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ABSTRACT In the modern automotive industry, Advanced Driving Assistance Systems (ADAS) have
gradually become a standard feature in various types of vehicles, with the important function of detecting
road anomalies. The appearance of anomalies on the road can be attributed to unexpected situations while
driving, and the current methods for detecting distant or small anomalies are not highly accurate. Therefore,
in this paper, a method is proposed that uses semantic segmentation to extract key features from the image,
and obtaining a new synthesized image by image resynthesis. Then, segmentation uncertainty and depth
information are used to compare the differences between multiple feature maps and the input image to
highlight the anomalies. Additionally, a postprocessor is designed to use an anomaly score to enhance the
recognition of anomaly target and reduce false positives caused by noise. Experiments are conducted on the
Obstacle Track dataset and the Lost and Found dataset, and various methods for detecting anomaly objects
are compared. The experimental results demonstrate that the method proposed in this paper can effectively
detect un-common objects in the training dataset in road anomaly object detection. It improves the detection
rate and reduces the false positive rate based on previous anomaly detection methods. The proposed method
presented in this paper achieves high detection rates for both seen and unseen anomaly objects in the training
set, which enhances the generalization ability of anomaly detection in the road area of interest.

INDEX TERMS ADAS, depth information, image resynthesis, postprocessor, semantic segmentation.

I. INTRODUCTION
With the increasing number of cars on the road, the need
for safe driving has become crucial [1]. Advanced Driving
Assistance System (ADAS) has emerged as a mainstream
direction in the development of automotive safety [2]. Its
main task is to detect road anomaly objects and provide timely
feedback to prevent accidents. The anomaly objects here refer
to objects that are uncommon and complex in shape [3], [4]
in the road environment, so detecting anomaly objects on the
road is a difficult task. Deep learning is currently a commonly
used method for complex object detection tasks. However,
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existing networks are mainly trained to identify targets by
known categories, and it is difficult to detect anomaly objects
outside the existing categories in the dataset. This will cause
the generalization of the perception system to deteriorate,
making the system unable to accurately identify anomaly
targets appearing on the road, which is a very dangerous
situation. Therefore, finding an effective method to improve
the detection rate of anomaly targets in ADAS is a major
challenge.

Traditional semantic segmentation techniques, exempli-
fied by state-of-the-art PSPNet [5] and DeepLabv3+ [6],
exhibit remarkable performance when applied to image
datasets with known classes, producing highly accurate
segmentation results. However, when encountering certain
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anomaly objects such as cargo dropped from a vehicle in front
or rocks unexpectedly standing in the middle of the road,
these models may confuse anomaly objects with the environ-
ment and failing to recognize them as anomaly. This can have
fatal consequences in autonomous driving scenarios, where
failure to identify anomaly objects may lead to collisions with
such objects. In light of this, this paper explores two existing
methods to develop a novel anomaly detection model. The
first method involves lever-aging uncertainty estimation [7],
[8] and depth input [9], [10] to detect anomalies, collectively
referred to as assistant methods. The uncertainty estimation
method differs from semantic segmentation in its inclination
to predict low-confidence scenarios as anomalies, thereby
estimating higher uncertainty of unknown classes in images.
However, this method is prone to interference from unknown
noise, resulting in a relatively high false positive rate. The
depth input method extracts features from the depth map and
performs feature fusion with the original image, highlight-
ing geometric elements in the scene and providing richer
semantic information. However, this method still lacks the
ability to accurately distinguish between known classes and
anomalies. The second method involves resynthesizing a new
input image from the semantic map predicted by the seg-
mentation network, and detecting anomalies by analyz-ing
the feature differences among the original input image, the
predicted semantic map, and the synthesized image [11].
This method exhibits a high extraction effect when dealing
with objects outside the network’s training classification but
introduces a problem that cannot be ignored. This model is
overconfident in predicting features beyond the network’s
training classification, which results in a consid-erable impact
of unknown noise on the model’s prediction results. The
model treats unknown noise as an anomaly target for feature
extraction, which does not represent the anomaly difference
between the input image and the syn-thetic image desired and
renders the comparison more complicated.

In this paper, a novel anomaly object detection method
is proposed, which combines the assistant method and the
resynthesis method to achieve more accurate detection of
anomaly objects and reduce the impact of unknown noise
on the difference comparison. The proposed method is
demonstrated through experiments, and it is found that the
fusion of the assistant method and the resynthesis method
can effectively improve the detection effect. Moreover, the
two methods complement each other to solve as many
anomaly scenarios as possible. Furthermore, a postproces-
sor is proposed in this paper to enhance the localization
of road anomalies. This module uses a linear clustering
meth-od to segment road images into superpixels and cal-
culates the anomaly score of each superpixel to more
accurately locate the anomalies on the road. By design-
ing the calcula-tion formula of the anomaly score, the
module can better distinguish anomalies on the road from
other irrelevant objects, thereby reducing the occurrence of
false positives. The main contributions of this paper are as
follows:

1) A novel anomaly detection method is proposed. Tra-
ditional segmentation methods are unable to detect objects
outside the distribution of the training set, and thus are inad-
equate for anomaly detection. To overcome this limitation,
our approach leverages the complementary nature of assistant
and resynthesis methods tomitigate the influence of unknown
noise during the comparison of dis-similarity networks. This
targeted approach to difference detection results in more
effective detection of anomaly objects.

2) A postprocessor is proposed. This method performs
superpixel segmentation on the anomaly detection map out-
put by the anomaly detection model, and outputs an anomaly
score map to strengthen the positioning of anomaly objects in
the input image. By designing the anomaly scoring formula,
it paysmore attention to the anomalies on the road, and tries to
ignore the anomalies in other scenes to reduce false positives.

II. RELATED WORK
During the early stages of the development of autonomous
driving technology, sample division of known datasets was
used for feature extraction and classification. Shallow classi-
fiers were then utilized to learn artificial features, enabling the
detection and identification of anomaly objects on the road.
However, the limitations of detection-intensive and classi-
fication capabilities of such methods of shallow classifiers
have rendered them unable to meet the current requirements
for road anomaly objects detection tasks. In recent years,
detection methods based on deep learning have witnessed
a significant advancement. Convolution Neural Network
(CNN) has been found to have a strong ability to extract
features and has been able to complete the required classifica-
tion tasks by learning a large amount of data. Consequently,
deep learning has emerged as a powerful tool, which has been
applied to the field of road anomaly objects detection with
remarkable success.

A. SEMANTIC SEGMENTATION
Semantic segmentation algorithms are often used in the field
of image detection and classification, which can make dense
predictions for each pixel, thereby achieving pixel-by-pixel
category labeling. As the earliest representative of semantic
segmentation, FCN [12] (Full Convolutional Network) has
the advantage that it is not affected by the size of the input
image, and replaces the fully connected layer in the network
structure with a skip layer and a deconvolution layer. In this
way, the pixel-level segmentation of the image is realized.
SegNet [13] was proposed in 2015 based on FCN. SegNet
utilizes the first 13 layers of the VGG16 convolutional net-
work as an encoder, each encoder layer corresponds to the
decoder layer one by one, and the decoder’s outputs are
processed by the softmax classifier, and finally independently
generates class probabilities for each pixel. Paszke et al. [14]
proposed Enet, a real-time deep neural network that preserves
segmentation accuracy, reduces parameter quantity, and
improves operating speed, making it applicable to embedded
devices. In 2018, Chen et al. [6] proposed the DeeplabV3+
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segmentation model, which combines the encoding-decoding
structure with ASPP, and introduces dilated convolution to
expand the receptive field of the model, thereby enhancing
the ability of the model to segment targets of different sizes.
Valdez-Rodríguez et al. [15] combined the advantages of
semantic segmentation to obtain local information with the
depth estimation method, and used a mixed dataset for train-
ing. A 2D-3D hybrid CNN network is proposed, which can
estimate the depth of a single image and segment the objects
found in it. A method proposed by Wang et al. [16] inte-
grates different visual features with semantic segmentation.
In their work, a transformed disparity image is introduced,
which makes the values of the drivable region similar, while
highlighting the significant differences between the drivable
region and road anomalies/damage. This aids in distinguish-
ing between the drivable area and road anomalies. However,
in order for the semantic segmentation model to recognize all
categories during testing, the model must have encountered
these categories during training. This is obviously unrealistic
in some complex scenes, such as anomaly objects that sud-
denly appear in road traffic scenes. These anomaly objects,
since they have not appeared during model training, are likely
to be predicted as known categories or not predicted at all,
which would be fatal for autonomous driving scenarios.

B. UNCERTAINTY ESTIMATION
With the increasing focus on anomaly object detection
in scenes, there has been a growing interest in reason-
ing about uncertainty in neural networks among scholars.
Uncertainty in neural networks can be measured using prob-
abilities from a softmax distribution, and samples can be
classified as out-of-distribution using simple statistics, as pro-
posed by Hendrycks et al. [17]. In practical applications,
dropout [18] is a common approximate Bayesian inference
method [19], which has been widely used in the field of
semantic segmentation, such as in Bayesian SegNet [20]
and its extension work [8]. Isobe [21] combined uncertainty
thresholds with Bayesian SegNet to distinguish erroneous
regions in a scene. However, this approach often yields
high uncertainty estimates at object boundaries, as it cannot
definitively assign any label to the object, thereby failing to
predict the expected anomaly objects. The problem of target
object boundary in anomaly objects detection was solved
by Mukhoti et al. [22], who used a Bayesian neural net-
work with MC dropout to estimate the uncertainty of pixels.
They distinguished between accidental and cognitive uncer-
tainty, but pixel-level detection of anomaly target objects
is not accurate as a whole. Rottmann et al. [23] predicted
some possible regions of high error by aggregating different
discrete measures, such as the differ-ence in entropy and
softmax probability. This alleviated the problem of predict-
ing object boundaries. Oberdiek et al. [24] demonstrated
that visual feature differences can be exploited to identify
anomalies in high-error regions by detecting and retrieving
objects that are not within the distribution of the training

set in semantic segmentation. Vojíř et al. [31] achieved good
performance using a unique autoencoder-like architecture,
image conditional distance features, and drawing modules.
Gudovskiy et al. [32] adopt a standard flow framework to
improve the robustness of semantic segmentation models in
real data environments with distribution shifts and outliers.
Simultaneous intradistribution misclassification (IDM) and
outlier class detection are then implemented via energy input
to achieve a low-complexity 2D architecture without the need
for tedious retraining of pre-trained semantic segmentation
models. Despite these advancements, accurately localizing
anomalies remains a challenge, resulting in many false posi-
tive predictions. As a result, such methods are often prone to
failure in road anomaly detection tasks.

C. DISSIMILARITYT DETECTION
At present, there is a new idea to detect anomaly objects
in the scene. The input image is resynthesized by synthe-
sis model. There will be an anomaly appearance difference
between the resynthesized image and the input image, so the
anomaly appearance difference can be used to locate the
anomaly objects. In early work, autoencoders were generally
used to resynthesize images [25], but the quality of resyn-
thesized images by this method was poor. A reconstruction
module was proposed by Vojir et al. [26] to identify and
reconstruct road surfaces. In their work, the reconstruction
module generates reconstruction errors and is coupled with
semantic segmentation using trainable coupling blocks. This
integration incorporates information from known classes and
generates the final per-pixel anomaly scores for anomaly
identification. With the rise of generative adversarial net-
works, new methods [27], [28], [29], [30] have utilized these
networks to create new input images based on the semantic
feature maps generated by the semantic segmentation model,
making better use of the feature differences between input
images and synthesized images. The advantage of dissimi-
larity network methods lies in not excessively relying on the
segmentation quality of the segmentation network. The work
in this paper proves that feeding uncertainty information and
depth information as attention to the dissimilarity network
can improve the detection effect of the model on anomaly
objects in the scene.

III. METHODOLOGY
This paper presents a deep learning framework for detecting
road anomaly objects. Initially, the image is processed for
semantic segmentation, analyzed and calculated through a
segmentation network, resulting in three output maps, includ-
ing a semantic map and two uncertainty maps. The predicted
semantic map is fed into the synthesis network, which gen-
erates a map that is highly similar to it. By calculating the
feature differences between the generated image and the
input image, the perceptual difference can be determined.
To enhance the detection capabilities of the model, a new
depth image is introduced and the RGB-D [9] network is
employed to extract the features of the input image and depth
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FIGURE 1. Flow chart of the method.

image separately. The channel attention mechanism is then
applied to process the feature maps of the two branches,
which are fused into new feature maps. Subsequently, the
dissimilarity network trains on all predicted and input images,
the anomaly prediction map is obtained. Finally, the anomaly
map of each local region is sharpened by a postprocessor,
and an anomaly score map is output. The flowchart of our
proposed method is shown in Figure 1.

A. ANOMALY DETECTION MODULE
The road anomaly object detection module operates by seg-
menting the input image, the resulting semantic map is sent to
a synthesis network for resynthesis, and using a dissimilarity
network to compare the input image with the synthesized
image to detect anomalies. On this basis, this paper incor-
porates new depth maps and improved uncertainty maps as
assistant maps to enhance the module’s ability to detect road
anomalies. The module consists of four submodules, namely,
the segmentation module, synthesis module, depth module,
and dissimilarity module.

1) SEGMENTATION MODULE
The input image is fed into the segmentation network [6]
to acquire the semantic map in the segmentation module.
In addition to the semantic map, two dispersion measure-
ments are also calculated to quantify the uncertainty in the
semantic map predictions. The two dispersion measurements
are the softmax entropy U and the softmax distance D (i.e.,
the difference between the two largest softmax values), which

have been demonstrated to be effective in understanding
errors within segmentation in the literature [23]. To calculate
these measurements for each pixel x, the following equations
are utilized:

Ux = −

∑
c∈classes

p(c)log2p(c) (1)

Dx = 1 − max
c∈classes

p(c) + max
c′∈classes\(argmaxc p(c))

p(c′) (2)

Among them, p(c) is the softmax probability of class c.
Normalize both quantities to [0, 1].

2) SYNTHESIS MODULE
The synthesis module has the capability to generate a realistic
image by taking a semantic mapping as input, where there
exists pixels to pixels correspondence. In order to achieve
this, the module is trained with a conditional generative
adversarial network (cGAN) [33], [34] so that the semantic
distribution of the input images can be effectively matched to
the distribution of the generated images. The GAN network
has achieved impressive progress in generating realistic urban
scenes. However, the semantic map generated by the network
misses essential color and appearance information, resulting
in the inability to perfectly restore the image in terms of these
features. Thus it can be compared pixel by pixel. To address
this limitation, a perceptual loss method was proposed in [29]
that compares objects by computing the perceptual difference
between the original image and the synthesized image, rather
than relying on low-level features such as color and texture.
This method utilizes ImageNet pretrained VGG as a feature
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extractor, extracts features from it and finds the pixel with
the largest feature difference. By detecting anomaly objects
or misclassifications, erroneous feature representations of
synthesized images can be identified. Perceptual differences
should therefore be more sensitive to these differences. For
each pixel x of the input image and the corresponding pixel r
of the synthesized image, the perceptual loss is computed as
follows:

L(x, r) =

4∑
i=1

∥∥∥F (i)(x) − F (i)(r)
∥∥∥
1

(3)

Among them, F (i) is the output of the i-th feature layer of the
VGG network. Kamoi et al. [35] found that the performance
of the dissimilarity network to detect anomaly objects is
related to the selection of feature layers, and deeper feature
layers may lose anomaly objects. Therefore, this paper selects
the output of the first 4 layers of feature layers, and normal-
izes this dispersion measurements to [0, 1].
The semantic mapping of anomaly objects often contains

ambiguity, which results in significant differences between
the resynthesized image from the semantic mapping and the
input image. To quantify this ambiguity, we use softmax
entropy U as a measurement, while perceptual loss L is used
to measure appearance difference. By multiplying these two
measurements, an anomaly map A with deep features can be
generated.

A = U ⊗ L (4)

3) DEPTH MODULE
The depth module leverages both the appearance information
of the RGB image and the position and contour information of
the depthmap as its input. The feature extraction is performed
using ResNet-18 [36] as the backbone network, as shown
in Figure 2. Two branches are utilized to extract the input
image’s features, one for the RGB image branch and the other
for the depth image branch. Attention Feature Complemen-
tary (AFC) module [9] is applied to fuse the features of these
two branches at each layer of ResNet-18. Finally, the spatial
feature pyramid pooling (SPP) module is utilized to generate
multiscale feature maps with detailed information, which are
then restored to their original resolution via upsampling.

The mentioned structure yields two feature maps, namely
the RGB branch feature map Oin = [Oin1, · · · ,OinC ] ∈

RC×H×W and the depth input branch feature map Din =

[Din1, · · · ,DinC ] ∈ RC×H×W . Two channel attention mech-
anism modules are introduced in the AFC module to process
the feature maps of the two branches respectively. It pro-
cesses the feature map as a channel descriptor using global
average pooling, adds a 1 × 1 convolutional layer with the
same channel for full connection, and the convolution result
is activated through the sigmoid function. The value of the
weight matrix is then limited between 0 and 1. After obtaining
the attention weight matrix of the two branches, the outer
product is performed with the corresponding input feature

FIGURE 2. RGB-D network structure diagram.

map. The results of the two branches are added to obtain the
final fusion feature map F ∈ RC×H×W , expressed as follows:

F = Oin ⊗ σ1[φ1(Oin)] + Din ⊗ σ2[φ2(Din)] (5)

Among them,⊗ represents the outer product, φ represents the
calculation of global average pooling and 1 × 1 convolution,
and σ represents the sigmoid function. By introducing the
channel attention mechanism in both the RGB input branch
and the depth input branch, the feature maps containing more
informative features can obtain higher weight values. This
allows the basic segmentationmethod to take advantage of the
additional information provided by the depth map, thereby
improving the accuracy of segmentation. The integration of
depth information is notebly helpful in dissimilarity net-
works.

4) DISSIMILARITY MODULE
This module employs a variety of input features to predict
anomaly segmentationmaps. These input features encompass
original images, synthesized image, semantic images with
depth input, semantic images, as well as uncertainty maps
(e.g. softmax distances and anomaly maps) computed by the
segmentation network. By utilizing a dissimilarity network,
these features can be effectively integrated and leveraged to
enhance the predictive performance of anomaly segmentation
maps. The network structure is shown in Figure 3.

The dissimilarity module comprises two encoder modules,
one fusion module, and three decoder modules. The first
decoder shares the same structure as VGG16, with three
max-pooling layers that output a feature map after each layer.
These feature maps are combined with the final feature map
outputted by the encoder, resulting in a total of four feature
maps. The encoder shares the weight used for encoding the
original input image and the synthesized image. On the other
hand, the second encoder consists of a 7 × 7 convolutional
layer and three 3×3 convolutional layers, a featuremap is out-
put after each convolutional layer. This encoder is employed
to encode original semantic information, deep input seman-
tic information, and uncertainty information, with different
weights used to encode these three types of information. The
fusion module connects the feature maps of the input image,
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FIGURE 3. Dissimilarity module network structure.

synthesized image, semantic image, and deep input semantic
image at different resolutions. It employs a 1 × 1 convolu-
tional layer to fully connect the feature maps and outputs
a feature map at each resolution. Finally, the result map of
the 1 × 1 convolution is correlated point-by-point with the
above discrete feature map. Four decoders are used in the
dissimilarity network. The first and second decoders have the
same structure, consisting of two 3 × 3 convolutional layers
with the same number of filters, two SPADE normalized
SELU layers, and a 2×2 transposed convolutional layer. The
third encoder has two 3×3 convolutional layers with different
numbers of filters, two SPADE normalized SELU layers, and
a 2 × 2 transposed convolutional layer. The fourth encoder
comprises two 3×3 convolutional layers with different num-
bers of filters, two SPADE normalized SELU layers, and a
1 × 1 transposed convolutional layer. The lowest resolution
feature map is obtained by the first encoder, while the feature
map of the fusion module is obtained by the second encoder.
The output is then formed by concatenating the results from
the first encoder with the feature map from the fusionmodule.
This process continues for subsequent encoders.

B. POSTPROCESSOR
Through the utilization of dissimilarity networks for predic-
tion, the model is now capable of accomplishing the local-
ization of anomaly objects to a significant extent. However,
due to limitations in the performance of the segmentation and
synthesis networks, the dissimilarity network is highly sus-
ceptible to unnecessary noise interference when dealing with
the feature disparities between the original and synthesized
images. Consequently, these noises are erroneously identified
as anomaly objects by the anomaly detection module, thereby
elevating the false positive rate of the model’s predictions.
Consequently, the introduction of a Postprocessor is deemed
necessary. The refinement of anomaly object localization
is accomplished by the postprocessor. The anomaly pre-
diction map is subjected to segmentation into superpixels,
effectively capturing the spatial structure of anomalies. Sub-
sequently, anomaly scores are assigned to each superpixel,

FIGURE 4. Superpixel segmentation results: (a) Anomaly prediction map;
(b) Superpixel segmentation image.

leveraging their unique characteristics and anomaly predic-
tion information. The outcome is an anomaly score map.
The postprocessor is composed of a superpixel segmentation
module and an anomaly score calculation module.

1) SUPERPIXEL SEGMENTATION
Superpixel segmentation technique can classify pixels with
adjacent positions and similar features such as color, texture,
and brightness into small regions, which can be used to
process images. It can also highlight object boundaries and
improve the segmentation accuracy of smaller pixel regions in
images. The implementation involves transforming the image
into the CIELAB color space and combining the color value
and position information of each pixel into a 5-dimensional
vector. Based on the clustering approach, a set of seed points
can be generated, and the pixels closest to each seed point
can be grouped together until all pixels are classified. Then,
the average vector value of each superpixel is calculated to
obtain a new set of clustering centers, and the neighboring
pixels are searched again until the final convergence. The
anomaly prediction map output by the dissimilarity network
is shown in Figure 4(a), while the corresponding superpixel
segmentation image is shown in Figure 4(b). As shown in
Figure 4(b), the scene is divided into many grids after super-
pixel segmentation, and the object boundaries in the scene
are clearly distinguished, reducing the processing range and
using more refined features for subsequent processing. The
superpixel segmentation process is shown in Algorithm 1.

2) ANOMALY SCORE CALCULATION
In this paper, a novel anomaly score calculation method was
proposed. Thismethod takes the anomaly prediction output of
dissimilarity network as input. Based on this input, we define
the anomaly object’s score in the i-th superpixel as follows:

Si = αipj
∑
j

nj exp(−
r2i,j
2ω2 ) (6)

Among them, αi is the average of the anomaly scores in the j-
th superpixel, ri,j is the Euclidean distance between the center
position of the i-th superpixel and the center position of the
j-th superpixel, ω is the median of the Euclidean distances
between the center positions of each pair of superpixels. The
final score is normalized to [0, 1]. Then, by setting a thresh-
old, the calculated value Si is compared to the threshold,
and the region exceeding the threshold is recognized as the
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Algorithm 1 Superpixel Segmentation
Input: k: The number of desired clusters; S: The reglar grid
step size
Output: I : A segmented image

/∗ Initialization ∗/
Initialize cluster centers Ck = [rk , gk , bk , xk , yk ]T by sam-
pling pixels at regular grid steps S.
Move cluster centers to the lowest gradient position in a 3 ×

3 neighborhood.
Set label r(i) = −1 for each pixel i.
Set distance d(i) = ∞ for each pixel i.
repeat

/∗ Assignment ∗/
for each cluster center Ck do
for each pixel i in a 2S × 2S region around Ck

do
Compute the distance D between Ck and i.
if D < d(i) then
set d(i) = D
set r(i) = k

end if
end for

end for
/∗ Update ∗/
Compute new cluster centers.
Compute residual error E .

Until E ≤ threshold
Output the segmented image I .

FIGURE 5. Anomaly scoring results: (a) Anomaly prediction map;
(b) Anomaly score map.

region containing anomaly objects. Inspired by the obstacle
scoringmethod in [37], the anomaly score calculationmethod
above was designed in this paper to focus more on anomaly
objects in the road. By assigning higher scores to these
anomaly objects, more reasonable anomaly scoring results
can be obtained, as shown in Figure 5. The anomaly scoring
calculation method is shown in Algorithm 2.

IV. EXPERIMENTS AND SYSTEM EVALUATION
A. EXPERIMENTAL ENVIRONMENT AND
PARAMETER SETTINGS
The experiment in this paper is based on the deep learn-
ing framework Pytorch, and the programming language is
python3.8, the operating system is Windows11. In terms
of experimental hardware, the CPU is Intel(R) Core(TM)
i9-12900KF CPU @ 3.19GHz, the memory space is 128GB,

Algorithm 2 Anomaly Score Calculation
Input: img: Original input image; superpixel: Superpixel
blocks after image segmentation; Si: Anomaly calculation
score
Output:superpixels: Array of superpixel blocks;
anomaly_score: Anomaly score value for each superpixel
block; anomaly_scores: Array of anomaly scoring results for
each superpixel block

Segment the img with superpixels, and return the segmented
array of superpixel blocks.
superpixels = perform_superpixel_segmentation(img)
for each superpixelinsuperpixels do
ifsuperpixel contains anomaly objects then
anomaly_score = calculate_anomaly_score(Si_h)

else
anomaly_score = calculate_anomaly_score(Si_l)

end if
Add anomaly_score to anomaly_scores array.

end for
return anomaly_scores

the GPU is Nvidia Geforce RTX 3090, the video memory
is 24GB, and the CUDA version is 11.3. The final anomaly
score threshold was set at 0.5. During training, the Batch
Size is 8, and the initial learning rate of the network is set to
0.0001. If there is no change in a certain index for more than
10 rounds, the learning rate is reduced. The Total Iteration
is 50, and the network optimization method uses Adam,
the momentum is 0.9, and the Cross Entropy Loss is used.
During the training process and comparative experiments, the
pre-trained model trained by the processed Lost and Found
was used, and the mean and standard deviation values of
ImageNet were used to normalize the training images to
ensure the consistency of the experiment. And the training
images are augmented by flipping around the vertical axis.

B. DATASETS AND PREPROCESSING
The dissimilarity module was trained using the Cityscapes
dataset [38], evaluated by the FS Lost and Found dataset [39]
from the Fishyscapes dataset, and used the Lost and Found
dataset [40] and Obstacle Track dataset [41] as the testing
dataset. As mentioned in the introduction, all objects that do
not belong to the training class can be regarded as anomaly
classes. Before training, the Cityscapes dataset needs to be
preprocessed to obtain the original semantic map, synthetic
map, Softmax distance map, and anomaly map, which are
then jointly input to the dissimilarity module with the original
input map and deep semantic images for training. In this
paper, all void classes in the Cityscapes dataset are marked as
255 as anomalies. This method can cover any object that does
not belong to the training class, which solves the problem
of insufficient training data coverage scenarios. The area
covered by void belongs to the anomaly area, which can be
matched with high-uncertainty pixels, thereby guiding the
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FIGURE 6. Dataset example: (a) Cityscapes; (b) FS lost and found; (c) Lost
and found; (d) Obstacle track.

dissimilarity network to make full use of uncertainty infor-
mation, so as to train a more robust anomaly detection model,
but at the same time lose the advantage of not requiring OoD
data during training. Nevertheless, the model still has good
generalization and robustness to the detection of anomaly
objects.

The FS Lost and Found dataset contains about 100 scene
images taken from different streets with pixel-level semantic
annotations of roads and anomaly objects. The Lost and
Found dataset contains about 1023 images from various street
scenes with pixel-level semantic annotations. The Obstacle
Track dataset has 442 obstacle images with the road as the
region of interest, and has pixel-level semantic annotations of
anomaly, not anomaly and void classes (neither not anomaly
nor anomaly). The Cityscapes dataset has 5950 images of
driving scenes taken from different cities, which contains
numerous categories, and provides corresponding semantic
annotations. Examples of the four datasets are shown in
Figure 6.

C. EVALUATION CRITERIA
This paper use pixel-level criteria to evaluation, where AP
(Average Precision) is the pixel-level detection rate, the spe-
cific formula is as follows:

AP =

n−1∑
i=1

(ri+1 − ri) max ρ(r ′)
r ′≥ri+1

(7)

Among them, ri is the recall rate value corresponding to the
first interpolation point of the precision rate interpolation
section, and ρ(r ′) represents the precision rate value when
the recall rate is r ′.

FPR (false positives rate) is the pixel-level false positive
rate, the specific formula is as follows:

FPR =
FP

FP+ TN
(8)

Among them, FP represents the number of pixels wrongly
detected as anomaly objects, and TN represents the number
of pixels predicted as nonanomaly objects.

D. ANALYSIS OF EXPERIMENTAL RESULTS
The road anomaly objects detection framework proposed in
this paper focuses on detecting various anomaly objects that
appear within the road range. We use Cityscapes, a conven-
tional road object classification scene dataset, as the basic
training set, and the Lost and Found dataset and Obstacle
Track dataset as the test set, which fully meets the purpose
we want to achieve. The environmental scene categories we
used for the test set are the same or similar to the training
set, but the test set contains a large number of anomalous
object categories not seen in the training set, so that we can
use them to evaluate our method. The main body of the
method in this paper is the anomaly detection module in
part A of the third section. The dissimilarity network learns
pixel-to-pixel comparison features during training, the model
considers all pixel categories of the input image, so that we
can Output an anomaly prediction map at the pixel level,
as shown in Figure 4(a). But considering our task goals and
the labels of Ground Truth in the test dataset, we only evaluate
the pixel scene within the road range without considering
pixels outside the road, which is consistent with the driving
scene. Because in autonomous driving or driver assistance
systems, the primary objective is to safely operate the vehicle,
focusing attention on detecting anomaly objects within the
road area directly serves the task goal and contributes to
enhancing system performance. Additionally, concentrating
attention within the road area reduces the complexity of infor-
mation processing, leading to a reduction in computational
and decision-making burdens, thereby facilitating more effi-
cient execution of driving tasks. Therefore, after the anomaly
prediction map is processed by the postprocessor, it will
focus more on the situation within the road range. We also
uniformly evaluate the effectiveness of different methods
in detecting anomaly objects (i.e. OoD objects) within the
road range to verify the effectiveness of our method. In our
opinion, this is logically consistent with the driving scenario.

In order to evaluate the detection effect of the detection
method MMF (Multiple Mechanism Fusion) in this paper on
road anomaly objects, the method in this paper is compared
with the following seven methods: 1) DeeplabV3+ [6]: it is a
method that utilizes the encoding-decoding structure and the
dilated Convolution to enhance the feature extraction effect
on objects of different sizes; 2) Resynthesis [27]: This is
a method of detecting anomalies by comparing the differ-
ences between the input image, the semantic segmentation
image, and the generated image through the dissimilarity
network; 3) Softmax Entropy [17]: It is a baselinemethod that

28376 VOLUME 12, 2024



W. Ci et al.: Novel Method for Road Anomaly Objects Detection in the Traffic Environment

TABLE 1. Performance metrics comparison of the eight detection methods.

measures uncertainty from the predicted softmax distribution
and classifies samples as out-of-distribution samples through
simple statistics. 4) Road Inpainting [30]: In this approach,
the road drivable areas are first patched entirely, and then
a dissimilarity network is utilized to identify the discrep-
ancies between the original image and the patched image,
thereby indicating the presence of anomaly objects that have
been erased by the patches. 5) JSRNet [26]: This method
employs a reconstruction module to identify and recon-
struct road surfaces. The reconstruction module generates
reconstruction errors, which are then coupled with semantic
segmentation using trainable coupling blocks. This integra-
tion combines information from known classes and generates
the final per-pixel anomaly scores for anomaly detection.
6) DaCUP [31]: This paper presents DaCUP, an anomaly
detection method for autonomous driving. By employing
a unique autoencoder-like architecture, image-conditioned
distance features, and an inpainting module, and achieves
well performance. However, it has limitations in detecting
small and distant objects. 7) FlowEneDet [32]: This paper
adopts a normal flow framework for improving the robust-
ness of semantic segmentation models in real-world data
settings with distribution shifts and outlier classes. It per-
forms intradistribution misclassification (IDM) and outlier
category detection simultaneously, and then implements a
low-complexity 2D architecture through energy input, with-
out the need for cumbersome retraining of the pre-trained
semantic segmentation model.

Table 1 shows the performance metrics of MMF and
the five above methods on Lost and Found and Obstacle
Track datasets. During evaluation, the road area was par-
titioned into the region of interest (ROI), hence only the
evaluation results within the ROI were considered, which
aligns with normal driving routes. The results in the table
demonstrate that MMF exhibits the best comprehensive per-
formance among all six methods. Notably, only MMF and
DeeplabV3+ utilized additional OoD data during training.
However, MMF still exhibits strong generalization. Firstly,
it can be observed that DeeplabV3+ performs poorly on both
datasets, with very low AP scores and high false positives.

During DeeplabV3+ training, an additional class was added
to the Cityscapes dataset as an anomaly class, which partic-
ipated in the training of this method. The evaluation results
indicate that this approach is ineffective. Resynthesis is an
earlier method that uses the difference between synthesized
and original image feature to detect anomalies. The evalu-
ation results demonstrate that this approach is effective for
detecting anomaly objects. In the early framework, a ran-
dom class is used to replace a randomly selected instance
class from the ground truth semantic map in this method,
then synthesized a new image using the replaced semantic
map to compare the difference between the synthesized and
original images. However, this approach has poor robustness
and cannot cover too many anomaly situations, resulting in
poor performance metrics. Resynthesis method was trained
using the Cityscapes dataset, which contains OoD data.
The results indicate that the performance improvement is
limited. Softmax Entropy performed well on both datasets,
but its performance metrics were still poorer than MMF.
This is because single uncertainty estimates cannot solve
boundary problems, resulting in a high false positive rate.
The Road Inpainting method also employs the generation
of new images and utilizes a dissimilarity network to detect
anomalies by comparing the features between the original
and reconstructed images. The evaluation results indicate
that this method achieves relatively high AP scores on both
datasets, particularly outperforming others on the Lost and
Found dataset. However, it is expected that this method
exhibits high false positive rates on both datasets. This is not
surprising since similar to Resynthesis, these methods lack
constraints when detecting differences between the original
and reconstructed images, making them more susceptible to
noise interference and resulting in a higher number of false
positives. JSRNet demonstrates good performance on both
datasets, with relatively low false positive rates. However,
it ranks fifth in terms of AP among the six methods. This
method employs a network similar to an auto-encoder to
learn the discriminative reconstruction of RGB values for
road pixels. The major drawback of auto-encoder methods
is the simplistic bottleneck that fails to effectively utilize the
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TABLE 2. Abalation experiments.

training data. This limitation hinders the network’s ability
to learn relevant features, resulting in decreased accuracy.
DaCUP performed well in the AP index in the two data sets,
ranking third among all comparison methods, but the false
positive rate was high. This method does not use lateral skip
connected low-resolution features in the upsampling process.
This may cause the model to have difficulty in recovering
the details of small targets, thereby affecting detection per-
formance and leading to an increase in the false positive rate.
FlowEneDet performs equally well on both data sets, with
high accuracy and ranks second in AP index among all meth-
ods, but its false positive rate is high. This paper addresses
the challenges of distribution shifts and outlier classes, where
models may be more prone to false positives. Distribution
shifts may cause the model to fail to accurately generalize
to new data distributions when tested, thereby increasing
misclassification of normal samples. The mean F1 scores for
each comparative method were also analyzed, revealing that
MMF consistently achieves the highest mean F1 scores on
both datasets. This suggests that the MMF method strikes
a good balance in anomaly detection tasks and accurately
identifies anomaly objects. Overall, MMF demonstrates the
best comprehensive performance on both datasets. Given that
the objective of this paper is to iden-tify road anomalies, the
goal of our work is to obtain conservative results, meaning
higher recognition accuracy w-hile maintaining a low false
positive rate. So, MMF has the best performance metrics
on both datasets, primarily because the assistant methods
proposed in MMF complement the dissimilarity network
very well. The uncertainty estimates and depth information
provided features that complement the dissimilarity network,
enhancing the network’s ability to locate anomaly objects and
improving detection performance. Furthermore, the postpro-
cessor method further reduces false positives generated by
network predictions, enhancing the robustness of the dissimi-
larity network. Compared with detection methods that do not
use OoD data, the method in this paper not only improves the
detection rate but also maintains good generalization.

Table 2 shows the ablation experimental results of the
method in this paper, which shows the influence and con-
tribution of each module in the MMF method to the overall
method. The results show that the framework performs
extremely poorly on both datasets without the assistant maps
and postprocessor, with AP metrics of only 28.29% and

31.11%, and FPR95 metrics of 15.24% and 16.03%, respec-
tively. Such low detection rates and false positive rates can
be fatal in practical tasks. The addition of assistant maps and
postprocessor proposed in MMF has significantly improved
the framework. The AP metrics of assistant maps on the two
datasets have been greatly improved. This also proves that
the feature information between assistant maps and resyn-
thesis methods is complementary, so adding assistant maps
can make the framework achieve better performance. At the
same time, it can be seen that adding assistant maps does not
significantly improve the FPR95 index. This is expected, as it
is a drawback of the uncertainty and depth maps in assistant
maps themselves, and the dissimilarity network will learn
more irrelevant feature differences. The assistant maps did
not help the improvement of false positives very well.

Therefore, postprocessor is proposed in the MMF method
to solve this problem. The results of the postprocessor on
both datasets show a considerable improvement in the FPR95
metric, whereas its contribution to the APmetric is lower than
that of the assistant maps. This is attributed to the anomaly
scoring mechanism of the postprocessor. Postprocessor seg-
ments the predicted scenes into superpixel blocks and assigns
an anomaly score to each block to filter the anomalous objects
based on the set threshold. However, some irrelevant features
learned in the dissimilarity network tend to get relatively low
anomaly scores, so it is easy to ignore these irrelevant regions
with low scores, thereby reducing false positives. As shown
in Table 2, when all modules are integrated into the frame-
work, MMF obtains higher detection rate and lower false
positive rate, which is in line with expectations. Both assistant
maps and postprocessor make contributions to the frame-
work. Assistant maps focus more on enhancing the detection
ability of the framework, while postprocessor focuses more
on reducing the false positive rate of the framework. The
results for individual modules and for all modules combined
are given in the table.

Table 3 shows the inference times of each module in our
framework, along with a comparison to the Resynthesis [27]
method. The metrics were the average results after running
100 times on an NVIDIA RTX3090 with 24GB of memory.
The input resolutions for each module are provided in the
tabl- e. The results in the table showcase that the modules
in our approach have improved the overall inference speed of
the framework, reducing computational costs.
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TABLE 3. Comparison on computational cost.

TABLE 4. Performance comparison between best and lighter frameworks
(✔ This means the use of a lighter network. ✘ This means the use of a
better network).

In order to validate the generalization capability of the
dissimilarity network approach proposed in this paper,
we further conducted experiments by selecting different seg-
mentation and synthesis networks than those mentioned in
Section III. This paper chose Enet [14] as the segmenta-
tion network and SPADE [34] as the synthesis network.
This combination formed a lighter network framework but
with lower segmentation and synthesis performance. Con-
sequently, we performed ablation experiments on these two
newly selected components. The results of the ablation exper-
iments are presented in Table 4. From the results, it can be
observed that the performance of the dissimilarity network is
influenced by both the segmentation and synthesis networks,
with the segmentation network’s quality being the primary
factor affecting the final results. Regardless of the choice of
segmentation and synthesis networks, the proposed method
in this paper outperforms the original Resynthesis method by
a significant margin. The experimental results also indicate
that the better the performance of these two modules, the
easier it becomes for the dissimilarity network to differentiate
the feature differences between the original and synthesized
images, which aligns with previous experience.

Figures 7 and 8 show three scenes from the Obstacle
Track and Lost and Found datasets, respectively, using pro-
posedMMFmethod. And the qualitative comparison between
the method, uncertainty estimation method, and Resynthe-
sis method is also shown. Selected images include shaded
scenes, distant objects, and instances with unusual objects.
As shown in Figure 7, the objects in the Obstacle Track
dataset are small and flat, and MMF outperforms other meth-
ods in all three different scenes. It can be seen that the
traditional semantic segmentation method is almost unavail-
able in such tasks, and that anomaly objects detection is

FIGURE 7. Obstacle track dataset detection results.

FIGURE 8. Lost and found dataset detection results.

basically wrong or not detected at all. Uncertainty estima-
tion performs better in detecting nonflat anomaly objects
than flat ones, but it still misses some of them, and its
detection has weak generalization. The same problem is also
encountered by the Resynthesis method. Its generalization
ability for anomaly object detection is very weak, and many
false detection areas are generated, resulting in inaccurate
localization of anomaly objects. As shown in Figure 8, the
scenes and anomaly objects in the Lost and Found dataset
are similar to those in the Obstacle Track dataset. In three
different scenarios, the segmentation network is still unable
to complete the detection of such tasks. The uncertainty esti-
mation method performs better for detecting regular-shaped
anomalies such as boxes compared to other types of anoma-
lies. However, it can be observed in the figure that many
areas are still missed by the model. The false detection rate
of the Resynthesis method in the Lost and Found dataset is
still high, which further verifies that the original framework
is extremely susceptible to noise interference. At this time, the
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detection ability of the dissimilarity network is at a low level.
The MMF method, which integrates uncertainty mapping
and depth mapping with the Resynthesis method, enhances
the detection performance of the dissimilarity network on
both datasets. It achieves high detection rates and precise
localization of anomaly objects, and is further optimized by
a postprocessor that reduces false positive rate and focuses
on anomaly objects on the road. Notably, the MMF method
has not encountered any anomaly objects used in testing
during training, and the class marked as void is not within
the visualization range.

V. CONCLUSION
In order to achieve accurate of anomaly objects on the road,
a novel anomaly detection method is proposed in this paper.
The method includes two parts: an anomaly detection frame-
work and a postprocessor. The anomaly detection framework
combines two methods that can complement each other with
the resynthesis method, namely an uncertainty estimation
method and a segmentation method that incorporates depth
information. In the uncertainty estimation method, a new
anomaly map is obtained by multiplying Softmax entropy
and perceptual loss. It is then used together with the Softmax
distance and depth maps as the attention of the dissimilarity
network to guide it to focus on the feature differences between
the input image and the generated image. Finally, the postpro-
cessor is used to process the results of the anomaly detection
framework, and the final prediction result is obtained. The
experimental results on the Obstacle Track dataset and the
Lost and Found dataset show that the proposed method
achieves detection accuracies of 70.93% and 80.04%, with
false positive rates of 4.16% and 5.31%, respectively. Its
performance is much better than other methods in this paper.
There is still room for improvement in terms of detection
accuracy and false positive rate, even though the postpro-
cessor has reduced the latter to a certain extent. Therefore,
our subsequent work will continue to investigate how to
educe the false positive rate of the prediction results to an
ideal state, as well as explore how to achieve existing or
better performance for the framework without relying on
OoD data.
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