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ABSTRACT In this paper, we present a novel approach that draws inspiration from the way the brain
processes sensory information, using multiple sensors to provide redundant and complementary information
that can be combined with machine learning techniques to improve accuracy and reduce noise. In particular,
we train a machine learning model to estimate ground truth signals using response data obtained from
multiple sensors exhibiting heterogeneity. After only one stage of training, our method can be applied under
various conditions.We present simulation results demonstrating the effectiveness of our approach in reducing
noise and improving accuracy in a variety of measurement scenarios. Our method achieves competitive
outcomes in comparison to theKalman filter without relying on historical data. The theoretical efficacy of our
method is elucidated by establishing a connection with parallel Gaussian channels from information theory.
Moreover, we provide estimation to the extent of performance improvement in relation to the increasing
count of sensors. Our approach has the potential to be applied to a wide range of industries and fields.

INDEX TERMS Machine learning, multi-sensor approach, neuro-inspired, parallel Gaussian channels.

I. INTRODUCTION
Accurate measurement is a fundamental aspect of various
scientific and technological endeavors, influencing fields
such as robotics [1], healthcare [2], and environmental
monitoring [3]. The presence of noise can distort signals and
compromise accuracy. Various techniques in data acquisition,
filtering, state estimation, fusion, etc. have been devised to
directly attenuate noise or estimate signals while mitigating
errors arising from noise [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15].

With the widely application of multiple sensors, how
to improve measurement performance under the complex
relation between accuracy, number of sensors and noise is
becoming important for measurement system design and
deployment. However, this remains relatively unexplored
in previous studies. While earlier works have focused on

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Pu .

FIGURE 1. Similarities between the brain and measurement system.

extracting information from sensors, they still lack the
exploration of the optimal number of sensors required to
attain specific accuracy levels, as well as the impact of
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noise on measurement performance. Although improving
measurement accuracy under independent noise distribution
with multiple identical sensors has been suggested in [16] and
[17], they are limited to homogeneous sensors, and have not
considered noise covariance of sensors.

To mitigate this gap, we propose a framework to improve
measurement accuracy and help to understand the interplay
between accuracy, the number of sensors and noise. Enlight-
ened by recent success of brain-inspired paradigms [18], [19],
[20], we draw inspiration from how the brain might work
under noise.

Here, we postulate that the high-dimensional represen-
tation formed by a large number of neurons plays an
essential role to the accuracy of the brain. And we notice
that the brain, which exhibits robustness and precision in
the face of environmental and neuronal noise [21], [22],
[23], bears similarities to measurement systems. As shown
in Figure 1, in the brain, sensory neurons receive stimuli
and transmit representations to downstream neurons, while
in measurement systems, sensors receive signal input and
convey information to data acquisition and analysis systems
[24]. Throughout the progression from input to output, noise
permeates the system. Linking the brain and measurement
system, we devise an innovative measurement approach that
integrates information from multiple sensors with machine
learning techniques to augment measurement accuracy. After
the training phase to acquire the ability to map multi-
sensor responses to estimated signals, our approach can
be effectively employed under varying noise levels and
dynamic signal properties. Notably, our method demonstrates
remarkable precision without relying on any assumption
or prior knowledge of the signal, and including additional
sensors results in continuous enhancement of measurement
accuracy.

In order to elucidate the potential improvement inmeasure-
ment accuracy through the addition of more sensors, we for-
mulate a model wherein multiple sensors are represented
as parallel Gaussian channels. Intriguingly, our findings
reveal an increase in channel capacity proportional to the
number of sensors employed, signifying that the inclusion of
more sensors facilitates the acquisition of signal information,
consequently leading to more precise estimations.

Our contribution has several folds:
• We propose a method that integrates multi-sensor
information with machine learning techniques, which
is ‘‘once trained, deploy everywhere’’. Additionally,
we provide an estimation of the reduction in mea-
surement error corresponding to the increase of sensor
count. Rigorous evaluations establish that our approach
achieves high accuracy, surpassing the performance of
optimal filtering methods like the Kalman filter, while
avoiding lag errors.

• Through empirical investigation, we elucidate the
influential role of noise correlation when incorpo-
rating additional sensors, showcasing the benefit of
negative correlation while highlighting the marginal

improvement of measurement accuracy resulted from
positive correlation.

• We explicate the theoretical linkage between the success
of multi-sensor methods and parallel Gaussian channels
in information theory.

The rest of the paper is structured as follows. Section II
provides introduction of preliminaries, followed by overall
description of methods in Section III. Section IV presents the
static and dynamic results of our method. Finally, discussion
and future work directions are stated in section V, followed
by conclusions in Section VI.

II. PRELIMINARIES
In this section, we introduce the notation and terminology
which is utilized throughout this work. Figure 2 illustrates the
process from the ground truth signal to the estimated signal.
The ground truth signal s(t) represents the signal of interest,
which varies over time t and is the target for estimation. The
M sensors measure the ground truth signal and receive input
signal

sin(t) = s(t) + ϵs(t), (1)

where ϵs(t) ∼ N (0, σ 2
s ) is the signal noise obeying a normal

distribution. The response function of each sensor i ∈ {1,M}

to input x is denoted as ri(x) and can take the linear form

ri(x) = wix + bi, (2)

where wi and bi are parameters depend on response
characteristic of i. Upon receiving input, the sensors gen-
erate an ideal response ri(sin(t)) while the sensor noise
(ϵ1(t), ϵ2(t), · · · , ϵM (t)) ∼ N (0, 6), is added to the ideal
response to create the measured response r ′

i (t) = ri(sin(t)) +

ϵi(t), which is then used to estimate the ground truth signal.
The estimated ground truth signal is denoted as ŝ(t) =

f (r ′

1(t), · · · , r ′
M (t)), where the mapping function f is learned

from N pairs of the ground truth signal and the measured
sensor response D = {((r ′

1(t), · · · , r ′
M (t)), s(t)) : t ∈

{0, · · · ,N − 1}}.

III. METHODS
To effectively implement our methodology for measurement
purposes, first we need to train a mapping combining
information from multiple sensors to provide an accurate
estimation of the ground truth signal. Once trained, our
approach can be applied to various signal and noise
conditions.

In order to train the mapping function that connects
the sensor response to the estimated signal, a systematic
procedure was followed. Initially, a ground truth signal s
was generated, comprising a total of N = 1100 data points
spanning the range from 0 to 1 with a step size of 0.1. This
ensured the presence of 100 data points at each unique value.
Subsequently, the signal noise was introduced to the ground
truth signal, resulting in the creation of the input signal sin.
The sensors then produced the measured response r′ based
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FIGURE 2. Illustration of the signal estimation process from ground truth to estimated signal.

on the input signal sin. Machine learning techniques were
employed to learn the mapping function f , which estimates
the signal ŝ from pairs of data D. In the absence of explicit
specification, linear regression was utilized as the default
mapping function f . It is important to note that during the
training process, both the signal noise and sensor noise were
maintained at minimal levels to ensure the effective learning
of f . In practical real-world applications, this requirement is
typically fulfilled through the calibration process conducted
in laboratory settings.

To denote the maximal performance any model could
achieve given the noise in the signal, we adapted the concept
of ‘‘noise ceiling’’ from the field of neuroscience [25]. The
noise ceiling here was established by conducting training
and testing procedures without the inclusion of sensor noise.
Specifically, the training phase involved utilizing pairs of the
ground truth signal s, and the ideal response r.

IV. RESULTS
A. MULTI-SENSOR MEASUREMENT ACCURACY
The measurement accuracy of different numbers of sensors
is depicted in Figure 3. Here, the sensor response functions
were either set to an identity linear form (w = 1, b =

0) for each sensor or assigned random values for the
parameters w and b, uniformly drawn from the range
of 0.8–1.2 and -0.1–0.1, respectively. The evaluation of
measurement accuracy was performed by computing the root
mean squared error (RMSE) for varying numbers of sensors,
ranging from 1 to 4. The signal noise level was fixed at
0.0001, while the sensor noise levels included a low noise
level of 0.001 and a high noise level of 0.1. The sensor noise

was assumed to be independent and exhibit the same variance,
resulting in (ϵ1(t), ϵ2(t), · · · , ϵM (t)) ∼ N (0, Iσ 2

11). To ensure
the reliability of the findings, the evaluation process was
repeated 100 times for each combination of signal noise level
and sensor noise level.

To explore the appropriate noise levels for training,
we conducted experiments comparing training and testing
under the same or different noise conditions. In the case of
training and testing on the same noise level, we employed a
5-fold cross-validation approach and calculated the validation
error on each fold. For training and testing on different noise
levels, the training was conducted on one noise level, and the
testing error was computed on the other noise level.

As shown in Figure 3, the obtained RMSE for training and
testing on the same noise level using a single sensor closely
approximates the corresponding noise level. Notably, when
training on a high noise level of 0.1, the testing accuracy
on a lower noise level of 0.001 dropped to around 0.03.
However, training on the low noise level still resulted in
testing error on the 0.1-noise level that was comparable to
training on the 0.1-noise level. Consequently, we adopted
the low sensor noise level for training to ensure consistent
performance across different noise levels.

Figure 3 highlights that the measurement accuracy
increases with number of sensors, regardless of the dif-
ferences in sensor response functions. This finding is
particularly relevant for real-world applications, as actual
sensors often exhibit similar characteristics with minor
variations. This finding aligns with the concept of neurons
displaying similar heterogeneous coding properties as in
previously studies [26], [27]. The performance improvement
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FIGURE 3. Performance with regard to sensor noise levels and response characteristics.

TABLE 1. Error analysis for different numbers of sensors with distinct response functions.

associated with distinct response functions is summarized
in Table 1. Comparison of error reduction was achieved
by employing multiple sensors in contrast to single-sensor
measurement. Empirically, employing four sensors resulted
in an approximate 50% reduction in error compared to using
a single sensor.

To explore the potential error reduction achievable by
increasing the number of sensors, we conducted experiments
with up to 64 sensors. The relationship between the number
of sensors and the corresponding error is depicted in Figure 4.
Notably, the error trend aligns well with an exponential curve
of the form y = y(1)/

√
n, where y(1) represents the error

obtained from a single sensor. This observation suggests a
connection between our proposed method and mean filters.
In the context of a signal x that remains consistent over time
and is corrupted by additive Gaussian noise Z ∼ N (0, σ 2),
employing a mean filter with a window length of n and input
Yi = x + Z (where i ∈ {1, n}), the RMSE of the mean filter
applied to x can be expressed as

y(n) =

√√√√E

(
1
n

n∑
i=1

Yi − x

)2

= σ/
√
n. (3)

FIGURE 4. Performance analysis of our method in relation to the number
of included sensors.

Given that y(1) = σ , we can derive the relationship y =

y(1)/
√
n. Consequently, mean filters can be regarded as

special cases of our proposed method, utilizing the same
sensor response function and equal weights.

B. DYNAMIC PERFORMANCE
Cosine signals were employed to assess the performance of
our method under dynamic conditions. To simulate a 50-Hz
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FIGURE 5. Performance of our method on 50-Hz cosine signals sampled at 4000Hz.

TABLE 2. Error analysis of varying number of sensors testing on cosine signals.

cosine signal commonly encountered in field applications
such as power system measurements, the signal was sampled
at a rate of 4000 samples/s with 80 samples per period to test
performance [28]. The testing results on cosine signals are
shown in Figure 5 and Table 2. When signal noise is small,
the performance is close to the results in Table 1.When signal
noise is substantial, with more sensors added, it nonetheless
approached the theoretical limits imposed by noise ceilings.

C. EFFECTS OF CORRELATION BETWEEN CHANNELS
Noise correlation in neurons has been shown to have
a significant impact on information coding [23], [29].
To empirically test the effect of noise correlation on
measurement error, we manipulated the covariance of noise
distribution, transitioning it from independent to either
positive or negative dependent. The positive noise covariance
matrix was 

1 0.8 0.8 0.8
0.8 1 0.8 0.8
0.8 0.8 1 0.8
0.8 0.8 0.8 1

 , (4)

and the negative noise covariance matrix was
1 −0.8 0 0

−0.8 1 0 0
0 0 1 0
0 0 0 1

 . (5)

It is important to note that, due to the positive semi-definite
constraint of covariance, negative correlation is present only

between the first and second sensors, while the third and
fourth sensors remain independent of the other sensors.
The findings are visually presented in Figure 7 and sum-

marized in Table 3. In cases where noise correlation between
sensors is highly positive, the addition of more sensors
does not yield substantial improvements in measurement
performance. Conversely, when negative noise correlation
exists among sensors, the presence of just two sensors
exhibiting strong negative correlation already leads to a sig-
nificant 67.2% reduction in error compared to a single-sensor
configuration. The presence of positive noise correlation
among sensors leads to concurrent noise addition to the
signal, posing a challenge for noise reduction, thus making
multiple sensors akin to a single sensor. Conversely, in the
case of negative noise correlation, noise originating from one
sensor has the potential to be counteracted by the noise from
another sensor exhibiting negative noise correlation with it.
Considering under independent noise, the error decreases
with 1/

√
n, and under negative noise correlation, two sensors

can already achieve substantial improvement, it is advisable
to employ a two-sensor configuration to strike a balance
between cost and performance in practical applications.

D. COMPARISON WITH KALMAN FILTER
Kalman filter (KF) [30] has been widely used in target
tracking, navigation systems, control systems, etc., [31], [32],
and [33]. In this study, we compared the performance of
our method with KF [30]. The evaluation was conducted on
cosine signals, as discussed in Section IV-B. All sensor inputs
to the KF were derived from the noised signal with sensor
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FIGURE 6. Performance of Kalman filter on 50-Hz cosine signals sampled at 4000Hz.

TABLE 3. Error analysis of varying number of sensors with sensor noise correlation.

FIGURE 7. Performance of our proposed method in the presence of correlated sensor noise.

noise incorporated, effectively simulating an identity function
for sensor response. The outcomes of KF are presented
in Figure 6 and summarized in Table 2. Note that due to
state estimation reducing signal noise, error lower than noise
ceilings is achieved with 3 or more sensors when signal noise
is 0.1, as shown in the right subplot of Figure 6.
Our method demonstrates superior performance compared

to the KF in scenarios where the signal noise is low. While
the KF, with its state estimation capabilities, exhibits higher
accuracy under conditions of significant noise. However,
our approach deviates from state estimation methods, such
as the KF, as it relies solely on the current measurement.
Consequently, it can avoid lag error problem, thereby leading
to enhancement in dynamic performance.

E. CONNECTION BETWEEN MULTI-SENSOR APPROACHES
AND INFORMATION THEORY
In order to elucidate the efficacy of our multi-sensor method,
we employed a modeling framework that represents the
process from ground truth signal to sensor output as parallel
Gaussian channels. Each sensor functions as an independent
channel, with the assumption that input signal noise is
negligible and the sensor response function is identity.
Figure 8 visually illustrates themodel depicting the flow from
the signal to the output of the sensors. Note that here we
only discussed single channel input so that the input for every
channel is X with a power constraint EX2

≤ P. Moreover, the
noise of different sensors Z1,Z2, · · · ,ZM is assumed to be
independent from channel to channel. Thus we have channel
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FIGURE 8. Modeling the process from ground truth signal X to sensor
response Yi , i ∈ {1, · · · , M} as parallel Gaussian channels.

output

Yi = X + Zi (6)

where i ∈ {1,M},Zi ∼ N (0, σ 2
i ). As per information theory,

the information capacity of the channel C is

C = max
EX2≤P

I (X;Y1,Y2, · · · ,YM ). (7)

Since Z1,Z2, · · · ,ZM are independent,

I (X;Y1,Y2, · · · ,YM ) ≤

M∑
i=1

1
2
log(1 +

P

σ 2
i

). (8)

Equality is achieved by X ∼ N (0,P). Consequently, with the
number of sensors increasing, more information of ground
truth signal can be acquired from output of the sensors.

V. DISCUSSION
In this study, we explored the use of multiple sensors in
improving measurement performance under noisy condi-
tions. Our approachwas inspired by the robustness of neurons
in the brain and aimed to combine machine learning with
diverse sensors to reduce measurement error. Our findings
align with previous research that has demonstrated the
benefits of using multiple sensors in various fields [34], [35].
One notable aspect of our approach is effectively reducing

measurement error without relying on prior knowledge or his-
torical measurement information. This simplicity makes our
method easily applicable and accessible. Through empirical
analysis and theoretical studies, we were able to quantify the
performance improvement achieved by adding more sensors.
Additionally, we established a connection between multiple-
sensor methods and mean filters, highlighting mean filters as
specific cases of our approach.

Interestingly, we discovered that strong negative noise
correlation between sensors can contribute to better accuracy
even with fewer sensors. This finding suggests that careful

selection and placement of sensors, taking into account noise
correlation, can further enhance measurement performance.

While our method does not incorporate historical measure-
ment information, it demonstrates competitive performance
compared to state estimation methods such as the Kalman
filter. Future research should explore the potential synergy
between our method and state estimation techniques to
achieve even stronger performance. By combining the
strengths of both approaches, we can potentially benefit
from improved accuracy and better handling of complex
measurement scenarios.

The theoretical linkage between multi-sensor methods and
parallel Gaussian channels provides insights into the infor-
mation theory aspects of the proposed approach. The study
establishes a connection between the number of sensors and
channel capacity, demonstrating that an increasing number
of sensors facilitates the acquisition of more comprehensive
signal information, leading to more precise estimations.

It is important to note that in this work, we focused
on sensors with linear response characteristics. However,
in reality, many sensors exhibit non-linear response functions.
The impact of non-linear response on measurement accuracy
warrants further investigation and discussion. Incorporating
non-linearity such as neural networks and kernel projection
into our approach could potentially improve its applicability
to a wider range of sensors and measurement scenarios.
In addition, more data points should be sampled for model
training to reduce out-of-distribution.

VI. CONCLUSION
In this paper, we have presented a novel approach to improve
measurement accuracy through the use of a neuro-inspired
multi-sensor approach integrating multi-sensor information
with machine learning techniques. By training a mapping
function using pairs of ground truth signals and measured
responses, the method effectively estimates the signal even
under varying noise levels and dynamic signal properties.
The findings indicate that increasing the number of sensors
enhances measurement accuracy, with a reduction in error of
approximately 50% when employing four sensors compared
to a single sensor.

The research elucidates the influential role of noise
correlation in the measurement process, highlighting the
beneficial impact of negative correlation and the diminishing
returns observed with positive correlation. The theoretical
linkage between multi-sensor methods and parallel Gaussian
channels provides insights into the information theory aspects
of the proposed approach, establishing a connection between
the number of sensors and channel capacity.

The integration of multi-sensor methodologies with
machine learning techniques has significant potential for
accurate measurement in various fields. The findings con-
tribute to the advancement of measurement techniques and
provide valuable insights for signal processing, robotics, and
healthcare applications. We believe that our approach has
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the potential to make a significant impact in the field of
measurement and sensing.
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