOs to produce
a single value used to rank the alternatives. The score values
are then obtained by using the scoring function. As far as
we can tell, the literature on BCF soft power Dombi aggre-
gation information is lacking; research on BCFSS has up to
this point only addressed its basic theory and applications.
As such, it is a new conundrum with potential for future
establishment in decision science. The DM conundrums that
have been mentioned above in the context of BCFSS under
AOs sufficiently motivate us to write this manuscript. This
manuscript’s main objective is to build specific AOs in the
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context of BCFSS, build a DM approach based on the inferred
operators, and then identify the robot that has the greatest
influence in the AI-field. The discussion above also led us to
the conclusion that different authors have discussed various
kinds of robots and that they serve a very important purpose in
AI. Furthermore, we deduced from the preceding discussion
that BCFSSs are a more advanced and effective structure
than the theories mentioned above since they manage the
challenging and intricate data associated with the second
dimension of robots in the AI-field. It therefore clearly fulfils
and generates remarkable outcomes from other notions.

The article has been constructed as follows: Basic def-
initions were introduced in section II. Meanwhile, a few
BCFSS operations were defined in Section III. Subsequently,
section IV dealt with Dombi operators for BCFSNs. Bipolar
complex fuzzy soft power dombi aggregation operators are
covered in section V. The application of MADM with a
numerical example is covered in section VI. We performed a
comparative analysis of prevalent concepts of ascendancy and
hegemony in section VII. We reached a conclusion regarding
the advantages in section 8.

I. PRELIMINARIES
This section consists of some prevailing basic definitions and
their properties which we want to discuss.
Definition 1 ([1]): A FS B in the form of B ={(
,y

)
, ∀ ∈

}
on a fixed set , where, yB : → [0, 1]

signifies the TG of each element ∈ .
Definition 2 ([10]): A BFS B over is of the form B ={(
, y+

B, y−

B

)
, ∈

}
, where y+

B : → [0, 1], y−

B : →
[−1, 0] are the PTG and NTG.
Definition 3 ([16]): A CFS B in the form of B ={

( ,yB) , ∈
}

=
{

, B + ι B, ∈
}
where yB is Com-

plex TG and B, B ∈ [0, 1], and ι =
√

−1.
Definition 4 ([24]): A BCFS B is of the form B ={(
,y+

B, Z−

B

)
, ∈

}
where y+

B =
+

B + ι +

B indicate the
PTG and Z−

B =
−

B + ι −

B indicate the NTG. The values
of y+

B and Z−

B can be take which is lies the unit square of
complex plane and +

B, +

B ∈ [0, 1] and −

B, −

B ∈ [−1, 0].
Definition 5 ([28]): Suppose is a fixed set, 2 is a set of

attribute, ⊂2, then the pair (B, ) is known as SS, where
B : → B

( )
, B

( )
is the power set of .

Definition 6 ([39]): Suppose is a fixed set, 2 is a set
of attribute, ⊂2, then the pair (B, ) is known as bipolar
complex fuzzy soft set (BCFSS) over , where B : →

BCFS
( )

, BCFS
( )

is the collection of all BCFSs of .
It is demonstrated as

(B, ) = B
( )

=
{(

,y+

B,Z−

B

)
|∀ ∈ , ∀ ∈2

}
=
{(

, +

B+ι +

B, −

B+ι −

B

)
|∀ ∈ , ∀ ∈2

}
(1)

For easiness in this article, we employ (B, ) = B =(
y+,Z−

)
=

(
+
+ι +, −

+ι −
)

( = 1, 2, 3, . . . , ; =

1, 2, 3, . . . , ) as BCFSS. Here we have = 1, 2, . . . ,

be the weight vector (WV) of experts and

= 1, 2, . . . , be the WV of attributes holding
≥0, ≥0 such that

∑
k=1 = 1 and

∑
l=1 = 1.

II. SOME OPERATIONS ON BCFSSs
In this section, we describe score and accuracy mappings in
the setting of BCFSNs. Later on, we extend some fundamen-
tal operations based on BCFSNs.
Definition 7: The score mapping of a BCFSN is

˜SB

(
B

)
: → BCFS

( )
where (B, ) = B =

(
y+, Z−

)
=
(

+
+ ι +, −

+ ι −
)

( = 1, 2, . . . , : = 1, 2, . . . , ) and expresses as

˜SB

(
B

)
=

1
4

(
2 +

+
+

+
+

−
+

−
)

(2)

Definition 8: The accuracy mapping of a BCFSN is

H̃B

(
B

)
: → BCFS

( )
where (B, ) = B =

(
y+, Z−

)
=
(

+
+ ι +, −

+ ι −
)

( = 1, 2, . . . , : = 1, 2, . . . , ) and expresses as

H̃B

(
B

)
=

+
+ ι +

+
−

+ ι −

4
(3)

It is clear that ˜SB

(
B

)
∈ [0, 1] and H̃B

(
B

)
∈ [0, 1].

Definition 9: Suppose B 11 =
(

+

11 + ι +

11,
−

11 + ι −

11

)
and B 12 =

(
+

12 + ι +

12,
−

12 + ι −

12

)
are two BCFSNs, then

we signify the demand relation as follows:
1. If ˜SB

(
B 11

)
< ˜SB

(
B 12

)
, then B 11 < B 12

2. If ˜SB

(
B 11

)
> ˜SB

(
B 12

)
, then B 11 > B 12

3. If ˜SB

(
B 11

)
= ˜SB

(
B 12

)
, then

i. If H̃B

(
B 11

)
< H̃B

(
B 12

)
, then B 11 < B 12

ii. If H̃B

(
B 11

)
> H̃B

(
B 12

)
, then B 11 > B 12

iii. If H̃B

(
B 11

)
= H̃B

(
B 12

)
, then B 11 = B 12

Definition 10: Suppose B 11 =
(

+

11 + ι +

11,
−

11 + ι −

11

)
and B 12 =

(
+

12 + ι +

12,
−

12 + ι −

12

)
are two BCFSNs and

τ > 0, is any real number then.
1.

B 11 ⊕ B 12

=

(
+

11 +
+

12 −
+

11
+

12 + ι
(

+

11 +
+

12 −
+

11
+

12

)
,

−
(

−

11
−

12

)
+ ι

(
−
(

−

11
−

12

)) )
2.

B 11 ⊗ B 12

=

( (
+

11
+

12

)
+ ι

(
+

11
+

12

)
,

−

11 +
−

12 −
−

11
−

12 + ι
(

−

11 +
−

12 −
−

11
−

12

))
3.

τB =
(
1 −

(
1 −

+
)τ

+ ι
(
1 −

(
1 −

+
)τ )

,

−
∣∣ −

∣∣τ + ι
(
−
∣∣ −

∣∣τ ))
4.

B τ
=
((

+
)τ

+ ι
(

+
)τ

, −1 +
(
1 +

−
)τ
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+ι
(
−1 +

(
1 +

−
)τ ))

Theorem 1: Suppose B 11 =
(

+

11 + ι +

11,
−

11 + ι −

11

)
and

B 12 =
(

+

12 + ι +

12,
−

12 + ι −

12

)
are two BCFSNs, and τ , τ1,

τ2 > 0, are real numbers, then the following holds
1. B 11 ⊕ B 12 = B 12 ⊕ B 11
2. B 11 ⊗ B 12 = B 12 ⊗ B 11
3. τ

(
B 11 ⊕ B 12

)
= τB 11 ⊕ τB 12

4.
(
B 11 ⊗ B 12

)τ
= Bτ

11
⊗ Bτ

12
5. τ1B ⊕ τ2B = (τ1 + τ2) B

6. B τ1 ⊗ B τ2 = B τ1+τ2

7.
(
B τ1

)τ2
= B τ1τ2

Proof: Trivial.
Definition 11: Suppose B 11 =

(
+

11 + ι +

11,
−

11 + ι −

11

)
and B 12 =

(
+

12 + ι +

12,
−

12 + ι −

12

)
are two BCFSNs, then

the distance between two BCFSNs is defined by

d
(
B 11 , B 12

)
=

1
4

(∣∣ +

11 −
+

12

∣∣+ ∣∣ +

11 −
+

12

∣∣
+
∣∣ −

11 −
−

12

∣∣+ ∣∣ −

11 −
−

12

∣∣) (4)

Definition 12: For the collection of
(
B1, B2, . . . ,B

)
BCFSNs, then PAO is determined as

PA
(
B1, B2, . . . ,B

)
= ⊕

=1

(
1 + T

(
B
))∑

=1

(
1 + T

(
B
)) (5)

where T
(
B
)

=
∑

= 1,
̸ =

Sup
(
B , B

)
and

Sup
(
B , B

)
= 1 − d

(
B , B

)
demonstrate the support

among B and B with following properties
1. Sup

(
B , B

)
∈ [0, 1]

2. Sup
(
B , B

)
= Sup

(
B , B

)
3. Sup

(
B , B

)
≥Sup

(
B , B

)
if d

(
B , B

)
<

d
(
B , B

)
, d is any distance measure among them.

III. DOMBI OPERATORS ON BCFSNs
In this Section, we will signify the DOs in Sect IV-A with
operation on BCFSNs.

A. DOMBI OPERATION
Dombi understood operations Dombi product and sum which
are particular cases of t-norms and t-co-norms provided
underneath.
Definition 13: Suppose 1, 2 are two real numbers, for-

merly the Dombi t-norms and t-conorms are specified as
follows.

Dom ( 1, 2) =
1

1 +

{(
1− 1

1

)o
+

(
1− 2

2

)o} 1
o

(6)

Dom∗ ( 1, 2) = 1 −
1

1 +

{(
1

1− 1

)o
+

(
2

1− 2

)o} 1
o

(7)

where o≥1 and ( 1, 2) ∈ ⌊0, 1⌋ × ⌊0, 1⌋.
Definition 14: Suppose B 11 =

(
+

11 + ι +

11,
−

11 + ι −

11

)
and B 12 =

(
+

12 + ι +

12,
−

12 + ι −

12

)
are two BCFSNs, then

IV. BIPOLAR COMPLEX FUZZY SOFT POWER DOMBI
AGGREGATION OPERATORS
In this section, we will design Power dombi arithmetic AOs
and Power dombi geometric AOs with BCFSNs.

A. BIPOLAR COMPLEX FUZZY SOFT POWER DOMBI
ARITHMETIC AGGREGATION OPERATORS
This segment of the article consists of Bipolar complex
fuzzy soft (BCFS) Power dombi averaging (BCFSPDA)
operator, Bipolar complex fuzzy soft (BCFS) Power dombi
weighted averaging (BCFSPDWA) operator, BCFS Power
dombi orderedweighted averaging (BCFSPDOWA) operator,
and BCFS Power dombi hybrid averaging (BCFSPDHA)
operator.
Definition 15: Suppose B =

(
y+, Z−

)
=

(
+

+ι +,
−

+ ι −
)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection

of BCFSNs, then the BCFSPDA operator is a mappingBn
→

B such that

BCFSPDA
(
B 11 , B 12 , B 13 , . . . ,B

)
= ⊕

=1

(
⊕

=1 B
)

(8)

where =

(
(1+T )∑
=1(1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, andT =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
.

Theorem 2: Suppose B =
(
y+, Z−

)
=

(
+

+ ι +,
−

+ ι −
)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection

of BCFSNs, then by using BCFSPDA operator their calcu-
lated is again a BCFSN in (9), as shown at the bottom of
page 6.
Proof: Here, the mathematical induction method is used,

as follows:

B 11 ⊕ B 12

=



1 −
1

1 +

{(
+

11
1− +

11

)o
+

(
+

12
1− +

12

)o} 1
o

+ι

1 −
1

1 +

{(
+

11
1− +

11

)o
+

(
+

12
1− +

12

)o} 1
o

 ,

−1

1 +

{(
1+ −

11∣∣ −

11

∣∣
)o

+

(
1+ −

12∣∣ −

12

∣∣
)o} 1

o

+ι

 −1

1 +

{(
1+ −

11∣∣ −

11

∣∣
)o

+

(
1+ −

12∣∣ −

12

∣∣
)o} 1

o




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First, we prove that the result accessible for = 2 and
= 2, as follows:

BCFSPDA
(
B 11 , B 12

)
= ⊕

2
=1

(
⊕

2
=1 B

)
= 1

(
1B 11 ⊕ 2B 21

)
⊕ 2

(
1B 12 ⊕ 2B 22

)

1.

B 11 ⊕ B 12 =



1 −
1

1+
{(

+

11
1− +

11

)o
+

(
+

12
1− +

12

)o} 1
o
+

ι

1 −
1

1+
{(

+

11
1− +

11

)o
+

(
+

12
1− +

12

)o} 1
o

 ,

−1

1+

{(
1+ −

11∣∣∣ −

11

∣∣∣
)o

+

(
1+ −

12∣∣∣ −

12

∣∣∣
)o} 1

o
+ ι

 −1

1+

{(
1+ −

11∣∣∣ −

11

∣∣∣
)o

+

(
1+ −

12∣∣∣ −

12

∣∣∣
)o} 1

o




2.

B 11 ⊗ B 12 =



1

1+
{(
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)o

+ 2+1


1+1

(
+

1 −
+

)o



1
o

+ι



1 −
1

1 +


∑ 2

=1

∑ 1
=1

(
+

1 −
+

)o

+ 2+1


1+1

(
+

1 −
+

)o



1
o



,

−1

1 +


∑ 2

=1

∑ 1
=1

 1 +
−∣∣∣ −
∣∣∣
o

+ 2+1


1+1

 1 +
−∣∣∣ −
∣∣∣
o



1
o

+ι



−1

1 +


∑ 2

=1

∑ 1
=1

 1 +
−∣∣∣ −
∣∣∣
o

+ 2+1


1+1

 1 +
−∣∣∣ −
∣∣∣
o



1
o





=



1 −
1

1 +

{∑ 2+1
=1

(∑ 1+1

=1

(
+

1− +

)o)} 1
o

+ι

1 −
1

1 +

{∑ 2+1
=1

(∑ 1+1

=1

(
+

1− +

)o)} 1
o

 ,

−1

1 +

{∑ 2+1
=1

(∑ 1+1

=1

(
1+ −∣∣∣ −

∣∣∣
)o)} 1

o

+ι


−1

1 +

{∑ 2+1
=1

(∑ 1+1

=1

(
1+ −∣∣∣ −

∣∣∣
)o)} 1

o




Therefore, the result is valid for = 1 + 1 and
= 2 + 1. Hence, the result is true , ≥1. It is obvious

from above expression the aggregated results established
BCFSPDA operator is again BCFSPDA operator.
Theorem 3: Suppose B =

(
y+, Z−

)
=

(
+

+ ι +,
−

+ ι −
)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the col-

lection of BCFSNs, where =

(
(1+T )∑
=1(1+T )

)
,

=

( (
1+R

)
∑

=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and

T =
∑

s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes

the support for B from B
rl
.

Then, BCFSPDA AO satisfies the following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDA
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−
=

(
minmin y+ ,

maxmaxZ−

)
andB+

=

(
maxmax y+,minminZ−

)
then,

B−
≤BCFSPDA

(
B 11 , B 12 , . . . ,B

)
≤B+

3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ι +, −

+ ι −
)
( = 1, 2, . . . , : =1, 2, . . . , )

and φ =
(
R+, S−

)
=

(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
( = 1, 2, . . . , : = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDA
(
B 11 , B 12 , . . . ,B

)
≤BCFSPDA

(
ϕ 11 , ϕ 12 , . . . , ϕ

)
If B ≤φ , ∀k, l.
Definition 16: Suppose B =

(
y+, Z−

)
=
(

+
+ ι + ,

−
+ ι −

)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection

of BCFSNs, then the BCFSPDWA operator is a mapping
Bn

→ B such that

BCFSPDWA
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
)

(10)

where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s=1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
, and∑

=1 ω = 1.
Theorem 4: Suppose B =

(
y+, Z−

)
=

(
+

+ι + ,
−

+ι −
)
( =1, 2, . . . , : = 1, 2, . . . , ) is the collection

of BCFSNs, then by using BCFSPDWA operator their calcu-
lated is again a BCFSN and

BCFSPDWA
(
B 11 , B 12 , B13, . . . ,B

)
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= ⊕
=1

(
⊕

=1 B
)

=



1 −
1

1+

{∑
=1

(∑
=1

(
+

1− +

)o)} 1
o
+

ι

1 −
1

1+

{∑
=1

(∑
=1

(
+

1− +

)o)} 1
o

 ,

−1

1+

{∑
=1

(∑
=1

(
1+ −∣∣∣ −

∣∣∣
)o)} 1

o
+

ι

 −1

1+

{∑
=1

(∑
=1

(
1+ −∣∣∣ −

∣∣∣
)o)} 1

o





(11)

Proof: Proof is similar to Theorem 2.
Theorem 5: Suppose B =

(
y+, Z−

)
=
(

+
+ ι +,

−
+ ι −

)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =( (

1+R
)

∑
=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes the sup-

port forB fromB
rl
, and

∑
=1 ω = 1. Then, BCFSPDWA

AO satisfies the following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ ι +, −

+ι −
)
( = 1, 2, . . . , : =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDWA
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−

=

(
minmin y+,maxmaxZ−

)
and B+

=

(
maxmax y+,minminZ−

)
then,

B−
≤BCFSPDWA

(
B 11 , B 12 , . . . ,B

)
≤B+

3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : = 1, 2, . . . , )

and ϕ =
(
R+, S−

)
=

(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
( = 1, 2, . . . , : = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDWA
(
B 11 , B 12 , . . . ,B

)
≤BCFSPDWA

(
ϕ 11 , ϕ 12 , . . . , ϕ

)
If B ≤ϕ , ∀k, l.

Definition 17: Suppose B =
(
y+, Z−

)
=
(

+
+ ι + ,

−
+ ι −

)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection

of BCFSNs, then the BCFSPDOWA operator is a mapping
Bn

→ B such that

BCFSPDOWA
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
)

(12)

where =

(
ω (1+T )∑
l=1 ω (1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s=1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
,

and
∑

=1 ω = 1, and B
4( )

=

(
y+

4( ), Z
−

4( )

)
is the

permutation of the th row and th largest elements of the
collection for k × l BCFSNs B =

(
y+, Z−

)
for =

1, 2, . . . , and = 1, 2, . . . , . Now, using equation (8) we
can define BCFSPDOWA AOs, as follows:
Theorem 6: Suppose B =

(
y+, Z−

)
=

(
+

+ ι + ,
−

+ ι −
)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, then by using BCFSPDOWA operator their
calculated is again a BCFSN and

BCFSPDOWA
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
4( )

)

=



1 −
1

1+

{∑
=1

(∑
=1

(
+

4( )

1− +

4( )

)o)} 1
o

+ι

1 −
1

1+

{∑
=1

(∑
=1

(
+

4( )

1− +

4( )

)o)} 1
o

 ,

−1

1+

{∑
=1

(∑
=1

(
1+ −

4( )∣∣∣ −

4( )

∣∣∣
)o)} 1

o

+ι

 −1

1+

{∑
=1

(∑
=1

(
1+ −

4( )∣∣∣ −

4( )

∣∣∣
)o)} 1

o




(13)

Proof: Proof is similar to Theorem 2.
Theorem 7: Suppose B =

(
y+, Z−

)
=

(
+

+ ι + ,
−

+ ι −
)
(k = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =( (

1+R
)

∑
=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and

32226 VOLUME 12, 2024



A. Jaleel et al.: Analysis and Applications of BCFS Power Dombi Aggregation Operators

T =
∑

s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes

the support for B from B
rl
, and

∑
=1 ω = 1. Then,

BCFSPDOWA AO satisfies the following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDOWA
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−
=

(
minmin y+ ,

maxmaxZ−

)
andB+

=

(
maxmax y+,minminZ−

)
then,

B−
≤BCFSPDOWA

(
B 11 , B 12 , . . . ,B

)
≤B+

3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ ι +, −

+ ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

and ϕ =
(
R+, S−

)
=
(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
( = 1, 2, . . . , : = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDOWA
(
B 11 , B 12 , . . . ,B

)
≤ BCFSPDOWA

(
ϕ 11 , ϕ 12 , . . . , ϕ

)
If B ≤ϕ , ∀k, l.
We can see from definitions (16) and (17) that the

BCFSPDWA operator solely targets BCFS values, whereas
BCFSPDOWA only targets ordered positions of BCFS val-
ues rather than the weights of the BCFS values themselves.
By combining the qualities of the BCFSPDWA and BCFSP-
DOWA, the BCFSPDHA operator is defined below.
Definition 18: Suppose B =

(
y+, Z−

)
=
(

+
+ ι + ,

−
+ ι −

)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection

of BCFSNs, then the BCFSPDHWA operator is a mapping
Bn

→ B such that

BCFSPDHWA
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
)

(14)

where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, andT =

∑
s=1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
,

and
∑

=1 ω = 1. Here, B
4( )

=

(
y+

4( ), Z
−

4( )

)
is the

permutation of the th row and th largest elements of the
collection for k × l BCFSNs B =

(
y+, Z−

)
for =

1, 2, . . . , and = 1, 2, . . . , . Now, using equation (8) we
can define BCFSPDHWA AOs, as follows:

Theorem 8: Suppose B =
(
y+, Z−

)
=

(
+

+ι + ,
−

+ι −
)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collection

of BCFSNs, then by using BCFSPDHWA operator their cal-
culated is again a BCFSN and

BCFSPDHWA
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
4( )

)

=



1 −
1

1+

{∑
=1

(∑
=1

(
+

4( )

1− +

4( )

)o)} 1
o

+ι

1 −
1

1+

{∑
=1

(∑
=1

(
+

4( )

1− +

4( )

)o)} 1
o

 ,

−1

1+

{∑
=1

(∑
=1

(
1+ −

4( )∣∣∣ −

4( )

∣∣∣
)o)} 1

o

+ι

 −1

1+

{∑
=1

(∑
=1

(
1+ −

4( )∣∣∣ −

4( )

∣∣∣
)o)} 1

o




(15)

Proof: Proof is similar to Theorem 2.
Theorem 9: Suppose B =

(
y+, Z−

)
=

(
+

+ ι + ,
−

+ ι −
)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =( (

1+R
)

∑
=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and

T =
∑

ss = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes

the support for B from B
rl
, and

∑
=1 ω = 1. Then,

BCFSPDHWA AO satisfies the following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDHWA
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−
=

(
minmin y+ ,

maxmaxZ−

)
andB+

=

(
maxmax y+,minminZ−

)
then,

B−
≤BCFSPDHWA

(
B 11 , B 12 , . . . ,B

)
≤B+

3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

and ϕ =
(
R+, S−

)
=

(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
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( = 1, 2, . . . , : = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDHWA
(
B 11 , B 12 , . . . ,B

)
≤BCFSPDHWA

(
ϕ 11 , ϕ 12 , . . . , ϕ

)
If B ≤ϕ , ∀k, l.

B. BIPOLAR COMPLEX FUZZY SOFT POWER DOMBI
GEOMETRIC AGGREGATION OPERATORS
This segment of the article consist of Bipolar complex
fuzzy soft (BCFS) Power dombi geometric (BCFSPDG)
operator, Bipolar complex fuzzy soft (BCFS) Power dombi
weighted geometric (BCFSPDWG) operator, BCFS Power
dombi ordered weighted geometric (BCFSPDOWG) opera-
tor, and BCFS Power dombi hybrid geometric (BCFSPDHG)
operator.
Definition 19: Suppose B =

(
y+, Z−

)
=
(

+
+ι +, −

+ι −
)

( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection of
BCFSNs, then the BCFSPDG operator is a mapping Bn

→

B such that

BCFSPDG
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
)

(16)

where =

(
(1+T )∑
=1(1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, andT =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
.

Theorem 10: Suppose B =
(
y+, Z−

)
=
(

+
+ ι + ,

−
+ ι −

)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, then by using BCFSPDG operator their
calculated is again a BCFSN and

BCFSPDG
(
B 11 , B 12 , B13, . . . ,B

)
= ⊗

=1

(
⊗

=1 B
)

=



1

1+

{∑
=1

(∑
=1

(
1− +

+

)o)} 1
o

+ι

 1

1+

{∑
=1

(∑
=1

(
1− +

+

)o)} 1
o

 ,

−1 +
1

1+

{∑
=1

(∑
=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o

+ι

−1 +
1

1+

{∑
=1

(∑
=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o





(17)

where =

(
(1+T )∑
=1(1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, andT =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
.

Proof: Here, the mathematical induction method is used,
as follows:

B 11 ⊗ B 12

=



1

1 +

{(
1− +

11
+

11

)o
+

(
1− +

12
+

12

)o} 1
o

+ι

 1

1 +

{(
1− +

11
+

11

)o
+

(
1− +

12
+

12

)o} 1
o

 ,

−1 +
1

1 +

{( ∣∣ −

11

∣∣
1+ −

11

)o
+

( ∣∣ −

12

∣∣
1+ −

12

)o} 1
o

+ι

−1 +
1

1 +

{( ∣∣ −

11

∣∣
1+ −

11

)o
+

( ∣∣ −

12

∣∣
1+ −

12

)o} 1
o




First, we prove that the result holds for = 2 and = 2,

as follows:

BCFSPDG
(
B 11 , B 12

)
= ⊗

2
=1

(
⊗

2
=1 B

)
= 1

(
1B 11 ⊗ 2B 21

)
⊗ 2

(
1B 12 ⊗ 2B 22

)

= 1



1

1 +

{
1

(
1− +

11
+

11

)o
+ 2

(
1− +

21
+

21

)o} 1
o

+ι

 1

1 +

{
1

(
1− +

11
+

11

)o
+ 2

(
1− +

21
+

21

)o} 1
o

 ,

−1 +
1

1 +

{
1

( ∣∣ −

11

∣∣
1+ −

11

)o
+ 2

( ∣∣ −

21

∣∣
1+ −

21

)o} 1
o

+ι

−1+
1

1+

{
1

( ∣∣ −

11

∣∣
1+ −

11

)o
+ 2

( ∣∣ −

21

∣∣
1+ −

21

)o} 1
o




32228 VOLUME 12, 2024



A. Jaleel et al.: Analysis and Applications of BCFS Power Dombi Aggregation Operators

⊗ 2



1

1 +

{
1

(
1− +

12
+

12

)o
+ 2

(
1− +

22
+

22

)o} 1
o

+ι

 1

1 +

{
1

(
1− +

12
+

12

)o
+ 2

(
1− +

22
+

22

)o} 1
o

 ,

−1 +
1

1 +

{
1

( ∣∣ −

12

∣∣
1+ −

12

)o
+ 2

( ∣∣ −

22

∣∣
1+ −

22

)o} 1
o

+ι

−1+
1

1 +

{
1

( ∣∣ −

12

∣∣
1+ −

12

)o
+ 2

( ∣∣ −

22

∣∣
1+ −

22

)o} 1
o





= 1



1

1 +

{∑2
=1

(
1− +

1
+

1

)o} 1
o

+ι


1

1 +

{∑2
=1

(
1− +

1
+

1

)o} 1
o

 ,

−1 +
1

1 +

∑2
=1


∣∣∣∣ −

1

∣∣∣∣
1+ −

1

o
1
o

+ι


−1 +

1

1 +

∑2
=1


∣∣∣∣ −

1

∣∣∣∣
1+ −

1

o
1
o





⊗ 2



1

1 +

{∑2
=1

(
1− +

2
+

2

)o} 1
o

+ι


1

1 +

{∑2
=1

(
1− +

2
+

2

)o} 1
o

 ,

−1 +
1

1 +

∑2
=1


∣∣∣∣ −

2

∣∣∣∣
1+ −

2

o
1
o

+ι


−1 +

1

1 +

∑2
=1


∣∣∣∣ −

2

∣∣∣∣
1+ −

2

o
1
o





=



1

1 +


1

∑2

=1

1 −
+

1
+

1

o
+ 2

∑2

=1

1 −
+

2
+

2

o



1
o

+ι



1

1 +


1

∑2

=1

1 −
+

1
+

1

o
+ 2

∑2

=1

1 −
+

2
+

2

o



1
o



,

−1 +
1

1 +



1

∑2

=1


∣∣∣ −

1

∣∣∣
1 +

−

1

o
+ 2

∑2

=1


∣∣∣ −

2

∣∣∣
1 +

−

2

o



1
o

+ι



−1+
1

1+



1

∑2

=1


∣∣∣ −

1

∣∣∣
1 +

−

1

o
+ 2

∑2

=1


∣∣∣ −

2

∣∣∣
1 +

−

2

o



1
o





=



1

1 +

{∑2
=1

(∑2
=1

(
1−

+

+

)o)} 1
o

+ι

 1

1 +

{∑2
=1

(∑2
=1

(
1−

+

+

)o)} 1
o

 ,

−1 +
1

1 +

{∑2
=1

(∑2
=1

( ∣∣∣ −
∣∣∣

1+
−

)o)} 1
o

+ι

−1+
1

1 +

{∑2
=1

(∑2
=1

( ∣∣∣ −
∣∣∣

1+
−

)o)} 1
o




Therefore, this result is true for = 2 and = 2.
Now, this result is valid for = 1 and = 2, as follows:

BCFSDG
(
B

11
, B

12
, B13, . . . ,B

1 2

)
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= ⊗
2

=1

(
⊗

1

=1
B

)

=



1

1 +

{∑
2

=1

(∑
1

=1

(
1− +

+

)o)} 1
o

+ι

 1

1 +

{∑
2

=1

(∑
1

=1

(
1− +

+

)o)} 1
o

 ,

−1 +
1

1 +

{∑
2

=1

(∑
1

=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o

+ι

−1 +
1

1 +

{∑
2

=1

(∑
1

=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o




Next, we consider this result is valid for = 1 + 1 and
= 2 + 1, as follows:

BCFSDG
(
B

11
, B

12
, B13, . . . ,B

1 2
, B

( 1+1)( 2+1)

)
= ⊗

2
=1

(
⊗

1

=1
B

)
⊗

(
2+1

(
1+1B

( 1+1)( 2+1)

))

=



1

1 +

{∑
2

=1

(∑
1

=1

(
1− +

+

)o)} 1
o

+ι

 1

1 +

{∑
2

=1

(∑
1

=1

(
1− +

+

)o)} 1
o

 ,

−1 +
1

1 +

{∑
2

=1

(∑
1

=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o

+ι

−1 +
1

1 +

{∑
2

=1

(∑
1

=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o





⊗



1

1 +

{
2+1

(
1+1

(
1− +

+

)o)} 1
o

+ι

 1

1 +

{
2+1

(
1+1

(
1− +

+

)o)} 1
o

 ,

−1 +
1

1 +

{
2+1

(
1+1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o

+ι

−1 +
1

1 +

{
2+1

(
1+1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o





=



1

1 +


∑

2
=1

(∑ 1

=1

(
1 −

+

+

)o)

+ 2+1

(
1+1

(
1 −

+

+

)o)


1
o

+ι



1

1 +


∑

2
=1

(∑ 1

=1

(
1 −

+

+

)o)

+ 2+1

(
1+1

(
1 −

+

+

)o)


1
o



,

−1 +
1

1 +


∑

2
=1

(∑ 1

=1

( ∣∣ −
∣∣

1+
−

)o)

+ 2+1

(
1+1

( ∣∣ −
∣∣

1+
−

)o)


1
o

+ι



−1+
1

1+


∑

2
=1

(∑ 1

=1

( ∣∣ −
∣∣

1+
−

)o)

+ 2+1

(
1+1

( ∣∣ −
∣∣

1+
−

)o)


1
o





=



1

1+

{∑
2+1

=1

(∑
1+1
=1

(
1− +

+

)o)} 1
o

+ι

 1

1 +

{∑
2+1

=1

(∑
1+1
=1

(
1− +

+

)o)} 1
o

 ,

−1+
1

1+

{∑
2+1

=1

(∑
1+1
=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o

+ι

−1+
1

1+

{∑
2+1

=1

(∑
1+1

=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o




Therefore, the result is valid for = 1 + 1 and
= 2 + 1. Hence, the result is true , ≥1. It is obvious

from above expression the aggregated results established
BCFSPDG operator is again BCFSPDG operator.
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Theorem 11: Suppose B =
(
y+, Z−

)
=
(

+
+ ι +,

−
+ ι −

)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collec-

tion of BCFSNs, where =

(
(1+T )∑
=1(1+T )

)
, =( (

1+R
)

∑
=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes the sup-

port for B from B
rl
. Then, BCFSPDG AO satisfies the

following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ ι +, −

+ ι −
)
( =1, 2, . . . , , =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDG
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−

=

(
minmin y+,maxmaxZ−

)
and B+

=

(
maxmax y+,minminZ−

)
then,

B−
≤BCFSPDG

(
B 11 , B 12 , . . . ,B

)
≤B+

3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ ι +, −

+ ι −
)
( =1, 2, . . . , , =1, 2, . . . , )

and ϕ =
(
R+, S−

)
=

(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
( = 1, 2, . . . , , = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDG
(
B 11 , B 12 , . . . ,B

)
≤BCFSDG

(
ϕ 11 , ϕ 12 , . . . , ϕ

)
If B ≤φ , ∀k, l.
Definition 20: Suppose B =

(
y+, Z−

)
=
(

+
+ι +, −

+ι −
)
( =1, 2, . . . , , = 1, 2, . . . , ) is the collection of

BCFSNs, then the BCFSPDWG operator is a mappingBn
→

B such that

BCFSPDWG
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
)

(18)

where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, andT =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
, and∑

=1 ω = 1.
Theorem 12: SupposeB =

(
y+, Z−

)
=
(

+
+ ι +, −

+ι −
)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collection of

BCFSNs, then by using BCFSPDWG operator their calcu-
lated is again a BCFSS and

BCFSPDWG
(
B 11 , B 12 , B13, . . . ,B

)
= ⊗

=1

(
⊗

=1 B
)

=



1

1+

{∑
=1

(∑
=1

(
1− +

+

)o)} 1
o

+ι

 1

1+

{∑
=1

(∑
=1

(
1− +

+

)o)} 1
o

 ,

−1 +
1

1+

{∑
=1

(∑
=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o

+ι

−1 +
1

1+

{∑
=1

(∑
=1

( ∣∣∣ −
∣∣∣

1+ −

)o)} 1
o





(19)

where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
,

R =
∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes the support for

B from B
rl
, and

∑
=1 ω = 1.

Proof: The proof is similar to Theorem 9.
Theorem 13: SupposeB =

(
y+, Z−

)
=
(

+
+ ι +, −

+ι −
)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collection

of BCFSNs, where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =( (

1+R
)

∑
=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes the sup-

port for B from B
rl
. Then, BCFSPWDG AO satisfies the

following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDWG
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−
=

(
minmin y+ ,

maxmaxZ−

)
andB+

=

(
maxmax y+,minminZ−

)
then,

B−
≤BCFSPDWG

(
B 11 , B 12 , . . . ,B

)
≤B+
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3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

and φ =
(
R+, S−

)
=

(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
( = 1, 2, . . . , : = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDWG
(
B 11 , B 12 , . . . ,B

)
≤BCFSDWG

(
φ 11 , φ 12 , . . . , φ

)
If B ≤φ , ∀k, l.
Definition 21: Suppose B =

(
y+, Z−

)
=
(

+
+ ι +,

−
+ ι −

)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection

of BCFSNs, then the BCFSPDOWG operator is a mapping
Bn

→ B such that

BCFSPDOWG
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
)

(20)

where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s=1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
,

and
∑

=1 ω = 1. Here, B
4( )

=

(
y+

4( ), Z
−

4( )

)
is the

permutation of the th row and th largest elements of the
collection for k × l BCFSNs B =

(
y+, Z−

)
for =

1, 2, . . . , and = 1, 2, . . . , . Now, using equation (16)
we can define BCFSPDOWG AOs, as follows:
Theorem 14: Suppose B =

(
y+, Z−

)
=
(

+
+ ι +,

−
+ ι −

)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, then by using BCFSPDOWG operator their
calculated is again a BCFSS and

BCFSPDOWG
(

B
11

, B
12

, B13, . . . ,B

)
= ⊕

=1

(
⊕

=1
B

4( )

)

=



1

1 +

{∑
=1

(∑
=1

(
1− +

4( )
+

4( )

)o)} 1
o

+ι


1

1 +

{∑
=1

(∑
=1

(
1− +

4( )
+

4( )

)o)} 1
o

 ,

−1 +
1

1 +

{∑
=1

(∑
=1

( ∣∣∣ −

4( )

∣∣∣
1+ −

4( )

)o)} 1
o

+ι

−1+
1

1+

{∑
=1

(∑
=1

( ∣∣∣ −

4( )

∣∣∣
1+ −

4( )

)o)} 1
o





where B
4( )

= n∂ ρ B is the permutation of the th row
and th largest elements of the collection for k × l BCFSNs
B =

(
y+, Z−

)
and ′n′ is the balancing coefficient.

Proof: The proof theorem is like to Theorem 9.
Theorem 15: Suppose B =

(
y+, Z−

)
=
(

+
+ ι +,

−
+ ι −

)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =( (

1+R
)

∑
=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes the sup-

port for B from B
rl
, and

∑
=1 ω = 1. Then,

BCFSPDOWG AO satisfies the following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDOWG
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−
=

(
minmin y+,

maxmaxZ−

)
and B+

=

(
maxmax y+,minminZ−

)
then,

B−
≤BCFSPDOWG

(
B 11 , B 12 , . . . ,B

)
≤B+

3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ι +, −

+ι −
)

( =1, 2, . . . , : =1, 2, . . . , )

and ϕ =
(
R+, S−

)
=

(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
( = 1, 2, . . . , : = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDOWG
(
B 11 , B 12 , . . . ,B

)
≤BCFSPDOWG

(
ϕ 11 , ϕ 12 , . . . , ϕ

)
If B ≤φ , ∀k, l.
We can see from definitions (20) and (21) that the

BCFSPDWG operator solely targets BCFS values, whereas
BCFSPDOWG only targets ordered positions of BCFS val-
ues rather than the weights of the BCFS values themselves.
By combining the qualities of the BCFSPDWG and BCFSP-
DOWG, the BCFSPDHG operator is defined below.
Definition 22: Suppose B =

(
y+, Z−

)
=
(

+
+ ι +,

−
+ ι −

)
( = 1, 2, . . . , , = 1, 2, . . . , ) is the collection

of BCFSNs, then the BCFSPDHWG operator is a mapping
Bn

→ B such that

BCFSPDHWG
(
B 11 , B 12 , B13, . . . ,B

)
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= ⊕
=1

(
⊕

=1 B
)

(21)

where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =

( (
1+R

)
∑

=1

(
1+R

)
)
, R =∑

r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s=1
s̸ = l

Sup
(
B , B

ks

)
,

Sup
(
B , B

rl

)
denotes the support for B from B

rl
,

and
∑

=1 ω = 1. Here, B
4( )

=

(
y+

4( ), Z
−

4( )

)
is the

permutation of the th row and th largest elements of the
collection for k × l BCFSNs B =

(
y+, Z−

)
for =

1, 2, . . . , and = 1, 2, . . . , . Now, using equation (16)
we can define BCFSPDOWG AOs, as follows:
Theorem 16: SupposeB =

(
y+, Z−

)
=
(

+
+ ι +, −

+ι −
)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collection of

BCFSNs, then by using BCFSPDHWG operator their calcu-
lated is again a BCFSS and

BCFSPDHWG
(
B 11 , B 12 , B13, . . . ,B

)
= ⊕

=1

(
⊕

=1 B
4( )

)

=



1

1 +

{∑
=1

(∑
=1

(
1− +

4( )
+

4( )

)o)} 1
o

+ι

 1

1 +

{∑
=1

(∑
=1

(
1− +

4( )
+

4( )

)o)} 1
o

 ,

−1 +
1

1 +

{∑
=1

(∑
=1

( ∣∣∣ −

4( )

∣∣∣
1+ −

4( )

)o)} 1
o

+ι

−1 +
1

1 +

{∑
=1

(∑
=1

( ∣∣∣ −

4( )

∣∣∣
1+ −

4( )

)o)} 1
o




where B

4( )
= n∂ ρ B is the permutation of the th row

and th largest elements of the collection for k × l BCFSNs
B =

(
y+, Z−

)
and ′n′ is the balancing coefficient.

Proof: The proof theorem is like to Theorem 9.
Theorem 17: Suppose B =

(
y+, Z−

)
=
(

+
+ ι + ,

−
+ ι −

)
( = 1, 2, . . . , : = 1, 2, . . . , ) is the collec-

tion of BCFSNs, where =

(
ω (1+T )∑
=1 ω (1+T )

)
, =( (

1+R
)

∑
=1

(
1+R

)
)
, R =

∑
r = 1
r̸ = k

Sup
(
B , B

rl

)
, and T =

∑
s = 1
s̸ = l

Sup
(
B , B

ks

)
, Sup

(
B , B

rl

)
denotes the

support for B from B
rl
, and

∑
=1 ω = 1. Then,

BCFSPDHWG AO satisfies the following properties:
1) (Idempotency): Suppose B =

(
y+, Z−

)
=(

+
+ι +, −

+ι −
)
( =1, 2, . . . , : =1, 2, . . . , )

is the collection of BCFSNs, and all are the same i.e.
B = B , ∀k, l, then the following is obtained:

BCFSPDHWG
(
B 11 , B 12 , . . . ,B

)
= B

2) (Boundedness): Suppose B−
=

(
minmin y+,

maxmaxZ−

)
and B+

=

(
maxmax y+,

minminZ−

)
then,

B−
≤BCFSPDHWG

(
B 11 , B 12 , . . . ,B

)
≤B+

3) (Monotonicity): Suppose B =
(
y+, Z−

)
=(

+
+ ι +, −

+ ι −
)
( = 1, 2, . . . , , =1, 2, . . . , )

and φ =
(
R+, S−

)
=

(
ϑ+

+ ιµ+, ϑ−
+ ιµ−

)
( = 1, 2, . . . , : = 1, 2, . . . , ) are two collections
of BCFSNs, then the following is obtained:

BCFSPDHWG
(
B 11 , B 12 , . . . ,B

)
≤BCFSPDHWG

(
φ 11 , φ 12 , . . . , φ

)
If B ≤φ , ∀k, l.

V. APPLICATION
In this segment, we demonstrate the application of
robotics-AI in the business. We have ten types but we discuss
only four types of robotics-AI. We also use the MADM
method for the solution of robotics-AI.

• Starship Delivery Robots
The use of delivery robots is becoming increasingly com-

mon, and Starship Technologies Company offers some of
the most well-liked models in this field. Starship robots can
transport packages to customers and businesses, navigate
streets on their own, and carry objects up to a distance of
four miles (six km). In order for the robots to comprehend
their surroundings and their own location, they are outfitted
with mapping systems, AI, and sensors. They weigh no more
than one hundred pounds and move at a leisurely pace. The
robots increase the efficiency and lower the cost of local
delivery thanks to collaborations with numerous retailers and
eateries. Food and packages are delivered straight from stores
to customers via a smartphone app upon request. Once pro-
grammed, a smartphone can be used to track the path and
location of the robots.

• Pepper Humanoid Robot
A humanoid robot called Pepper was created to engage

with humans, offering assistance, information sharing, and
customer service in retail settings. About four feet tall, with a
table displaying information in the middle of its breast, Pep-
per has multilingual speech and gesture capabilities. AI for
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emotion recognition is used by the robot to comprehend
human behavior and react accordingly. It can identify human
emotions, like as happiness, and react appropriately by grin-
ning, for instance. When a customer is in a store, Pepper can
assist them in finding the things they want by providing tai-
lored recommendations. Additionally, it can interact with the
human staff and sell and cross-sell. Pepper works to enhance
customer experience and assist businesses in cutting expenses
in settings such as banks, hotels, pizzerias, and hospitals.

• Penny Restaurant Robot
Penny is an artificially intelligent food-service robot that

resembles a bowling pin. It has the ability to independently
transport food and beverages from the kitchen of a restaurant
to the tables and return the dishes for cleaning. Penny in able
to run in a variety of food service settings, including dining
rooms, pizzerias, sizable event halls, gaming floors in casi-
nos, restaurants, and cafes. Multiple drinks may be smoothly
delivered at once by this self-driving robot. This device can
mapping during peak hours or night shifts because of its long-
lasting battery, which has an 8 to 12 hour lifespan. Penny’s
mission is to shorten wait times by bringing the plates to the
busing station. As a result, the waiters may concentrate more
on enhancing the dining experience for patrons, attending to
their needs, and enquiring about the quality of the food.

• Nimbo Security Robot
Nimbo is a robotic security guard with a variety of secu-

rity uses and asset protection capabilities. It is built on
cutting-edge AI technology. The robot observes what peo-
ple are doing and its surroundings as it investigates and
patrols designated areas, paths, or self-optimized routes.
When Nimbo notices a security breach, it can alert the sur-
rounding area by light, sound, and video. It records video
evidence and notifies the human guard in real time. Addition-
ally, the human security personnel can choosewhere to patrol.
The robot will then go around the area, continuously scan-
ning, from one location to another. Nimbo operates in places
like retail malls, warehouses, offices, educational institutions,
etc. and integrates with VMSs (Video Monitoring Systems)
with ease.

A. ALGORITHM MADM
Suppose = { 1, 1, 1, . . . , l} being the discrete
set of options determined by the set of experts{

1, 2, 3, . . . ,
}

by the conditions of attributes{
1, 2, 3, . . . ,

}
. Suppose =

(
1, 2, 3, . . . ,

)T and
=

(
1, 2, 3, . . . ,

)T signify correspondingly the
weight vectors of the experts ′ s and attributes ′. We use

the power formula which is defined by =

(
(1+T )∑
=1(1+T )

)
,

=

( (
1+R

)
∑

=1

(
1+R

)
)
, R =

∑
r = 1
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rl

)
, and
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∑
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(
B , B

rl

)
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T =
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ks

)
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(
B , B

rl
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denotes

the support for B from B
rl
. Moreover the

∑
=1 =

1, and
∑

=1 = 1 must be required. To select
for the determination of most superb alternative, the
expert expresses their assessment in the setting of BCF-
SNs B =

(
y+, Z−

)
=

(
+

+ ι +, −
+ ι −

)
( = 1, 2, . . . , , = 1, 2, . . . , )where−1≤y+

+Z−
≤1 and

combined complete decision matrix is stated as M=(
B

)
×

and formed a BCFS decision-matrix M =(
B

)
×

. For tackling the BCFS decision matrix, we have

the underneath steps
Step 1: Collect all data in the shape of BCF soft matrix

B =
(
y+, Z−

)
=
(

+
+ ι +, −

+ ι −
)
( = 1, 2, . . . , , )

= 1, 2, . . . , ) associated to each option under the attributes
( = 1, 2, 3, . . . , l) as

B × = M

=


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11

) (
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1
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) (
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.

.

.(
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1

) (
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2 , Z−

2
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. . .
(
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
Step 2: For the computing the WVs for experts and

attributes we signify the power formula defined by

=

( (
1 + T

)∑
=1

(
1 + T

)
)
and =

 (
1 + R

)∑
=1

(
1 + R

)


Step 3: For normalization of BCFS decision-matrix,
employ the following formula.

S| =


(
y+, Z−

)
=
(

+
+ι +, −

+ ι −
)
forbenefittype(

y+, Z−
)c

=

(
1 +

+
+ i

(
1 −

+
)
,

−1 −
−

+ i
(
−1 −

−
))

forcosttype

Step 4: Aggregate the BCFSNs B ( = 1, 2, . . . , , =

1, 2, . . . , ) for every alternative ( = 1, 2, 3, . . . , l) into
combined decision-matrix by employing BCFSPDAA or
BCFSPDGA operators.
Step 5:By the assistance of Eq. (2), we determine the score

value of each alternative.
Step 6: We would rank the alternatives by employing the

determined score values.
Step 7: End.

B. NUMERICAL EXAMPLE
Some experts decide to select best robot in the AI field.
For this AI experts that is 1, 2, 3, 4, and 5 with their
WVs = ( 1, 2, 3, . . . , ), who will examine and
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TABLE 1. BCFSS data table.

provide their opinion about the 4 considered robots that
are 1, 2, 3, and 4 under the parameters E = ( 1
= Starshipdeliveryrobot, 2 = Pepperhumanoidrobot, 3
= Pennyrestraurantrobot, 4 = Nimbosecurityrobot) in the
exemplary of BCFSNs. The associated with parameter’s
WVs are computed with the rest power formula where
the

∑
=1 = 1. To determine the most effective robot,

we employ the underneath techniques.

C. BCFSPDAA OPERATOR
Step 1: W e collect two tables for BCFSN, then we repre-
sented as blow:
Step 2: Computed WVs for experts and attributes by using

power formula we obtained the following WVs:

= (0.206112, 0.195926, 0.190518, 0.201333, 0.206112)

= (0.255694, 0.243114, 0.244968, 0.256224)

Step 3: For normalization of BCFS decision-matrix,
we consider Table 1 for the benefits type
Step 4: Aggregate the BCFSNs B ( = 1, 2, . . . , ,

= 1, 2, . . . , ) for every alternative ( = 1, 2, 3, . . . , l)
into combined decision-matrix by employing BCFSPDAA
operators by equation (8), we attained:

B 11 = (2.9877 × 10−06
+ 0.001675296ι,−0.99958

− 0.99978ι),

B 12 = (0.272838984+0.156126228ι,−0.95563−0.3527ι),

B 13 = (0.000180673+0.003440338ι,−0.99882−0.96657ι),

B 14 = (1.08675 × 10−05
+ 3.90595 × 10−05ι, −0.72918

− 0.69703ι)

TABLE 2. BCFSS data table.

Step 5:By the assistance of Eq. (2), we determine the score
value of each alternative,

1 = 0.00079244, 2 = 0.359515325, 3 = 0.009559022,

4 = 0.14359854

Step 6: We would rank the alternatives by employing the
determined score values:

2 > 4 > 3 > 1

Hence, we have the best and powerful robot 2 in AI.
Step 7: End.

D. BCFSPDGA OPERATOR
Step 1 to Step 3: Here, we have the same process as above.
Step 4: Aggregate the BCFSNs B ( = 1, 2, . . . , ,

= 1, 2, . . . , ) for every alternative ( = 1, 2, 3, . . . , l)
into combined decision-matrix by employing BCFSPDGA
operators by equation (16), we obtained:

B 11 = (0.035308 + 0.955792ι, −0.084180706

− 0.159750721ι),

B 12 = (0.999782 + 0.999581ι, −0.008033033 − 1.51395

× 10−06ι),

B 13 = (0.688825 + 0.978011ι, −0.031668404

− 0.00119568ι),

B 14 = (0.117486 + 0.334776ι, −0.000104215 − 09.52529

× 10−05ι)

Step 5:By the assistance of Eq. (2), we determine the score
value of each alternative,

1 = 1.373584, 2 = 1.999264, 3 = 1.816986,
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TABLE 3. Comparative data of BCFSPDAO.

4 = 1.226031

Step 6: We would rank the alternatives by employing the
determined score values:

2 > 3 > 1 > 4

Hence, we have the best and powerful robot 2 in AI.
Step 7: End.

VI. COMPARATIVE ANALYSIS
We will now start the process of comparing the accepted
ideas with our proposed work. Three concepts have been
identified in relevant studies. Dombi AOs are used in Mah-
mood and Rehman’s [25] MADM approach while working
with BCF data. This study addresses most of the unclear
and complex concerns. Then, Naeem et al. [26] described
how a DM approach based on BCF frank power AOs was
used to categorize renewable energy and its sources. Most of
these problems have been overcome in our proposed model.
Thirdly, Jaleel [41] developed theWASPAS technique for use
in agricultural robotics systems based on Dombi AOs under
BCFS Information. This work also discusses these issues.
After this, we may conclude that we solved every issue that
the first three articles failed to cover. Mahmood and Rehman
were the first researchers to examine this topic [25]. They
examined the impacts of BCFS on dombi AO. Our study
incorporates BCFSPDAO, which outperforms Mahmood and
Rehman [25] due to the latter’s inefficient power and SS.
Subsequently, we discussed our research and compared it
with the study performed by Naeem et al. [26]. We concluded
that our work has a more significant influence than that of
Naeem et al. [26] since no SS was employed in this work.
Thirdly, we discussed the work of Jaleel [41], who compared

BCFSDAO and BCFSPDAO, the latter of which is influenced
to a lesser extent by our work since no power is employed.
Based on the above explanation, we can conclude that our
research efforts have beenmore fruitful than previous endeav-
ors. This discussion is summarized in Table 3.

VII. CONCLUSION
In this work, we explored how BCFSPDAO was established
by incorporating authority over BCFSDAO. We started by
examining BCFSPDG and BCFSPDA AOs, after which we
identified three varieties of BCFSPDA AOs and BCFSPDG
AOs. Subsequently, we were able to narrow down three cate-
gories of BCFSPDA AOs: BCFSPDWA AO, BCFSPDOWA
AO, and BCFSPDHA AO. Similarly, there are three types
of BCFSPDG AO: BCFSPDWG AO, BCFSPDOWG AO,
and BCFSPDHG AO. Subsequently, the topic of artificial
intelligence and robots was discussed. In the study, the pre-
viously specified procedures were performed. We employed
a numerical model that was resolved by the MADM method.
Robots make up the numerical model in AI. We thus selected
the robot with the best performance. The BCFSPDGAO and
BCFSPDAAO ranking series are found here. The 2 that is
generated in BCFSPDGAO and BCFSPDAAO is the same,
despite differences in the ranking series. We wrapped up
this study by drawing comparisons with common notions
of supremacy and dominance. Our results demonstrate that
every problem caused by BCFSS can be resolved and man-
aged with ease.
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