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ABSTRACT In gradient echo MRI, quantitative susceptibility mapping (QSM) quantifies the magnetic
susceptibility distributions of tissues, which has great potential in detecting brain diseases. However,
QSM reconstruction is an ill-conditional inversion problem because of the zeros in the frequency domain
of the dipole kernel. The intrinsic nature of the ill-posedness would affect the accuracy of quantifying
tissue susceptibility. Recently, deep learning-based methods have been proposed to improve accuracy
by suppressing the streaking artifacts. In this work, we proposed a hybrid architecture to enforce data
consistency by involving numerical optimization blocks within convolutional neural networks (CNN), which
aimed to reconstruct high-quality QSM images, referred to as NoQSM-net. The Calculation of Susceptibility
through Multiple Orientation Sampling (COSMOS) QSM maps were used as labels for training. The
performance of the proposed method was evaluated on two healthy volunteers and brain images of patients
with diseases. Our experiments showed that the proposed method achieved good performance in terms of
quantitative metrics and could effectively suppress artifacts in reconstructed QSM images, demonstrating
its potential for future applications. For experiments on patients with multiple sclerosis (MS), the proposed
method could better detect lesion regions in the results of NoQSM-net.

INDEX TERMS Quantitative susceptibility mapping, dipole kernel inversion, MRI, numerical optimization,
convolutional neural network.

I. INTRODUCTION
Magnetic susceptibility is an intrinsic and physical prop-
erty that measures the degree of magnetization of matter
when placed in an external magnetic field. Quantitative
susceptibility mapping (QSM) is a comparatively advanced
reconstruction technology that quantifies the magnetic sus-
ceptibility of local tissues. Somemolecules and biomolecules
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are sensitive to susceptibility sources, such as hemoglobin,
myelin, ferritin, and calcium. QSM has been applied to
discriminate between hemorrhages and calcifications [1], [2],
For neurological diseases, QSM can be used to quantify iron
deposition, such as Alzheimer’s disease, multiple sclerosis,
Huntington’s disease, and Parkinson’s disease [3], [4],
[5], [6]. In addition, QSM can be used to study cerebral
microbleeds and intracranial hemorrhage [7], [8], [9], [10].

QSM reconstruction is an ill-conditioned inverse problem
from the measurement field to the susceptibility source
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because of the zeroes in the Fourier domain of the dipole
kernel, which are the source of noise and artifacts [11], [12].
Several approaches have been proposed to address this
problem. One direct method is truncated k-space deconvo-
lution (TKD), which can avoid the ill-conditioned problem
by truncating the dipole kernel in k-space; however, the
resulting QSM map suffers from streaking artifacts and
noise [13]. To reduce artifacts and enhance the quality of
QSM maps, a number of regularization algorithms have
been addressed [14], [15], [16], [17], [18]. For example,
the Morphology Enabled Dipole Inversion (MEDI) method
has been proposed, which utilizes the structural consistency
between the reconstructed susceptibility map and the corre-
sponding magnitude image to reconstruct the QSMmap [17].
However, certain errors such as artifacts induced by ill-posed
inversion still exist. A more accurate QSM map can be
reconstructed using the Calculation of Susceptibility through
Multiple Orientation Sampling (COSMOS) algorithm [19],
which is the gold standard for the single orientation
QSM reconstruction method. Nevertheless, multiple head
orientation scans prolong acquisition time, hindering their
feasibility in clinical applications [20].
Recently, convolutional neural networks (CNN) based

methods have been proposed to solve the ill-conditioned
dipole inversion problem in QSM reconstruction by generat-
ing high-quality QSM images from single-orientation tissue
field measurement [21], [22], [23], [24]. Most CNN-based
methods are data-driven and heavily rely on the amount
of data. For example, QSMnet [21], QSMnet+ [25] and
DeepQSM [26] utilized 3D Unet to solve the ill-posed
inversion problem. Reference [27] used an interactively
connected clique U-Net (named ICCU-Net) for QSM recon-
structiuon. And [28] proposed a SWI-to-QSM-Net (S2Q-Net)
to reconstruct QSM images from Susceptibility weighted
imaging (SWI) high-pass filtered phase data. xQSM [29]
adopted an enhanced 3D Unet, and [24] used Generative
Adversarial Networks (GANs) for dipole inversion. In addi-
tion, autoQSM [30] directly reconstructed QSM images
from the total tissue phase. In addition to simple data-
driven learning, [31] combined a variational network with
a nonlinear model (VaNDI), which was trained to optimize
regularizers in the Nonlinear Dipole Inversion (NDI) gradient
update rule. In addition, a few methods incorporated the
underlying physical model into CNN, such as Learned
Proximal CNN (LPCNN) [22], which combined the proximal
gradient method with CNN using COSMOS as the labels.
MoDL-QSM [23] proposed a framework combining the
STI physical model with a CNN using susceptibility tensor
terms as labels. The above mentioed proximal gradient-based
methods alternated CNN blocks and a steepest descent step.
Apart from these above mentioned supervised methods,
Fidelity imposed network edit (FINE) [32] method tuned the
weights of the pre-trained network for each testing dataset via
minimizing an unsupervised model loss function. However,
these algorithms are also computationally expensive. In addi-
tion, an unsupervised approaches using adaptive instance

normalization was proposed to reconstruct QSM images with
various resolutions [33]. More recently, an end-to-end Affine
Transformation Edited and Refined (AFTER) deep neural
network was proposed for the inversion problem, which is
robust to image acquisition orientations and resolutions [34].

Inspired by the model-based deep learning architecture
for the inverse problem (MoDL) [35], this study aims to
address a recursive neural network architecture involving
the data consistency term and a CNN to solve the dipole
inversion problem in QSM reconstruction. The proposed
network alternates between the numerical optimization block,
which encourages data consistency with the measured data,
and a CNN block, which captures the information of the
training data. For brevity, we refer to the proposed method
as NoQSM-net. The numerical optimization algorithm used
in the network was a conjugate gradient (CG) [36], which is
the main difference from proximal gradient-based methods.
Our experiments indicated that NoQSM-net improved the
accuracy of susceptibility quantification compared with
LPCNN and other methods.

II. THEORETICAL BACKGROUND
A. FORWARD PROBLEM FOR SUSCEPTIBILITY SOURCE
TO MAGNETIC FIELD
In theory, the tissue field b(r) located in r can be approxi-
mated as the convolution of susceptibility χ (r) with dipole
kernel d(r) in spatial domains. The forward problem from
the susceptibility source to the tissue magnetic field can be
expressed as follows:

b(r) =
3cos2θ − 1

4π r3
⊗ χ (r) = d(r) ⊗ χ (r) [r ̸= 0] , (1)

where ⊗ is the convolution operator and θ is the angle
between r and the main magnetic field B0. The matrix form
of the forward problem can be written as a multiplication:

b = Dχ, (2)

where b and χ denote the vector forms of the spatial sus-
ceptibility distribution and measured local field, respectively,
and D is a matrix representing the convolution with dipole
kernel b(r) =

3cos2θ−1
4πr3

, which is defined as the magnetic field
generated by a unit dipole. In k-space, susceptibility can be
calculated by dividing the dipole D by the tissue field.

B. REGULARIZED OPTIMIZATION SCHEME FOR
INVERSION
To estimate the susceptibility map χ from magnetic field
measurement b is an ill-posed inverse problem, because of the
zero cone surface of the dipole kernel when θ with respect
to B0 is ±54.7◦ [19]. The regularized optimization method
can be used to solve this inversion problem, which can be
formulated as:

χ (r) = argmin
χ

∥W (b− Dχ )∥22︸ ︷︷ ︸
weighted data fidelity

+ λR(χ )︸ ︷︷ ︸
regularization

, (3)
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Here, the first item is to maintain data fidelity, and the
second regularization prior is to restrict the solutions with
the parameter λ.W is the square root of the inverse of
the noise-covariance matrix. The first term of Equation (3)
is the weighted data fidelity term, which contains artifact
and noise; the second term is regularization term, which
contains the regularization error. λ is a tunable regularization
parameter, which is chosen such that the regularization
error is approximately equal to the expected noise level.
A wide range of classical forms for RDω(χ )have been
researched, which include piece-wise constant susceptibil-
ity [37], [38], smooth susceptibility or susceptibility gradi-
ent [11], Wavelet [39], [40], and morphological consistency
of the susceptibility map [15], [16], [17], [18]

III. PROPOSED METHOD
A. COMBINATION THE NUMERICAL
OPTIMIZATION WITH CNN
The reconstruction of QSM maps can be formulated as the
optimization problem:

χ = argmin
χ

∥W (b− Dχ )∥22 + λ ∥χ − RDω(χ )∥2 , (4)

where, RDω(χ ) is the version of χ after artifact removal
and denoising, which depends on the training parameters ω

in CNN block. When the susceptibility map χ suffers from
contamination by artifacts and noise, the CNN-based prior
∥χ − RDω(χ )∥2 will yield high values. In addition, λ is set as
the trainable regularization factor. If the constrained setting
can yield an improved reconstruction, high values of λ are
selected during the training process.

We can unroll the recursive network as follows: settingχ =

χn ± 1χ at nth epoch iteration, and the nonlinear mapping
RDω(χ ) can be approximated using a Taylor series around
the nth iteration as:

RDω(χ) = RDω(χn ± 1χ ) ≈ ϕv + JTn1χ, (5)

where Jn is the Jacobian matrix, ϕn = RDω(χn). Then the
penalty term can be approximated as:

∥χ − RDω(χn + 1χ )∥2 ≈ |χ − ϕn|
2
+ ∥Jn1χ∥ , (6)

Note that the second term in Equation (6) tends to zero for
a small value of ∥1χ∥. Because the above approximation
is only valid in the vicinity of χn, we can approximate the
alternating algorithm as:

χn+1 = argmin
χ

∥W (b− Dχ )∥22 + λ ∥χ − ϕn∥
2 , (7)

The solution of Equation (7) can be obtained using the normal
equation:

χn+1 =

(
(WD)H (WD) + λI

)−1 (
(WD)H (Wb) + λϕn

)
,

(8)

Here, the (·)H indicates conjugate transpose. The algor-
ithm was initialized with (WD)H (Wb). The operator

(
(WD)H (WD) + λI

)−1
is not analytically invertible for the

inverse problem. The update of Equation (9) can be solved
using CG [36] optimization scheme, which involves several
CG steps. Furthermore, there are no trainable parameters
within the CG sub-blocks. The outline of the alternating
scheme is described in Fig. 1(b).

B. FRAMEWORK OF NOQSM-NET
The architecture of the NoQSM-net is illustrated in Fig. 1(a).
The network used in the CNN block is shown in Fig. 1(c),
which includes 18 convolutional layers. There are eight
residual blocks and two convolution layers in the CNN. The
kernel size of the first convolution layer and the convolution
layers in the residual blocks was 3× 3× 3, with stride 1 and
channel 32. The last layer, with a kernel size of 1× 1× 1
and 1 output, generates the predicted susceptibility of the
CNN. Batch normalization (BN) [41] was used to accelerate
convergence, and the rectified linear unit (ReLU) activation
function [42] was applied to mitigate overfitting. The bottom
of each output block summarizes the number of channels, and
the top summarizes the size of the output.

IV. EXPERIMENTS
A. DATA FOR TRAINING AND TESTING
The multi-orientation GRE dataset used for training and
testing in our study was downloaded from https://osf.io/
y6rc3/ [43].
Training dataset: Our training data included 5 healthy vol-

unteers with 15-23 head orientations per subject. The datasets
were acquired by the multi-echo 3D GRE sequence with the
following scan parameters: FOV = 210× 224× 160 mm3,
voxel size = 1× 1× 1 mm3 isotropic, TR = 38 ms, TE1 =

7.7 ms, echo spacing = 5 ms, number of echoes = 6,
bandwidth = 190 Hz/pixel, flip angle = 15◦, GRAPPA
factor = 2, and total imaging time = 8.8 s. The scan was
repeated at different head orientations for each participant.
Testing dataset: 35 multiple head orientation scans from

two healthy volunteers were acquired using the same scanner
and imaging parameters as the training data. A patient with
multiple sclerosis (MS) was used to explore the potential
clinical applications. Patients with MS were acquired using
a 3D GRE sequence on a 3T GE HDxt MR scanner with
the following parameters: flip angle = 12◦, matrix size =

256× 256× 124, 1 mm isotropic resolution, TR = 32.36 ms,
TE1/echo spacing = 3.2/2.4 ms, number of echoes = 12.

B. DATA PROCESSING
The masks of the brain were generated from magnitude data
using BET in the FSL [44]. The phase images within the
mask were spatially unwrapped using a Laplacian phase-
unwrapping algorithm [45] and then processed by removing
the background phase via V-SHARP [39]. The obtained
tissue phase images of different echoes were normalized by
2πγTEB0 and then averaged to generate local field maps,
where γ is the gyromagnetic ratio, TE is the echo time,
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FIGURE 1. Overview of the proposed NoQSM-net architecture. (a) The schematic diagram of NoQSM-net. RDω represents the CNN block and NO is the
numerical optimization block. (b) The recursive NoQSM-net framework that alternates between artifact remover and denoiser RDω and data consistency
NO layer. (c) The network structure of residual CNN. The bottom of blocks summarizes the number of channels after each layer and the top of blocks
summarizes the output size.

and B0 is the main field strength. To reconstruct the reference
susceptibility images of the multiple orientation data, the
resulting local field maps were registered as follows. First,
the other orientation magnitude images of the first echo
were registered to that of the unrotated head orientation to
calculate the rotation matrices using FSL FLIRT [46], [47].
The resulting rotation matrices are then applied to the
corresponding local field maps for registration. Finally, the
QSMmaps were reconstructed using the registered local field
maps using the COSMOS algorithm [19], which served as the
label. A total of 94 scans of healthy volunteers were obtained
for training.

C. IMPLEMENTATION DETAILS
The proposed unrolling model NoQSM-net was implemented
using python 3.7.0 and Keras 2.6.0, with TensorFlow as
the backend, on a 64-bit Windows 10 workstation (Intel
Xeon CPU and 128 GB RAM). Training was accelerated
using a graphics processing unit card (RTX A4000, Nvidia).
To fit into the GPU memory, the patch size for NoQSM-net
training was cropped to 64× 64× 64 with an overlapping
scheme of 66% between adjacent patches. To improve the
training efficiency, patches with more than 40% background
regions were discarded. A total of 7226 patches were
obtained. Of these patches, 80% were used for training, and
20% for validation. During the training procedure, patches
of size 64× 64× 64 and the corresponding dipole kernel
of full size were fed into the CNN. To preserve high-
frequency information, 64× 64× 64 patches were padded
to the original size to match the size of the dipole kernel
when performing the numerical optimization operator and
then cropped back to 64× 64× 64. The mean-squared error
(MSE) was used as the loss function in the proposed method:

L = ∥χrecon − χCOSMOS∥
2 , (9)

where the χCOSMOS denotes the label susceptibility map, and
χrecon represents the reconstructed susceptibility map from
NoQSM-net. The minimization of L2 loss was performed
using the Adam optimizer [48]. The initial learning rate

was set to 10−3 and reduced by a factor of 0.5, when the
validation loss did not decay in five epochs. The batch
size was set to one because of the memory limitations of
the GPU. The training was stopped early at 80 epochs,
when the performance was stable. The total training time of
NoQSM-net was approximately 58h.

We also develop how to back-propagate through these
conjugate gradient (CG) block. We have

▽ϕL = Jϕ (χ)T ▽χL, (10)

where the Jacobian matrixJϕ (χ) =
(
(WD)H (WD) + λI

)−1
.

Since (WD)H (WD) + λI is symmetric, we have

▽ϕL =

(
(WD)H (WD) + λI

)−1
▽χL, (11)

Equation (11) thus indicates that the gradients can be
back-propagated through the CG block using a CG algorithm,
which means the CG block do not have trainable parameters.

D. PERFORMANCE EVALUATION
In this study, we also compared the approach that used
the steepest descent (SD) optimization algorithm instead
of CG in the numerical optimization sub-block, which is
abbreviated as NoQSM-SD. The proposed method using the
CG sub-block is abbreviated as NoQSM-CG. We evaluated
the performance of the NoQSM-net in two healthy subjects
with 35 head orientations. The images reconstructed by
COSMOS were used as the reference images. In addition, the
proposed method was compared with the MEDI, QSMnet,
and LPCNNmethods. Among them, the regularization factor
of the single-orientation QSM calculated using the MEDI
algorithm was set to 3000 [17]. The structure similarity index
(SSIM) [49], peak signal-to-noise ratio (PSNR), normalized
root mean squared error (NRMSE), and high-frequency error
norm (HFEN) were calculated for a global quantitative
comparison. We also compared the visual performance of
healthy subjects using these different methods. And we also
developed the quantitative performance of different iteration
numbers in CG sub-block.
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FIGURE 2. Comparision of the QSM images of a representative subject reconstructed by MEDI, QSMnet, LPCNN, NoQSM-SD and NoQSM-CG. (a) The three
orthogonal views of the reconstructed QSM maps are displayed in the first, second and forth row, the third row is the zoomed-in maps of the outlined
white box. (b) The residual maps of the three orthogonal views between different reconstruction results and COSMOS maps. Red arrows indicate regions
with larger differences on QSMnet, LPCNN and NoQSM-SD maps.

We performed the region of interest (ROI) analysis in
the putamen (PUT) and globus pallidus (GP) to further
demonstrate the quantitative accuracy of NoQSM-net in
deep gray matter. Then, the mean and standard deviation
of the susceptibility reconstructed by different methods
are displayed in the selected ROI. In addition, to study
potential clinical applications, the QSM images of MS data
reconstructed by QSMnet, LPCNN, and NoQSM-net were
compared by visual inspection.

V. RESULTS
Fig. 2 shows three orthogonal views of the QSM images
and the corresponding error maps from a representative
healthy test dataset reconstructed using different methods.
The first row of Fig. 2(a) shows axial views of the different
methods. As indicated by the green arrows, NoQSM-CG
and NoQSM-SD displayed more similarity to the COSMOS
maps. The second and third images in Fig. 2(a) show the sagit-
tal plane and the zoomed-in view of the region outlined by the
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FIGURE 3. Axial and coronal views of the QSM maps of the subject in Fig. 2. (a) The axial and coronal views are displayed in the
first and third row; the zoomed-in views of the region outlined by the white box are showed in the second and forth row. (b) The
zoomed-in difference maps. NoQSM-net shows smaller errors relative to the label than the other compared methods.

FIGURE 4. Quantitative analysis of the susceptibility values in globus pallidus (GP) and putamen (PUT). (a) The blue region of
interest on the magnitude image is the GP, the red is PUT. (b) The susceptibility values in the GP and PUT. Data are presented as
mean ± standard deviation. The result of proposed NoQSM-CG matches well with the COSMOS.

white box. The coronal views are displayed in the fourth row
of Fig. 2(a). Fig. 2 (b) illustrates the error maps, QSMnet and

MEDI show larger differences and more artifacts. As the
red arrows show, compared with LPCNN and NoQSM-SD,
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FIGURE 5. The zoomed-in axial views of the other subject in different head orientation. (a) and (f) Different head orientation COSMOS maps and the
corresponding zoomed-in maps. (b-e) The multi-orientation zoomed-in QSM maps reconstructed by QSMnet, LPCNN, NoQSM-SD and NoQSM-CG.
NoQSM-net shows more accurate estimation than the other deep learning methods.

NoQSM-CG yields fewer residuals. NoQSM-net, especially
NoQSM-CG, yielded fewer streaking artifacts than the other
methods.

Fig. 3 describes the axial and coronal (Fig. 3 (a) and
Fig. 3 (b)) views of the reconstructed QSM images in
Fig. 2. The zoomed-in images of the region outlined by
the white box are displayed in the second and fourth rows
of Fig. 3 (a), and the corresponding zoomed-in residual
maps are displayed in Fig. 3 (b). Compared with the
MEDI, QSMnet, and LPCNN methods, the NoQSM-net
method, especially the NoQSM-CG, produced more accurate
susceptibility estimation and fewer residuals in certain brain
regions, such as veins, nucleus accumbens, caudate nucleus,
putamen (PUT), and globus pallidus (GP).

Regions of interest were selected to analyze the recon-
structed efficacy of these deep learning-based methods.
Fig. 4 shows a comparison of the reconstructed regional

susceptibility values in the deep nuclei. Two typical regions
of interest, namely GP (blue region in the first row of
Fig. 4(a)) and PUT (red region in the second row of
Fig. 4 (a)), were selected. Fig. 4 (b) displays the susceptibility
values of GP and PUT. Compared with labels, NOQSM-SD
shows better estimations in GP but over-estimations in PUT.
Meanwhile, QSMnet and LPCNN illustrate underestimated
susceptibility values in both selected regions. In contrast,
NoQSM-CG has better susceptibility estimations for both
GP and PUT.

Fig. 5 illustrates the coronal views of six different head
orientations from the other representative healthy subjects.
Fig. 5 (a) and (f) show the COSMOS maps and the cor-
responding zoomed-in maps for different head orientations.
Fig. 5 (b-e) display zoomed-in views of the region outlined
by the white box in Fig. 5 (a) from different deep learning-
based methods. In comparison with QSMnet and LPCNN,
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FIGURE 6. The application to a MS patient of different deep learning based methods. Three orthogonal views and the zoomed-in views show that these
methods can all detect the lesion region.

FIGURE 7. The SSIM, PSNR, NRMSE and HFEN resulst of different iterations in CG sub-block.

the reconstructed QSM images of NoQSM-net show less
blurry and fewer streaking artifacts in each orientation.

Fig. 6 presents the application of QSMnet, LPCNN, and
NoQSM-net to an MS patient. The three orthogonal views
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TABLE 1. The quantitative evaluation of MEDI, QSMnet, LPCNN, NoQSM-SD and NoQSM-CG in terms of SSIM, PSNR, NRMSE and HFEN. The proposed
NoQSM-CG shows the best metrics in all methods.

and the corresponding zoomed-in images of the outlined
white box are demonstrated in Fig. 6 (a-c). All deep-
learning-based QSM reconstruction methods can detect
lesion regions. The lesion area was similarly delineated in all
methods.

Fig. 7 shows the quantitative metrics of different CG
iterations in the proposed alternating algorithm. The SSIM,
PSNR, NRMSE and HFEN indicates that while CG iteration
is set to 7, NoQSM-net can achieve the optimal quantitative
performance.

Table 1 presents the quantitative metrics SSIM, PSNR,
NRMSE, and HFEN of the different methods. The results
of NoQSM-CG achieved the highest SSIM with 0.927 and
PSNR with 47.54, and the lowest NRMSE with 49.16 and
HFEN with 54.83, suggesting the best performance based on
these quantitative criteria.

VI. DISCUSSION
In this study, we developed an unrolling deep learning
algorithm consisting of a data consistency block and a CNN
block to solve ill-posed dipole inversion problem in QSM
reconstruction. Data consistency was enforced by using the
numerical optimization blocks, that is, the SD and CG blocks
within the network. The CNN block used in the unrolling
model was a residual network. Our results indicate that the
proposed NoQSM-net method could effectively suppress the
streaking artifact caused by the noise amplification effect
from the division of dipole kernel values close to 0 in the
dipole deconvolution, and the error maps show that the
predicted QSM images are close to the golden standard
COSMOS maps.

Several unrolled methods have been proposed, such as
VaNDI [31], LPCNN [22] and MoDL-QSM [23]. Compared
to the use of a CNN as one of the regularization terms in
Eq. (4) for artifact removal and denoising, VaNDI trained
the variational network to optimize the parameters in an
iterative gradient descent algorithm. The main difference
between the LPCNN and the proposed method is that the
latter incorporates a CNN into the proximal gradient descent
algorithm by learning the associated proximity operator.
The proposed method alternated between the numerical
optimization block (i.e., the CG sub-block) and the CNN.

MoDL-QSM, which was combined with the STI model, used
the susceptibility tensor as labels. In addition, the framework
of MoDL-QSM and LPCNN was similar. The proposed
method and LPCNN both used COSMOS as labels; therefore,
we only compared the LPCNN method with the method
proposed in this paper. The use of the CG sub-block in
our approach led to more accurate enforcement of the data
consistency constraint and enabled the easy use of the forward
model, thus offering a faster cost reduction. And our results
indicate that the proposed NoQSM-net is superior to the
LPCNN.

The results in Fig. 2 Fig. 3 and the quantitativemetrics indi-
cate that NoQSM-CG was slightly superior to NoQSM-SD.
In contrast, NoQSM-CG achieves a more accurate estimation
than the LPCNN and QSMnet. The proposed method
provides a much more accurate prediction than MEDI,
which used the same CG optimization algorithm. The ROI
analysis in Fig. 4 and the multi-orientation predictions in
Fig. 5 demonstrate that NoQSM-CG matches well with the
labels. In Fig. 6, the LPCNN, NoQSM-SD, and NoQSM-CG
visibly detect the lesion regions in the MS data. However,
the results of QSMnet are more blurred than those of
the other methods. In addition, the quantitative results in
Table 1 indicate that quantitative metrics of the proposed
method were the best compared with the other methods.
In addition, we also studied the iteration number in CG
sub-block by calculating the SSIM, PSNR, NRMSE and
HFEN of different CG iteration numbers, which displayed
in Fig. 7. Considering the memory, training time and
performance, the number of CG iteration was set to 7 during
training.

This study has several limitations that can be addressed
in the future. First, the regularization term in the proposed
method can be replaced by piecewise constant susceptibil-
ity [37], total variation (TV) [50], etc.. Second, when the
iteration number was set to 2 or 3, the training time would be
increased to 110 h and 210 h. So the iteration number was set
to one in this study when considering the time costs. In the
future, the number of iterations can be increased. Finally,
the CNN block used in our method was a residual network.
We can replace the residual network with the Unet or other
networks.
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VII. CONCLUSION
We propose a network combining CNN and numerical
optimization algorithm to solve the ill-posed dipole inversion
problem in single-orientation QSM reconstruction. The
COSMOSmaps are used as labels. The proposedNoQSM-net
can improve the susceptibility quantification performance
by simultaneously using additional priors and suppressing
streaking artifacts. Our experimental results show that
reconstructed QSM images by NoQSM-net yield superior
accuracy and fewer artifacts and noise than other methods
in healthy subjects. In addition, NoQSM-net can characterize
the lesions in the MS data well.
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