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ABSTRACT The filtered-x normalized least mean square (FxNLMS) algorithm is widely used in active
noise control (ANC) systems. However, for cyclostationary input signals, the noise reduction performance
of the FxNLMS algorithm is affected by the periodic power of cyclostationary inputs, which leads to a
larger steady-state mean square deviation (MSD) than the filtered-x least mean squares (FxLMS) algorithm.
In this paper, a new adaptive combination algorithm of FxNLMS and FxLMS is proposed to suppress
cyclostationary input noise with fast convergence and low steady-state MSD. The mixing parameter for
combining the two algorithms is obtained by minimizing the energy of the posterior error and updated using
the time-average method. The mathematical analysis including the mean square convergence and computa-
tional complexity are performed. The simulation results show that the proposed combined-FxNLMS-FxLMS
algorithm can efficiently combine the respective advantages of FxNLMS and FxLMS algorithms and
improve the noise reduction performance of the ANC system.

INDEX TERMS Active noise control, adaptive combinations, mixing parameter, moving average.

I. INTRODUCTION
With the development of society and industry, noise pollution
has attracted widespread global attention. Traditional noise
control methods primarily rely on acoustic treatment, sound
insulation, and the use of mufflers. These methods belong to
the category of Passive Noise Control (PNC) and are typically
effective against high-frequency noise. However, to address
the challenge of low-frequency noise, scholars have proposed
active noise control (ANC) technology [1], [2]. Currently,
ANC has found widespread applications in numerous fields,
including automotive engine noise control [3], aircraft cock-
pit noise control [4], pipe noise control [5], among others.

The adaptive filtering algorithm plays a crucial role in
ANC systems. Due to its favorable performance and ease of
implementation, the filtered x-normalized least mean square
(FxNLMS) algorithm has been extensively adopted in various
ANC systems [6]. However, it faces a limitation with its fixed
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step-size. This limitation makes it challenging to strike a
balance between convergence speed and denoising accuracy.
To resolve this limitation, several variable step-size (VSS)
algorithms have been developed in recent years [7], [8], [9],
[10]. Such as in [9], a variable step- size algorithm was
proposed, which is based on the arctangent function. Addi-
tionally, [10] proposed the Correlation FxLMS (CFxLMS)
algorithm. This algorithm utilizes the correlation function
between the filtered reference signal and the error signal
to regulate the updates of the step-size. In [11], the author
introduced a novel error reused ANC (ErANC) system that
utilizes information from past errors to compensate for the
discrepancy between the main noise and the estimated out-
put and developed a new algorithm called ErFxLMS was to
enhance the noise reduction performance of the ANC sys-
tem. Additionally, several filtered-x affine projection (FxAP)
algorithms have been proposed to improve the convergence
speed when dealing with correlated input signals. In [12], the
author enhanced the algorithm performance by optimizing
the regularization parameters. In [13], the author developed
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a variable step-size strategy based on mean square error
analysis and demonstrated the superiority of the algorithm
through simulation experiments. Several techniques have
been reported to address the challenge of impulse noise
in ANC systems. The author proposed three improvement
schemes in [14] to improve the performance of the filtered-x
least mean absolute third (FxLMAT) algorithm. In [15], the
author presented the modified filtered-x affine-projection-
like MCC (MFxAPLMCC) algorithm. This algorithm is
inspired by the maximum correntropy criterion (MCC) and is
based on an information-theoretic learning framework and a
data-reuse scheme derived from affine-projection algorithms.
In [16], the Volterra filtered-x maximum correntropy crite-
rion (VFxMCC) algorithm and Volterra filtered-x recursive
maximum correntropy (VFxRMC) algorithm were employed
in a non-linear active noise control system to improve the
stability of the Volterra filter when dealing with impulsive
noise. Lately, the convex combination scheme has gained
significant attention in ANC systems. In [17], the author
used sigmoid functions to formulate mixing parameters
to control the proportion of the two filters and proposed
the Convex Combination FxNLMS and FxLMS (CVX-
FxNLMS-FxLMS) algorithm for ANC systems. In [18],
a new Combined-Step-Size (CSS) algorithm was proposed
using adaptive combination method, resulting in good per-
formance while maintaining low computational complexity.
However, when developing the mixing parameter, it directly
utilized the variable step size factor method from [19], which
lacks a theoretical basis. In [20], the author applies the
general mixed-norm algorithm as the cost function to pro-
pose the filtered-x general mixed-norm (FxGMN) algorithm.
To further enhance its performance, they present a convex
combination of the FxGMN algorithm (C-FxGMN).

In practical applications, the input noise of ANC systems
is usually mechanical vibration noise with cyclostationary
characteristics such as automobile engine noise and piping
noise [21], [22], [23]. For such input signals, the theoretical
results have shown that the steady-state mean square devi-
ation (MSD) of the FxNLMS algorithm is affected by the
periodic input power leading to degraded noise reduction
performance, while the steady-state MSD of the FxLMS
algorithm is independent of the periodic input power. That
is to say, FxNLMS has faster convergence but suffers from
larger MSD than FxLMS for cyclostationary input noise [18],
[24]. Therefore, the existing variable step-size and combined
step-size schemes cannot fundamentally solve the problem
of the FxNLMS algorithm suffering from large steady-state
misalignment for cyclostationary input noise signals.

To fully utilize the advantages of these two algorithms
in dealing with cyclostationary input noise, an adaptive
algorithm combining FxNLMS and FxLMS is proposed.
The algorithm combines FxNLMS and FxLMS algorithms
using two different step sizes. Larger step-size in FxNLMS
is used during transient periods to achieve fast conver-
gence and good transient response, while the other smaller
step- size in FxLMS is activated in steady-state for the low

steady-stateMSD. Themixing parameter for combining these
two algorithms is obtained by minimizing the energy of the
posteriori error. Besides, we use the time-average method
to update the mixing parameter, which can not only ensure
monotonicity but also avoid excessive fluctuation during the
change of the parameter [25]. Simulation results show that
the proposed algorithm can improve the performance of the
ANC system, and has faster convergence speed and better
noise reduction effect compared to the existing algorithms.

The structure of the remainder of this paper is as follows:
Section II describes the conventional FxNLMS algorithm.
Section III presents the structure and derivation process of the
proposed algorithm. Section IV illustrates the mean square
convergence and the computational complexity analysis. The
simulation results are exhibited in the section V. Finally,
section VI summarizes the conclusion.

II. THE FxNLMS ALGORITHM
The block diagram of the FxNLMS algorithm is shown in
Fig. 1, where d(n) is the noise signal output through the
primary path to be cancelled. P(z) indicates the primary path
transfer function, S(z) represents denotes the secondary path
transfer function, and Ŝ(z) signifies the approximate estimate
of S(z). W (z) is the ANC controller (adaptive filter). y(n) is
the filter output signal to activate the secondary speaker and
x(n) = [x(n), x(n-1), . . . , x(n-L+1)]T is the input noise vector
with the length L [26].

FIGURE 1. Block diagram of the FxNLMS algorithm.

The filter output signal y(n) is given by

y(n) = wT (n)x(n) (1)

The residual error e(n) is given by

e(n) = d(n) − y′(n) + v(n) (2)

where y’(n) = y(n) ∗ s(n) represents secondary cancelling
signal, s(n) is the impulse response of S(z), ∗ denotes the
discrete convolution operator, and v(n) is the background
noise.

The weight vector update equation of the FxNLMS
algorithm is given by

w(n+ 1) = w(n) + µe(n)
xf (n)∥∥xf (n)∥∥2 + ε

(3)

where w(n) = [w0(n), w1(n), . . . , wL−1(n)]T is the weight
vector of the adaptive filter. µ is the step-size, and ε is the
regularization factor.
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Based on the mean square performance analysis in [18]
and [24], it is shown that the NLMS algorithm has good
transient response, while the steady-state MSD of the LMS
algorithm does not depend on the periodic input power.
In addition, for cyclostationary input signals, under small
step-size conditions, the LMS algorithm can offer smaller
steady-state average MSD than the NLMS algorithm at the
same convergence rate. We are therefore excited to research
a fresh strategy that can combine the distinct advantages of
the two algorithms.

III. PROPOSED ALGORITHM
Fig. 2 illustrates the block diagram of the combined-
FxNLMS-FxLMS algorithm. Table 1 lists an overview of the
proposed algorithm.

FIGURE 2. Block diagram of the combined-FxNLMS-FxLMS algorithm.

The weight vectors of the FxNLMS algorithm and FxLMS
algorithm are updated as follows, where (µ2 < µ1)

w1(n+ 1) = w(n) + µ1e(n)
xf (n)∥∥xf (n)∥∥2 + ε

(4)

w2(n+ 1) = w(n) + µ2e(n)xf (n) (5)

combination (4) and (5) yields

w(n+ 1) = λ(n)w1(n+ 1) + (1 − λ(n))w2(n+ 1) (6)

w(n+ 1) = w(n)+

(
λ(n)µ1∥∥xf (n)∥∥2+ε

+(1−λ(n))µ2

)
e(n)xf (n)

(7)

where λ(n) is the mixing parameter in the range [0,1]. It is not
difficult to see that when λ(n) →1, the algorithm becomes the
FxNLMS algorithm, when λ(n) →0, the algorithm becomes
the FxLMS algorithm.

The weight error vector w̃(n) is defined as

w̃(n) = wopt − w(n) (8)

where wopt is the optimal weight vector.
Subtracting (7) from wopt gives rise to

w̃(n+ 1)= w̃(n)−

(
λ(n)µ1∥∥xf (n)∥∥2 + ε

+(1−λ(n)) µ2

)
e(n)xf (n)

(9)

The posteriori error ep(n) and the priori error ea(n) are defined
as

ep(n) = xTf (n)w̃(n+ 1) (10)

ea(n) = xTf (n)w̃(n) (11)

Assuming perfect modeling of the secondary path, i.e.,
Ŝ(z) = S(z), multiplying (9) by xTf (n) yields

ep(n) = ea(n) −

(
λ(n)µ1 + (1 − λ(n)) µ2

∥∥xf (n)∥∥2) e(n)
(12)

Substituting e(n) = ea(n) + v(n) into (12) yields

ep(n) = ea(n)
[
1 −

(
λ(n)µ1 + (1 − λ(n)) µ2

∥∥xf (n)∥∥2)]
−

(
λ(n)µ1 + (1 − λ(n)) µ2

∥∥xf (n)∥∥2) v(n) (13)

Before going a step further, we need to make some
assumptions:
Assumption 1: xTf (n) and the priori error ea(n) are inde-

pendent of the background noise v(n) [27].
Assumption 2: The expectation of the ratio of random

variables x and y can be approximated by the ratio of their
expectation values, i.e., E[x/y] ≈ E[x]/E[y] [28].

Taking the square and expectation of (13), and simplifying
by above assumptions yields

E
[
e2p(n)

]
= E

{
e2a(n)

[
1 −

(
λ(n)µ1 + (1 − λ(n)) µ2

∥∥xf (n)∥∥2)]2}
+ E

{(
λ(n)µ1 + (1 − λ(n)) µ2

∥∥xf (n)∥∥2)2 v2(n)} (14)

Taking the first-order derivative of λ(n) for (14) and
making its derivative zero yields (15), as shown at the
bottom of the next page, where E[||xf (n)||2] = σ 2

xf (n) and
E[e2a(n)] = σ 2

ea (n).
We estimate the variance of the filtered input signal σ 2

xf (n)
by the time-average of the squares of xf (n)

σ 2
xf (n) = α1σ

2
xf (n− 1) + (1 − α1)

∥∥xf (n)∥∥2 (16)

Next, we approximate the power of noise-free a priori error
σ 2
ea (n) in (15) by the time-average of the squares of ea(n)

σ 2
ea (n) = α1σ

2
ea (n− 1) + (1 − α1)e2a(n) (17)

where α1 denotes the forgetting factor taking the approximate
value of one, and by using the shrinkage denoising method
described in [19], the ea(n) can be obtained

ea(n) = sign(e(n)) max(|e(n)| − t, 0) (18)

where sign(·) denotes the signum function, and t =
√

θσ 2
v ,

where θ is a constant (0≤ θ ≤4) [19].
If the variance of the background noise is unknown

in advance, we can find its estimate using the following
strategy [29]

σ 2
v = σ 2

e (n) − E
[
w̃T (n) xf (n) xTf (n) w̃ (n)

]
30756 VOLUME 12, 2024



Y. Pang et al.: Posterior Error Energy Minimization Based Combined FxNLMS and FxLMS Algorithm

TABLE 1. Summary of the proposed combined-FxNLMS-FxLMS algorithm.

≈ σ 2
e (n) −

rTxf e (n) rxf e (n)

σ 2
xf (n)

(19)

σ 2
e (n) = α1σ

2
e (n− 1) + (1 − α1) e2 (n) (20)

rxf e (n) = α1rxf e (n− 1) + (1 − α1) xf (n) e (n) (21)

We use the time-average method to update λ(n). This
method not only updates λ(n) smoothly but also ensures that
it is monotonically decreasing. To avoid λ(n) dropping to a
negative value, we add a determination condition to overcome
this drawback, and the rule for updating is as follows (22),
shown at the bottom of the next page.

IV. PERFORMANCE ANALYSIS
A. MEAN SQUARE CONVERGENCE ANALYSIS
The weight error correlation matrix of the combined-
FxNLMS-FxLMS algorithm is defined as

K(n) = E{w̃(n)w̃T (n)} (23)

Multiplying (9) by w̃T(n+1), taking the expectation, and
simplifying by Assumption 1, 2 yields (24), as shown at the
bottom of the next page, where Rf (n) = E{xf (n)xTf (n)} is
defined as the correlation matrix of the xf (n).
According to MSD(n) =Tr(K(n)), taking the trace of (24)

yields (25), as shown at the bottom of the next page.
The trace operation of the matrix is approximated as

follows [30]

Tr(K(n)Rf (n)) ≈
1
L
Tr(Rf (n))Tr(K(n))

≈
1
L

σ 2
xf Tr(K(n)) (26)

Tr(Rf (n)K(n)Rf (n)) ≈ (
1
L
Tr(Rf (n)))2Tr(K(n))

≈ (
1
L

σ 2
x f )

2Tr(K(n)) (27)

Using the above approximation, (25) can be reduced to

MSD(n+ 1)

= MSD(n) − 2

(
E {λ(n)} µ1

σ 2
xf (n)

+ E {1 − λ(n)} µ2

)
×

1
L

σ 2
xf (n)MSD(n) + E

{
λ2(n)

}
µ2
1
1
L
MSD(n)

+ E
{
(1 − λ(n))2

}
µ2
2

(
1
L

σ 2
xf (n)

)2

(L + 2)MSD(n)

+ 2E {λ(n) (1 − λ(n))} µ1µ2
1
L

σ 2
xf (n)

(
1 +

2
L

)
MSD(n)

+ E
{
λ2(n)

}
µ2
1

L
(L + 2)σ 2

xf (n)
σ 2
v (n) + E

{
(1 − λ(n))2

}
× µ2

2σ
2
xf (n)σ

2
v (n)

+ 2E {λ(n) (1 − λ(n))} µ1µ2σ
2
v (n) (28)

when the algorithm reaches the steady state, λ(n) tends to
zero, so the steady-state MSD value of the algorithm is
obtained

MSD(∞) =
µ2Lσ 2

v

2 − µ2σ 2
xf (L + 2)

(29)

λ(n) =

E
{
µ2
∥∥xf (n)∥∥2 v2(n) − e2a(n) + µ2

∥∥xf (n)∥∥2 e2a(n)}
E
{
µ2
∥∥xf (n)∥∥2 e2a(n) + µ2

∥∥xf (n)∥∥2 v2(n) − µ1
(
e2a(n) + v2(n)

)}
=

µ2σ
2
xf σ

2
v − σ 2

ea + µ2σ
2
xf σ

2
ea

µ2σ 2
xf σ

2
ea + µ2σ 2

xf σ
2
v − µ1(σ 2

ea + σ 2
v )

(15)
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The analysis of the above equations shows that the
algorithm proposed in this paper has the steady-state advan-
tage of the FxLMS algorithm, during the steady-state subject
to the step-size µ2.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
Table 2 provides a comparison of the number of multi-
plication, addition, and comparison operations required for
each iteration of the FxLMS, FxNLMS, VSS FxLMS [9],
CFxLMS [10], CVX-FxNLMS-FxLMS [17], CSS FxNLMS
[18] algorithms, and the proposed algorithm, where L is the
adaptive filter length andM is the secondary channel length.
In each iteration, the proposed algorithm exhibits

significantly lower computational complexity compared

to the CVX-FxNLMS-FxLMS algorithm. Although the
computa-tional complexity of the proposed algorithm
increases somewhat when compared to other algorithms,
the increase is acceptable and can be compensated by a
substantial improvement in convergence speed and noise
reduction performance. As such, the proposed algorithm can
be considered a promising approach.

V. SIMULATIONS
The performance of the proposed algorithm in the ANC
system was evaluated through simulation experiments. FIR
filters with the length of N = 42 and M = 10 are selected
to model the primary and secondary paths. Their frequency
responses are shown in Fig. 3. Table 3 presents the parameter

λ(n) =


if λ(n) > 0

α1λ(n− 1) + (1 − α1) min

{
µ2σ

2
xf (n)σ

2
v (n) − σ 2

ea (n) + µ2σ
2
xf (n)σ

2
ea (n)

µ2σ 2
xf (n)σ

2
ea (n) + µ2σ 2

xf (n)σ
2
v (n) − µ1

(
σ 2
ea (n) + σ 2

v (n)
) , λ(n− 1)

}
λmin

(22)

K(n+ 1) = K(n) − E{λ(n)}µ1K(n)
Rf (n)

Tr(Rf (n))
− E{λ(n)}µ1

Rf (n)
Tr(Rf (n))

K(n)

− E{1 − λ(n)}µ2K(n)Rf (n) − E{1 − λ(n)}µ2Rf (n)K(n)

+ E{λ2(n)}µ2
1
Tr(K(n)Rf (n))Rf (n) + 2Rf (n)K(n)Rf (n)

{Tr(Rf (n))}2 + 2Tr(Rf (n)Rf (n))

+ E{(1 − λ(n))2}µ2
2(Tr(K(n)Rf (n))Rf (n) + 2Rf (n)K(n)Rf (n))

+ 2E{λ(n)(1 − λ(n))}µ1µ2
Tr(K(n)Rf (n))Rf (n) + 2Rf (n)K(n)Rf (n)

Tr(Rf (n))

+ E{λ2(n)}µ2
1

Rf (n)
{Tr(Rf (n))}2 + 2Tr(Rf (n)Rf (n))

σ 2
v

+ E{(1 − λ(n))2}µ2
2Rf (n)σ 2

v

+ 2E{λ(n)(1 − λ(n))}µ1µ2
Rf (n)

Tr(Rf (n))
σ 2
v (24)

MSD(n+ 1) = Tr(K(n+ 1))

= Tr(K(n)) − 2E{λ(n)}µ1
Tr(Rf (n)K(n))
Tr(Rf (n))

− E{1 − λ(n)}µ2Tr(K(n)Rf (n)) − E{1 − λ(n)}µ2Tr(Rf (n)K(n))

+ E{λ2(n)}µ2
1
Tr(K(n)Rf (n))Tr(Rf (n)) + 2Tr(Rf (n)K(n)Rf (n))

{Tr(Rf (n))}2 + 2Tr(Rf (n)Rf (n))

+ E{(1 − λ(n))2}µ2
2(Tr(K(n)Rf (n))Tr(Rf (n)) + 2Tr(Rf (n)K(n)Rf (n)))

+ 2E{λ(n)(1 − λ(n))}µ1µ2
Tr(K(n)Rf (n))Tr(Rf (n)) + 2Tr(Rf (n)K(n)Rf (n))

Tr(Rf (n))

+ E{λ2(n)}µ2
1

Tr(Rf (n))
{Tr(Rf (n))}2 + 2Tr(Rf (n)Rf (n))

σ 2
v

+ E{(1 − λ(n))2}µ2
2Tr(Rf (n))σ 2

v + 2E{λ(n)(1 − λ(n))}µ1µ2σ
2
v (25)
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TABLE 2. Computational complexity.

FIGURE 3. Frequency response of acoustic paths used in computer
simulations. (a) Magnitude response; (b) Phase response.

settings for each algorithm used in all simulation experiments
in this article (The symbol ‘‘/’’ indicates that the algorithm
has not been configured.).

The Average Noise Reduction (ANR), Mean Squared
Deviation (MSD), and Sound Pressure Level (SPL), as an
evaluation index to evaluate the performance of active noise
control systems.

The Average Noise Reduction (ANR) is defined as

ANR(n)(dB) = 20 log10

(
Ae(n)
Ad (n)

)
(30)

where Ae(n) = κAe(n-1)+(1)-κ)|e(n)|, Ad (n) = κAd (n-
1)+(1)-κ)|d(n)|. In the initial condition, Ae(n) = 0,
Ad (n) =0, κ = 0.999.
The Sound Pressure Level (SPL) is defined as [31]

SPL(dB) = 20 log10

(
P
Pref

)
(31)

where, P is sound pressure, Pref is the reference sound pres-
sure and Pref = 2 × 10−5 Pa.

A. SIMULATING CYCLOSTATIONARY NOISE
In this section, we utilize the sinusoidal power time variation
from [18] and [30] to create simulated cyclostationary noise
signals, i.e.,

σ 2
x (n) = β

(
1 + sin

(ω0πn
2

))
(32)

where β > 0, ω0 > 0. In the subsequent simulation
experiments, the parameter settings are as follows: β =

0.0196, ω0 = 0.0625. Fig. 4 illustrates the waveform and
three-dimensional cyclic spectrum of the noise signal.

FIGURE 4. Waveform diagram and Three-dimensional cyclic spectrum of
the noise signal.

To verify the effectiveness and reliability of the proposed
algorithm, its performance was compared with FxNLMS,
FxLMS, VSS FxLMS, CFxLMS, CVX-FxNLMS FxLMS,
and CSS FxNLMS algorithms. TheMSD learning curves and
ANR learning curves of the aforementioned algorithms are
shown in Fig. 5 and Fig. 6, respectively.
After comparing the MSD convergence curves of each

algorithm in Fig. 5, it was found that the proposed algorithm
achieved a good balance between convergence speed and
noise reduction accuracy. When compared with the FxNLMS
algorithm, they exhibited similar convergence speeds; com-
pared with the FxLMS algorithm, they maintained similar
denoising accuracy. While the proposed algorithm exhibited
similar noise reduction accuracy to the CVX-FxNLMS-
FxLMS algorithm and CSS-FxNLMS algorithm, it signifi-
cantly outperformed other algorithms in terms of convergence
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TABLE 3. Tuning parameters of the algorithms.

speed. Moreover, the ANR convergence curves of each
algorithm in Fig. 6 also demonstrated similar results, which
further verified the reliability and effectiveness of the pro-
posed algorithm. Overall, these analysis results suggest that
the proposed algorithm has superior overall performance.

B. REAL SAMPLING CYCLOSTATIONARY NOISE
To further validate the effectiveness and reliability of the
proposed algorithm, this section utilizes automotive engine

noise signals obtained through real sampling. The sampling
frequency used is 48kHz. Fig. 7 illustrates the waveform
and three-dimensional cyclic spectrum of the noise sig-
nal. The noise signal satisfies the condition of non-zero
cyclic autocorrelation function when the cyclic frequency
is not zero, indicating its cyclostationary properties. The
background noise, on the other hand, is represented by
Gaussian white noise that is independent of the reference
signal.
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FIGURE 5. MSD learning curves of the FxNLMS, FxLMS, VSS FxLMS,
CFxLMS, CVX-FxNLMS-FxLMS, CSS FxNLMS and the Proposed algorithm in
an environment with SNR = 15dB.

FIGURE 6. ANR learning curves of the FxNLMS, FxLMS, VSS FxLMS,
CFxLMS, CVX-FxNLMS-FxLMS, CSS FxNLMS and the Proposed algorithm in
an environment with SNR=15dB.

To verify the tracking ability of the proposed algorithm,
we conducted experiments to determine whether it can
adaptively adjust with changes in the external environment.
Specifically, we simulated a non-stationary environment by
multiplying the impulse response of the main path P(z) by
-1 when the algorithm reached 8000 iterations [32]. Fig. 8
illustrates the learning curve of the mixing parameter λ(n)
in a non-stationary environment, while Fig. 9 displays the
ANR performance curve of the proposed algorithm in the
same environment. These figures demonstrate that the mixing
parameter λ(n) can dynamically update its value in response
to changes in the external environment, ensuring it remains
within the range of 0 to 1. This adaptability guarantees the
excellent performance of the proposed algorithm in non-
stationary environments.

The comparison results of the MSD learning curves and
ANR learning curves between the proposed algorithm and
other similar algorithms are displayed in Fig. 10 and Fig. 11,
respectively.

FIGURE 7. Waveform diagram and Three-dimensional cyclic spectrum of
the noise signal.

FIGURE 8. Variation curve of the mixing parameter in a non-stationary
environment.

FIGURE 9. ANR learning curve of the Proposed algorithm in a
non-stationary environment.

By comparing and analyzing the MSD learning curves of
each algorithm in Fig. 10, it is evident that all algorithms
exhibit stable convergence and effectively reduce noise
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FIGURE 10. MSD learning curves of the FxNLMS, FxLMS, VSS FxLMS,
CFxLMS, CVX-FxNLMS-FxLMS, CSS FxNLMS and the Proposed algorithm in
an environment with SNR=20dB.

FIGURE 11. ANR learning curves of the FxNLMS, FxLMS, VSS FxLMS,
CFxLMS, CVX-FxNLMS-FxLMS, CSS FxNLMS and the Proposed algorithm in
an environment with SNR=20dB.

signals. The proposed algorithm, in particular, demonstrates a
favorable overall performance by combining the strengths of
the FxNLMS algorithm and the FxLMS algorithm. It achieves
rapid convergence while maintaining excellent noise reduc-
tion accuracy. Although the proposed algorithm performs
similarly to the CSS-FxNLMS algorithm in terms of noise
reduction accuracy, it holds a slight advantage in terms of
convergence speed. The comparison results in Fig. 11 further
validate this viewpoint, which is consistent with the com-
parative analysis results presented in the previous section.
This provides additional confirmation of the reliability of the
proposed algorithm.

To provide a more intuitive demonstration of the level of
noise attenuation achieved by each algorithm, Fig. 12 dis-
plays the SPL curves of the noise signal after being processed
by an ANC system employing different algorithms. It is
evident that the noise signal has been effectively attenuated to
a certain degree through the implementation of ANC systems
using various algorithms. Notably, the ANC system utilizing
the proposed algorithm achieves the maximum reduction in

FIGURE 12. SPL curves of the FxNLMS, FxLMS, VSS FxLMS, CFxLMS,
CVX-FxNLMS- FxLMS, CSS FxNLMS and the Proposed algorithm in an
environment with SNR=20dB.

FIGURE 13. MSD learning curves of the FxNLMS, FxLMS, VSS FxLMS,
CFxLMS, CVX-FxNLMS-FxLMS, CSS FxNLMS and the Proposed algorithm in
an environment with SNR=15dB.

SPL while maintaining a faster denoising speed compared to
other algorithms.

Furthermore, to confirm the performance of the pro-
posed algorithm in different background noise environments,
we conducted additional experiments. Fig. 13 illustrates the
MSD learning curves with all other environmental factors
remaining constant, except for an SNR of 15dB. Addi-
tionally, Fig. 14 displays the performance curves of the
algorithm when the SNR is 30dB. It is evident that the pro-
posed algorithm maintains excellent performance in both the
above mentioned SNR environments, which fully verifies our
hypothesis that the proposed algorithm is effective in various
background noise environments.

Finally, to validate the accuracy of the theoretical analysis
on the mean square convergence performance of the proposed
algorithm in the fourth section, we conducted experimental
verification. As depicted in Fig. 15, the theoretical MSD
curve and the simulated MSD curve exhibited good con-
sistency, confirming the consistency of both transient and
steady-state behavior. However, it is worth noting that there
exists a slight deviation between the theoretical and simu-
lated MSD in terms of transient behavior. Such deviations
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FIGURE 14. MSD learning curves of the FxNLMS, FxLMS, VSS FxLMS,
CFxLMS, CVX-FxNLMS-FxLMS, CSS FxNLMS and the Proposed algorithm in
an environment with SNR=30dB.

FIGURE 15. Transient theoretical MSD, experimental MSD, and
steady-state theoretical MSD of the Proposed algorithm in an
environment with SNR=20dB.

are expected since certain approximations from the literature
were utilized in the analysis [28], [30].

VI. CONCLUSION
A new combined-FxNLMS-FxLMS algorithm for feed-
forward ANC systems with the cyclostationary noise inputs
is proposed in this paper. In the proposed algorithm, a larger
step size is used for FxNLMS to achieve fast convergence,
and the smaller one is used in FxLMS for getting low steady-
state MSD. The mixing parameter is obtained by minimizing
the energy of a posteriori error, which is updated by employ-
ing the moving average method to ensure the monotonically
decreasing while avoiding large fluctuations. Additionally,
the mean square convergence performance and computa-
tional complexity of the proposed algorithm are performed,
and simulation studies demonstrate the strong concordance
between theory and practice. The results of the simulation

demonstrate that the combined-FxNLMS-FxLMS algorithm
effectively amalgamates the advantages of the FxNLMS
algorithm and the FxLMS algorithm showcasing exceptional
noise reduction capabilities.
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