IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 26 January 2024, accepted 12 February 2024, date of publication 21 February 2024, date of current version 4 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3368793

== RESEARCH ARTICLE

Research on Task-Offloading Delay in the loV

Based on a Queuing Network

JINGYUN WEI™ AND XIANGYANG LIANG

School of Computer Science and Technology, Xi’an Technological University, Xi’an 710000, China

Corresponding author: Xiangyang Liang (xiangyangl0913@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 62276146.

ABSTRACT In this paper, we address the challenge of task offloading for mobile edge computing in the
Internet of Vehicles (IoV). We employ a closed queuing network model to analyze the optimal server load
percentage, focusing on the response time of tasks. We evaluate the delay of task offloading by constructing
a closed queuing network model and applying the analysis of this network. Additionally, we analyze the
system performance by varying the number of vehicles, the number of edge servers, and the edge server load
percentage. The results of the study show that there exists an optimal edge server load percentage during task
offloading, and this value makes it possible to compute the minimum average response time spent for a task
during offloading while ensuring fairness in offloading delays. Increasing the number of edge servers affects
the selection of the optimal load percentage, which in turn reduces the minimum response time. Moreover,
as the number of vehicles increases, the average response time of tasks in the system increases accordingly.
This paper provides a solution for delay-oriented task offloading in the IoV.

INDEX TERMS Closed queuing network, response time, server load, task offloading.

I. INTRODUCTION

The widespread adoption of such applications as collabo-
rative autonomous driving, intelligent traffic control, and
collaborative environment awareness in the IoV has led to an
increased demand for extensive data transmission and infor-
mation exchange among vehicles. Consequently, the amount
of vehicle data is growing exponentially and the complexity
of computational tasks is increasing. Despite the inherent
storage and computational capabilities of vehicles, they are
constrained by hardware limitations, rendering them inad-
equate for handling substantial data volumes and intricate
computational tasks. To overcome these limitations, the inte-
gration of mobile cloud computing (MCC) with the IoV is
proposed for offloading tasks from vehicles to remote cloud
centers [1]. Despite the robust storage and computational
capabilities of cloud servers, they are usually deployed at
remote locations and may not meet the requirements of
computational tasks in vehicles. On the one hand, compu-
tational tasks in vehicles are closely tied to security and

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak

often entail stringent delay requirements. However, longer
transmission distances increase the delay [2], which impairs
real-time responsiveness, especially for security applica-
tions [3]. On the other hand, the battery life of vehicles
must also be considered. Due to the longer transmission
distance, offloading computational tasks to cloud data centers
consumes more energy, which adversely affects the vehicle’s
range. Therefore, multiaccess edge computing (MEC) has
been introduced to the IoV, with mobile edge servers typically
deployed in roadside units (RSUs) along the road. Delay
and security issues can be effectively mitigated by offloading
tasks to edge servers. Efficient task offloading and resource
allocation strategies have the potential to greatly enhance
system performance.

Traditional task offloading involves offloading tasks exclu-
sively to either the cloud server or the edge server for
computation. The goal of offloading is to reduce the total
task delay while minimizing vehicle energy consumption.
The computing capability of the cloud server significantly
exceeds that of vehicles and edge servers, leading to a sub-
stantial reduction in task computing time with this offloading
method. However, if all the tasks are offloaded to cloud

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

31324

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0007-8235-9269
https://orcid.org/0009-0002-1266-5176
https://orcid.org/0000-0001-5822-3432

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

IEEE Access

servers, a long transmission distance will result in increased
transmission delay, and at the same time, vehicles will
experience greater energy consumption. If all the tasks are
offloaded to the edge server, the shorter transmission distance
can effectively alleviate the transmission delay. However,
the computing capability of the edge server is much lower
than that of the cloud server, resulting in longer comput-
ing times. When numerous vehicle tasks are offloaded to
the edge server, the lack of capacity will lead to a long
delay in processing the computation tasks. Offloading strate-
gies, whether for edge servers or cloud servers, present
significant drawbacks; the primary constraints are due to
the limitations of edge servers and the substantial delay
introduced by the distance to cloud servers. Therefore, an effi-
cient task-offloading strategy is needed to reduce the delay
of computing task-offloading and improve system perfor-
mance. In this paper, we propose a task scheduling strategy
based on queuing networks (TSSQN) for addressing delays
in task offloading. The TSSQN consists of a system task
scheduling model and a queuing network-based performance
metric solver. We further investigate the relationship between
vehicle task offloading and system performance from the per-
spective of computational task offloading delay. The TSSQN
can analyze the optimal offloading strategy when faced with
different road situations, such as varying vehicle densities and
RSU configurations.

In this article, each task of a vehicle is independent. There-
fore, closed queuing networks are an ideal research method
for addressing the challenge of task offloading in the IoV [4],
[9], [15]. This paper makes several key contributions.

« We propose a large-scale solution for the delay of com-
putational offloading in the oV that is applicable across
various road scenarios.

o We introduce a multiclass closed queuing network to
model the task offloading problem in edge comput-
ing for the IoV. Additionally, we analyze the system
performance based on the task response time, a key
performance metric for task offloading in the IoV.

« We find that the server load has a significant impact
on the task response time. By analyzing the queuing
network, we find that there is always an optimal load
that minimizes the response time in all cases. Moreover,
we observe that the load percentage of the edge server
that achieves the minimum response time closely aligns
with the delay fairness among the different offloading
methods.

« We discover that the performance of the queuing net-
work is influenced by several factors, including the
number of vehicles and the number of edge servers.
Adjusting these parameters allows us to meet the delay
requirements of vehicle tasks.

The paper is organized as follows. Section II provides an
overview of related work in this area. In Section I1I, we model
the task offloading problem for edge computing in the IoV.
Section IV derives the model and provides a solution for the
task response time. In Section V, we calculate the system

VOLUME 12, 2024

performance and analyze it using queuing networks. Finally,
Section VI summarizes the paper.

Il. RELATED WORK

Edge computing in the context of the IoV has been exten-
sively studied by many scholars. Notably, Garg et al. [5]
proposed utilizing edge computing platforms as RSUs for
vehicular communication. Moreover, they designed an intel-
ligent security framework for VANETS based on edge nodes
and 5G to improve communication and computational capa-
bilities. In reference [6], an SDN-IoV network architecture
that includes an end layer, an edge layer, and a cloud layer was
proposed by combining mobile edge computing technology
and software-defined networking technology. The controller
placement problem was studied in terms of delay and con-
troller load balancing. In reference [7], the computational
efficiency of a task was used as a system performance met-
ric; this was defined as the ratio of computational bits to
the energy consumption of a task. Additionally, the authors
proposed the MACTER algorithm for offloading decisions.
In reference [8], vehicle task offloading was considered a
multi-objective constrained optimization problem, and a non-
dominated sorting genetic strategy (NSGS) was proposed
to solve the problem; this approach reduces the delay and
energy consumption of task offloading. However, relying
only on edge computing or cloud computing to perform tasks
is limited either by the lack of computational capabilities
or by excessive transmission delay. To solve these prob-
lems, Liu et al. [9] synthesized the delay, cost, and energy
consumption factors proposed a cloud-edge-end collabora-
tive computing task offloading model based on a queuing
network, and examined the effects of optimized offloading
probability and transmit power on delay, cost, and energy
consumption. In this paper, cloud-edge collaboration was
used to offload some of the computing tasks to edge servers
and some of them to cloud servers to reduce the delay of com-
puting tasks. Additionally, in reference [10], the utilization of
the vehicular cloud for managing computationally intensive
tasks was suggested as a strategy to address the issue of
the limited computational resources of individual vehicles.
The proposed solution involved breaking down the vehicle’s
task into several interconnected subtasks and distributing
these subtasks across multiple vehicles in a decentralized
manner. Additionally, the PR-VC was introduced to enhance
the conditional mean time to failure, mitigating challenges
associated with resource fluctuations resulting from the
movement of vehicles. Vehicle movement at high speeds also
causes the topology to change rapidly, adding unnecessary
delays. Tariq et al. [11] addressed the challenges posed by
vehicle movement by proposing a combination of an NDN
and an SDN called NDSDoV. NDSDoV uses edge con-
trollers to maintain and manage real-time vehicular topology.
The SDN controllers use the information received from the
edge controllers to maintain their tables, including a global
information table and routing information table and finally
forward it according to the forwarding mechanism.

31325

IEEE Access

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

Queuing theory has a unique advantage in studying sys-
tem performance because it reduces the complexity of the
problem and facilitates research. In reference [12], spatial-
temporal event processing (STEP) was used to process
spatiotemporal data streams for the IoV, and a queuing net-
work model was utilized to evaluate the response time of the
STEP temporal stream processing system. In reference [13],
the authors modeled the cloud computing system as an M/G/1
queue and proposed a task scheduling algorithm based on
similar tasks to reduce energy consumption. In reference [14],
a scheduling model was established for public cloud plat-
forms to validate an effective platform scheduling algorithm,
and CloudSim was used to conduct simulation experiments
on different scheduling strategies with queuing models; these
models consider virtual machines as service organizations
and dynamically adjust their number to adapt to scale changes
in system applications. Luo et al. [4] modeled the process
of multiuser requests for mobile edge computing systems
as an M/M/1 queue, the problem of minimizing the total
response time of all tasks was examined, and for this opti-
mization problem, a greedy algorithm was proposed, which
tends to assign tasks to the server with the minimum response
time. The simulation results showed that the mean response
time of the tasks was reduced by 20%~30% for the pro-
posed greedy algorithm compared to that of the randomized
algorithm. In reference [15], the authors modeled fog devices
as M/M/1 queues and cloud systems as M/M/C queues. The
fog-cloud workload distribution problem was solved by using
the NSGA-II algorithm, which aims to reduce energy con-
sumption and delay.

Queueing networks serve as powerful tools for probing the
essence of problems, playing a role not only in algorithmic
improvements but also in fostering a comprehensive under-
standing of the nature of problems, performance analysis,
and system optimization. Their applications extend widely
across various domains. In reference [16], the authors ana-
lyzed the end-to-end average delay and maximum achievable
single-node throughput of multi-hop wireless ad hoc net-
works based on closed queuing networks. Each node was
modeled as a G/G/1 queue, and expressions for the aver-
age delay, node throughput, and node average service time
were derived via diffusion approximation. The simulation
results were compared with the analytical results, and they
aligned closely. In reference [17], Wireless Sensor Net-
works (WSNs) were modeled as open G1/G/1/N queuing
networks, and analytical formulas for performance metrics
such as the end-to-end average delay, packet loss probability,
throughput, and average hop count were analyzed. This study
provided numerical examples for the performance evalua-
tion of intermittent network models. In reference [18], they
conducted a coarse-grained comparative analysis of simple
fine-grained multicore processors and complex synchronous
multithreaded multicore processors for server applications
with high parallel requests. Using queuing networks, the
throughput performance of processors was derived. This
approach yields different core counts, thread counts, and

31326

various workloads. In reference [19], a closed queuing net-
work model with multiple servers was introduced to simulate
data flow in a multi-threaded architecture. This paper dis-
cussed performance metrics related to queuing models, such
as queue length, response time, throughput, and utilization,
providing results for the multiserver queuing model.

In existing research, there has been a predominant focus
on resource management and scheduling processes, with
insufficient attention given to the challenge of balancing
server load ratios to minimize delays during task scheduling.
Additionally, the issue of delay fairness for tasks has been
overlooked. To address these gaps, this paper places a pri-
mary emphasis on computing task scheduling in a cloud-edge
environment. We propose a task scheduling strategy based on
queuing networks (TSSQN) specifically tailored to the cloud-
edge environment, aiming to analyze optimal solutions for
different scenarios to optimize task offloading strategies.

In this paper, each task of a vehicle is independent and
after task offloading, the results need to be transmitted back
to the vehicle. Therefore, a closed queuing network is an ideal
research approach when addressing the challenge of task
offloading in the IoV. Using the queuing network to model the
task offloading problem for edge computing in the Internet
of Vehicles, this paper uses delay as a system performance
metric and optimizes the system performance by optimizing
the server load.

Ill. MODELING

The behavior of task offloading using edge computing archi-
tectures in the IoV can be modeled as a closed queuing
network. There are multiple job classes circulating in the
queueing network, and a job class is a collection of jobs with
the same behavior, as reflected by the fact that these jobs have
the same routing probability and service time distribution.
For example, for a queuing network with K vehicles, it is
necessary to define K classes of jobs, where each job class
corresponds to the jobs of a certain vehicle. This is because
when the server returns the results from processing the com-
putational task, the jobs need to be returned to the original
vehicle node; therefore, the jobs of each vehicle are modeled
as the same class. We model a BCMP queuing network which
is a hybrid queuing network that has great advantages in
solving complex problems.

As shown in Figure 1, we consider a BCMP closed
queuing network model. The model includes K vehicles,
a transmission link, an edge layer, and a cloud server. This
results in K+3 nodes, with the edge layer incorporating m
edge servers. We argue that under general road conditions,
the density of vehicles tends to remain constant over time. For
modeling purposes, we consider each computational task of a
vehicle as one job in the system. This abstraction allows us to
study computational tasks independently, increasing relevant
parameters (e.g., service rate) when a vehicle carries multiple
homogeneous jobs. Therefore, each vehicle entering a fixed
roadway is assumed to have only one job. The number of
tasks in the system is determined by the number of vehicles,

VOLUME 12, 2024

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

IEEE Access

vehicle

AL

Transmission
Link

Edge Server

Cloud Server

FIGURE 1. System model.

resulting in K jobs cycling through the queuing network.
Throughout the entire task offloading process, tasks do not
become other vehicles tasks, meaning that there is no class
swapping in the queuing network. Consequently, we have
K classes of jobs. The computational tasks are offloaded by
the vehicles, and each vehicle node is independent, so each
vehicle can be viewed as an M/M/1 queue; the service time
of the vehicle nodes when offloading the tasks is negatively
exponentially distributed, and the service rate is u}, where
i =1, ..., K. In vehicle task offloading with cloud-edge
collaboration, there are two choices for computing tasks when
offloading. One is to offload the task to the edge server, which
is deployed in the RSU at a close transmission distance; thus,
the transmission time of task offloading can be ignored, and
only the edge layer needs to be considered in modeling. The
second is the choice of offloading to the cloud server, which
needs to be considered when modeling. In addition, by incor-
porating the location of the cloud server the transmission
time of task offloading must be considered. When a job is
offloaded from the ith vehicle, the probability of being routed
to an edge layer node is p and the probability of being routed
to the cloud server node is /-p. When the job exits from the
ith vehicle node, we assume that the probability of the job
entering the edge layer is p, the probability of entering the
transmission link between the vehicle and the cloud server is
1-p, and the probability of the job routing to the cloud server
after leaving the transmission link is 1. Jobs are routed back
to the original vehicle after receiving service. In the system,
jobs follow the first-come-first-served (FCES) rule.

In our model, we represent the edge layer and cloud servers
as an M/M/m queue and an M/M/1 queue, respectively. For
a fixed road section, edge servers are often uniformly dis-
tributed along the road, let the number of edge servers on a
road section be denoted as “m.” The entire edge layer can
then be effectively modeled as an M/M/m queue, where “‘m”
represents the number of edge servers. Tasks are queued after
arriving at the edge layer, and only when idle edge servers are

VOLUME 12, 2024

available are the tasks in the queue served according to certain
rules (e.g., FCFS). The service rate of the edge servers is
denoted as Mf’ where i =1, ..., m. The service rate represents
the number of jobs that can be completed per unit of time,
i.e., the inverse of the time that the job receives the service
at the node is the service rate of the node. For example, the
reciprocal of mu{ is the mean time for the server to process
the computed jobs. It is determined by the magnitude of the
job and the processing capabilities of the server. A cloud
server as a cluster can be considered a large server from a
macro point of view, modeling the cloud server as an M/M/1
queue. Its performance is much stronger than that of edge
servers, and this can be represented by a large service rate,
denoted as u€. The service rate of the cloud server is much
greater than that of the edge servers; i.e., u¢ > u®. When u*
is large enough, a new task arriving at the cloud can be served
very quickly. The transmission process of offloading tasks to
the cloud server requires the task to be sent to the RSU first,
as the RSU acts as a relay node that forwards the task to the
cloud server. The process of transmitting tasks from vehicles
to cloud servers can be holistically modeled as an M/G/oco
queue. Notably, task offloading to the cloud server requires
long-distance transmission, so we need to set an appropriate
value for ' in the queuing network.

For the sake of analysis, we assume that the tasks are
homogeneous for all vehicles. Specifically, for vehicles, the
transmission link, edge servers, and the cloud server, the
service rates for computational tasks from different vehicles
are consistent and obey negative exponential distributions.
To investigate the optimal offloading policies in different
scenarios, we compare the mean response times of 20, 30,
40, and 50 vehicles and 2, 3, 4, and 5 edge servers.

IV. MODEL SOLVING

According to the analysis in Section III, this system is a
closed queuing network containing K+3 nodes. The queu-
ing network contains two classes. One is an M/M/m queue

31327

IEEE Access

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

(M/M/1 queue when m = 1) with the first-come first-served
(FCFES) queuing rule, and the other is an M/G/oo queue with
the Infinite Server (IS) queuing rule. The vehicle nodes and
server nodes with the FCFS queuing rule have the same
service rate for each type, and this system is a BCMP queuing
network with a solution in product form.

The BCMP network can contain multiple job classes and
multiple types of queuing nodes, and the whole queuing
network is no longer limited to open or closed. It can solve
open queuing networks, closed queuing networks, and even
mixed queuing networks. In BCMP, the normalization con-
stant, denoted as G 7() , is the sum of the products of
the functions of the state probabilities of each node in all
possible states, and the marginal probability can be derived
from the normalization constant G | K). The marginal prob-
ability describes the probability of each possible state when
the system is in a steady state. System performance metrics
such as throughput, queue length, and response time can
be derived from the marginal probability and normalization
constant. Here, we can accurately derive the response time
of the closed queueing network model using BCMP theory.
Next, we provide the solution for the response time of the
model in this paper.

Let the vehicles be the Ist, 2nd, ..., Kth nodes, the edge
layer be the K+ /st node, the transmission link be the K+2nd
node, and the cloud server be the K+3rd node. The queuing
network is in a steady state and the arrival rate of a job of the
rth class on the ith node must satisfy the equilibrium equation
so that the access rate of the ith vehicle, transmission link,
or server is

K+3 K

eir =D D eiDis.ir)

j=1 s=1

Assuming that there are K vehicle nodes in the system, only
one class of task is sent or received on each vehicle node,
and no class switching occurs when the task is transmitted or
computed in the system, then for the vehicle nodes, i =1, ...,
K,r=1,..., K, we have

1, i=r
- ’ o)
€ir [0’ i (2)

In the absence of class switching, when a job is offloaded
from the ith vehicle, the probability of being routed to an edge
layer node is denoted as pjs,(k +1)s = p, and the probability of
being routed to a transmission link is denoted as pjs, (k+2)s =
1 — p. Therefore, we have

_V7
Pjs,is =
1 —p,

The job will be routed to the cloud server with a probability of
1 after leaving the transport link, i.e., the routing probability
DK +2)s,(K+3)s = 1. The job is routed to the vehicle with a
probability of 1 from the edge layer and the cloud server.

1<j<K,i=K+1

. . 3)
1<j<K,i=K+2

31328

Therefore, we have
Pisis=1,j=K+1, K+3,i=1, ..., K 4

So, the arrival rate of individual nodes in the queuing network
can be expressed as

D, i=K+1
1—p, i=K+20ri=K+3
=1, " §)
1, i=r
0, otherwise

G(K) is a normalization constant, and K =(K1, ...,Kg),

(E:)notes the class of vehicle tasks in the system.

S; =(ki1, . ..,kik), kir is the number of vehicle tasks of rth

class on the ith node, and S; represents the number of vehicle
. K+3 g —>

tasks of each class on the ith node, then Zi: S = K.

G(Tg) is defined as
Z Fi (E))) (3)'~-~'FK+3 (m)

Q)

F; (E:) is a function of the state probability with respect
to either the vehicle nodes or the edge server node, and the
vehicle nodes and the server node are M/M/m queues (vehicle
nodes with m= 1) with

- 1 N
F.(SA)zk.g _q(_) q _el."",
AN " Bi (ki) Wi rl:[kie!
i=1,....,K,K+1,K+4+3 7
Transmission nodes are M/G/oo queued with

1 €ir

> K kir
l(l) e kiy! q(//‘ir)

Function g; (k;) defined as

ki, ki < m;
Bitk) = { mi!-mi™™ ki > my)
1, m; = 1

Both the vehicle and the cloud server are M/M/1 queues, i.e.,
m = 1, and thus there are

- 1 ki
ki!~(—) , i=1, , K
Wi
! 1 (l)ki H k =K +1
- - . P", 1=
. CBi(k) \mi 1
Fi(Si): K (e \Fir
H(—) : i=K+2
r=1 ir
kK
ki! (—) Jla-p', i=k+3
i r=1
(10)

VOLUME 12, 2024

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

IEEE Access

Definition

—lr):(Klv”wKr_l"-'vKK)’ the
throughput is

G(K-1)

—
6 ()
Then the vehicle node and the server node have throughput

for the task on the rth vehicle

Ar = (1)

G(—1) .

For M/M/1 vehicle nodes, we have

— —
Air:eirG(K—l,):G(K_—)lr)’ 0y
6(%)

6(F)

For edge servers, we have

Air = €jrhy, = €jp————

— —
G(K—l,) G K—l,)
AK+1)r = €ir = =p = (14)
(k) a(F)
For cloud servers, we have
— —
G K—lr) G(K—l,)
Ak +3)yr = eir————=v— = (1 —p) — (15)
6(%) 6(%)
. e T
The steady-state probability (S Ison- ,SK+3) can be

described as

— —
JT(Sl,...,SK+3)=

The marginal probability 7; (7()) is denoted as

W(®)= X a(5e

Z]K:ﬁ EJ):T() and E::K

—
Sks) (D)

Both the mean number of tasks and node utilizati(gl) of the
system are related to the marginal probability 7; (K), and

the mean number of tasks of class r on the ith node K, is
—_— —
K= > hwm (K) (18)
all § with k>0

where i =1, ..., K+3 and r =1, ..., K. According to Little’s
theorem [20], the response time T';- of a task of rth class at
the ith node is

Kir .

B = i=1,....,K,K+1,K+3

Ty = /\{r (19)
—, i=K+2
Mir

VOLUME 12, 2024

TABLE 1. Parameters values.

Parameter Value
K 20, 30, ..., 50
K, 1
Wit f22 ooor HEE) (100, 100, ..., 100)
(,u/kﬂ)r, HK+2)rs /l(ms)y) (0'170'573'3)
m 2,345
)4 0.1,0.2,...,0.9
consequently
Kir i=r
— ’ -
G(K -1,
1)
6(K)
Eir .
= , i=K+1
G(K —1r)
T = p G(T()) (20)
1
_, i=K+2
Mir _
Kir .
R CED N
(1 —D) = (
K)

In this system, the mean response time of task 7', includes
the time taken by the task to send, transmit, compute and
send back the result from the vehicle. However, when the
computational task is processed and the amount of data in
the computational result is much less than that of the compu-
tational task itself, the time spent transmitting to the vehicle
is negligible; thus, the total time is

T, =T +pTrir + (A —p) Txs2r + Tx43)r) 21

where r =1, ..., K.

V. RESULTS AND ANALYSIS

In this section, we provide numerical results for the perfor-
mance metrics of the system network model for different
values of m and K. Since the focus of our paper is to analyze
the average end-to-end delay of task offloading in the IoV
due to different offloading strategies, we vary the offloading
load percentage p. Based on the analysis of the system model
in Section III, this section provides performance results for
multiple types of a closed queuing network. The parameter
values are detailed in Table 1.

In the system, the vehicle offloads tasks at a high rate,
allowing the service rate of the vehicle to be set significantly
higher than the service rates of the edge servers and the cloud
server, for instance, at 100. In this paper, we adopt C-V2X
for communication, assuming that the channel bandwidth
of the transmission link is 10 MHz [21]. If the size of the
offloaded task is 10 MB, considering the actual situation of
the transmission link, such as the signal-to-noise ratio [22],
by calculation, we can set the transmission link to 3.3 com-
puting tasks per unit time. The parameter settings of the edge

31329

IEEE Access

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

2404) 2404 S
2201 me) 2204 me
—— K=20——K=30 ——K=20——K=30
20091 g—4p—— K=50 20091 k=40 K=50
180 / 1804
2 160 Fs £ 160+
£ 1401 - P £ 140+ -
o 4 - (5] /,/
Z 120 . o Z 120 o
100+ e £ 100+ T
I~ | s o I :l B O AR Lt
80 T i - 80 B, - ol
i . ; P / | . O . e
60 - o 60 . ™
40 et e 40 s
201 204
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
Percentage of Load on Edge Servers Percentage of Load on Edge Servers
240 i 2404 =
220 o 220 p
—— K=20——K=30 oo | T K=20——K=30
20041 g—40——K=50 2009 k40— K=50
180 180+
2 160+ 2 160+
= 140 & 140+
u w
Z 1204 21204
2 - 2
glooq . E1004)
ogod{ T o & 804 i, et
60 1 i g 604 s =
40 404 s . .
201 204
0

0 T T T T T T T T T
0.0 01 02 03 04 05 06 07 08 09 1.0
Percentage of Load on Edge Servers

00 01 02 03 04 05 06 0.7 08 09 1.0
Percentage of Load on Edge Servers

FIGURE 2. Response times of computing tasks with different edge server load percentages.

server refer to [22], and we calculate that 0.1 computing tasks
should be served per unit time. We set the capacity of the
cloud server to 5 times that of the edge server; i.e., 0.5 com-
puting tasks are served per unit time. The different service
rates are an indication of the computational capabilities of
the edge server and the cloud server. The number of vehicles
determines the number of job classes in the closed queuing
network and each vehicle carries only one job when it enters
the roadway. We explore the impact of server load on the task
response time by setting different numbers of vehicles and
different numbers of edge servers.

We determine the computation task response time versus
edge load for different numbers of edge servers and consider
the computation task response time for different edge server
load scenarios, as shown in Figure 2, plotted sequentially for
m =2, 3,4 and 5 as the number of edge servers.

First, by comparing the four plots in Figure 2, we note
that for the cloud-edge cooperative task offloading system,
deploying more edge servers in a fixed-length road segment
can effectively reduce the response time of tasks. This is
because if the capacity of a single edge server to handle a task
is u¢, then the capacity of an edge layer with m edge servers
will be muf, which increases as m increases.

Second, by analyzing any curve in Figure 2, it can be found
that when the vehicle density is constant, the task response
time first decreases and then increases with the increase in the
load percentage of edge servers. When the load percentage
of edge servers is very small, the edge server can afford to

31330

80
--=- TSSQN
701 -e - NSGS
604~ ~* - NDSDoV g == ek
1 /," e
2 -

- A&7 P _m
;50 y—-“‘/ ’,/’. -
% »

u;4] o /,l
éo /,o’ P 2
230 4 /,o’/r’
e--® _m
204" w7
,’./
10+
0 T T T T T T

T T
10 15 20 25 30 35 40 45 50 55
Number of vehicles

FIGURE 3. Response times for different algorithms.

offload tasks, so the time spent by the edge server to process
the tasks is very short. However, for the cloud server, the
remaining tasks are offloaded to it, and the time needed to
process the computing tasks increases due to the overburden-
ing of the cloud server. Moreover, the transmission delay for
task offloading is longer. Therefore, the response time to the
tasks initially decreases. In this scenario, within the task load
that the edge server can afford, offloading more computing

VOLUME 12, 2024

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

IEEE Access

K=50
[—— Edge Servers|
|=— Cloud Server]

220 f
o, 2009)i
£ 180 [
- 1604 1
£ 1404 |
2120 f
£ 100 i

!

0 T T T T i
0.0 0.1 0.2 0.3 0.4 0.5 0.

u u u u
.6 0.7 0.8 0.9
Percentage of Load on E

dge Servers

Tt p——————p—-
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7.0.8 0.9 1.0
Percentage of Load on Edge Servers

FIGURE 4. Response times of the edge and cloud servers for m = 2.

1.0

0 T —————p——_—-,
0.0 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of Load on Edge Servers

T —————(——p—
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of Load on Edge Servers

280 1
260
240
220

. 200

2180

160

Z 140

2120

£ 100
804
60 p——— 60
104 4 10

_

20

—

/
7 2120 f
£ 100 £ 100 R
804 1
601 W[6] [
40 ;i 40 X
204 ey 204 i

0 T T T T T u u u u 4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percentage of Load on Edge Servers Percentage of Load on Edge Servers

FIGURE 5. Response times of the edge and cloud servers for m = 3.

0 T T T T T T u u
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 T T T T T 7 u 7 u
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of Load on Edge Servers

0 T T T T T T 7 u 4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of Load on Edge Servers

dge Ser
Cloud Server|

. .7 3 0. .
Percentage of Load on Edge Servers Percentage of Load on Edge Servers

FIGURE 6. Response times of the edge and cloud servers for m = 4.

tasks to edge servers can effectively reduce the mean response
time of the tasks. However, when the load on the edge server
exceeds the maximum, offloading more computing tasks to
the edge server will increase the processing time of the task
significantly. Although the response time of the cloud server
becomes shorter as the load becomes lighter, the response
time of the edge tier increases much more than the response
time of the cloud server decreases because it processes tasks
that exceed the optimal load percentage. However, offloading
more computing tasks to edge servers will increase the task
response time. There exists an optimal load percentage for
the edge servers, and offloading computing tasks rationally
according to the optimal load percentage can minimize the
mean response time of the tasks.

Third, when the number of edge servers is known, the
greater the number of vehicles is, the longer the response
time of the task. This is because at larger vehicle densities,
the more loaded side of either the edge server or the cloud
server needs to handle more computing tasks; thus, the more
vehicles there are, the longer the response time of the system
for the same percentage of load on the edge server.

We compare the task latency for different numbers of vehi-
cles with different offloading strategies for 5 edge servers.

VOLUME 12, 2024

£
/
51 %xf o0 .
40 ?{ 10 X
20 o 20 -
0 T T T T T T T u u 0 T T T T T T T 4 u 0 T T T T T T u u 0 T T T T T T T u u
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0. 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.3 0. . 0.
Percentage of Load on Edge Servers Percentage of Load on Edge Servers

For instance, when the number of vehicles is 50, TSSQN
chooses to unload 50% of the tasks to edge servers and
the remaining tasks to cloud servers. The NSGA strat-
egy involves dividing vehicle computing tasks into smaller
unloading tasks and unloading them to local and edge servers.
NDSDoV finds the shortest and optimal path between
the centralized EC and SDN. Figure 3 shows that as
the number of vehicles increases, the average latency of
all three algorithms increases, with the proposed TSSQN
achieving the minimum average latency. This is primarily
attributed to the simultaneous consideration of both edge
servers and cloud servers in task unloading, along with the
identification of the optimal unloading percentage, which
significantly reduces the task processing time. NSGA and
NDSDoV rely solely on edge computing for task unload-
ing, and the limited capacity of edge servers leads to
increased latency when all tasks are unloaded to edge servers,
making the latency higher than that of the cloud-edge col-
laborative TSSQN. Additionally, TSSQN comprehensively
considers environmental factors, such as the computing
capabilities of edge servers and cloud servers and channel
transmission rates. With such considerations, precise offload-
ing strategies can be derived for more complex network

31331

IEEE Access

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

ge Servers
Cloud Server

i e I .

|—— Cloud Server

T

e
#
20 A

0 T T T T T T T U u
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percentage of Load on Edge Servers Percentage of Load on Edge Servers

FIGURE 7. Response times of the edge and cloud servers for m = 5.

environments, thereby enhancing the latency performance of
TSSQN.

Although TSSQN provides different unloading strategies
for varying numbers of vehicles, Figure 3 indicates that as the
number of vehicles increases, the latency linearly increases.
This is because the optimal unloading percentage provided
by the TSSQN results in an increased actual number of tasks
unloaded to the edge or cloud as the number of vehicles
grows. The increased server load leads to longer processing
times. This increasing trend also validates the conclusions
drawn in Section IV, indicating that the latency performance
is influenced by the computing capacity of the edge layer, the
offloading percentage, and the number of vehicles.

There is another issue to consider when offloading comput-
ing tasks: whether the delays of the computing tasks offloaded
to edge servers and those offloaded to cloud servers are equal
when offloading tasks with a load percentage of the mini-
mum response time. If choosing different offloading methods
results in different latencies, it is unfair to compute tasks that
require more time for task offloading. Therefore, we need
to consider delay fairness when performing computing task
offloading.

To examine delay fairness, we perform some research.
Figures 4-7 show the variations in the response times of edge
servers and cloud servers corresponding to different edge
server load percentages for m = 2, m=3, m = 4, and m = 5.
In Figures 4-7, the X-axis of the intersection represents the
percentage of edge load that results in equal latency, while the
y-axis indicates the magnitude of task latency under fairness
conditions.

First, we find that the edge server load percentage for
achieving delay fairness is independent of the number of
vehicles and is more strongly affected by the capability of the
edge layer. The more capable the edge layer is, the more tasks
can be offloaded to the edge servers; thus, the load percentage
becomes larger. In addition, we find that when the edge server
load percentage increases to a certain value (influenced by m),
the response time of the edge servers increases rapidly, while
the response time of the cloud servers decreases to a lesser
extent than the response time of the edge servers increases.
This explains the increasing trend of the total response time in
Figure 2. Second, comparing Figure 4 and Figure 7, we find
that the response time of the edge servers can be reduced
by enhancing the capability of the edge layer. Therefore,
by estimating the density of vehicles on the road, we can

31332

0 T T T T T T T u f
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of Load on Edge Servers

0 T T T e e e
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of Load on Edge Servers

TABLE 2. Edge server load percentages for minimum response time and
delay fairness.

Number of vehicles

K=20 K=30 K=40 K=50
Min response time 0.27 0.28 0.28 0.28
m=2 Delay fairness 0.25 0.26 0.27 0.27
Difference 0.02 0.02 0.01 0.01
Min response time 0.36 0.37 0.37 0.37
=3 Delay fairness 0.34 0.36 0.36 0.36
Difference 0.02 0.01 0.01 0.01
Min response time 0.43 0.43 0.45 0.44
m=4 Delay fairness 0.42 0.43 0.44 0.44
Difference 0.01 0 0.01 0
Min response time ~ 0.49 0.49 0.5 0.5
m=5 Delay fairness 0.48 0.49 0.5 0.5
Difference 0.01 0 0 0

determine how many edge servers need to be deployed to
meet the service demand of the vehicles. Finally, in Table 2,
we compare the edge server load percentage that achieves
delay fairness in Figures 4-7 with the edge server load per-
centage that achieves the minimum response time in Figure 2.
Interestingly, we observe that the difference between the load
percentages required to achieve minimum response time and
delay fairness is consistently less than 2%, and examining the
mathematical factors behind this phenomenon is a research
goal for our future work. In conclusion, the data are sufficient
to show that our strategy of offloading tasks with optimal load
percentages is effective at both minimizing the response time
and ensuring delay fairness.

VI. CONCLUSION

In this paper, we investigate task offloading strategies con-
cerning response time performance in the IoV. By modeling
a closed queuing network for the task offloading scenario of
edge computing in the IoV, the performance of the queuing
network is found to be related to the marginal probability,
which in turn is related to the number of tasks in the system,
the number of servers, the service rate, and the server load.

VOLUME 12, 2024

J. Wei, X. Liang: Research on Task-Offloading Delay in the loV Based on a Queuing Network

IEEE Access

We find that for a specific road section, if the number of edge
servers is constant, an increase in the number of vehicles will
lead to an increase in the mean response time of a single task.
If the number of vehicles is constant, the response time can be
reduced by adding edge servers. For any number of vehicles
and edge servers, there is always an optimal offloading strat-
egy that minimizes the response time of a task while ensuring
delay fairness.

In future work, we will further investigate the relation-
ship between the minimum response time and delay fairness.
Moreover, we plan to consider the construction cost of servers
to reduce the cost as much as possible while satisfying the
delay requirements of computing tasks, and the trade-off of
the two factors to find the optimal offloading strategy for
computing tasks from multiple perspectives.

REFERENCES

[1] D. Van Le and C.-K. Tham, “Quality of service aware computation
offloading in an ad-hoc mobile cloud,” IEEE Trans. Veh. Technol., vol. 67,
no. 9, pp. 8890-8904, Sep. 2018.

[2] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong,
“OpenVDAP: An open vehicular data analytics platform for CAVs,”
in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Vienna,
Austria, Jul. 2018, pp. 1310-1320.

[3] W. Huang, Y. Huang, S. He, and L. Yang, “Cloud and edge multicast
beamforming for cache-enabled ultra-dense networks,” IEEE Trans. Veh.
Technol., vol. 69, no. 3, pp. 3481-3485, Mar. 2020.

[4] L. Yuchong, W. Jigang, W. Yalan, and C. Long, “Task scheduling in
mobile edge computing with stochastic requests and M/M/1 servers,”
in Proc. IEEE 21st Int. Conf. High Perform. Comput. Communications;
IEEE 17th Int. Conf. Smart City; IEEE 5th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Zhangjiajie, China, Aug. 2019, pp. 2379-2382.

[5] S. Garg, A. Singh, K. Kaur, G. S. Aujla, S. Batra, N. Kumar, and
M. S. Obaidat, “Edge computing-based security framework for big data
analytics in VANETS,” IEEE Netw., vol. 33, no. 2, pp. 72-81, Mar. 2019.

[6] B.Li, X. Deng, and Y. Deng, ‘““Mobile-edge computing-based delay min-
imization controller placement in SDN-IoV,” Comput. Netw., vol. 193,
Jul. 2021, Art. no. 108049.

[71 S.Raza, S. Wang, M. Ahmed, M. R. Anwar, M. A. Mirza, and W. U. Khan,
“Task offloading and resource allocation for IoV using 5G NR-V2X
communication,” IEEE Internet Things J., vol. 9, no. 13, pp. 10397-10410,
Jul. 2022.

[8] J. Zhang, M.-J. Piao, D.-G. Zhang, T. Zhang, and W.-M. Dong,
“An approach of multi-objective computing task offloading schedul-
ing based NSGS for IOV in 5G,” Cluster Comput., vol. 25, no. 6,
pp. 4203-4219, Dec. 2022.

[9] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective
optimization for computation offloading in fog computing,” IEEE Internet
Things J., vol. 5, no. 1, pp. 283-294, Feb. 2018.

[10] P. Abdisarabshali, M. Liwang, A. Rajabzadeh, M. Ahmadi, and
S. Hosseinalipour, “Decomposition theory meets reliability analysis: Pro-
cessing of computation-intensive dependent tasks over vehicular clouds
with dynamic resources,” IEEE/ACM Trans. Netw., vol. 32, no. 1,
pp. 475-490, Feb. 2023, doi: 10.1109/TNET.2023.3286709.

[11] A. Tariq, I. Ud Din, R. Asif Rehman, and B.-S. Kim, “An intelligent
forwarding strategy in SDN-enabled named-data IoV,” Comput., Mater.
Continua, vol. 69, no. 3, pp. 2949-2966, 2021.

[12] H. Li, X. Wu, and Y. Wang, “Dynamic performance analysis of STEP
system in Internet of Vehicles based on queuing theory,” Comput. Intell.
Neurosci., vol. 2022, pp. 1-13, Apr. 2022.

[13] C.Cheng, J. Li, and Y. Wang, “An energy-saving task scheduling strategy
based on vacation queuing theory in cloud computing,” Tsinghua Sci.
Technol., vol. 20, no. 1, pp. 28-39, Feb. 2015.

[14] J. Zare, S. Abolfazli, M. Shojafar, and A. Kamsin, “Resource scheduling
in mobile cloud computing: Taxonomy and open challenges,” in Proc.
IEEE Int. Conf. Data Sci. Data Intensive Syst., Sydney, NSW, Australia,
Dec. 2015, pp. 594-603.

VOLUME 12, 2024

[15] M. Abbasi, E. Mohammadi Pasand, and M. R. Khosravi, ‘“Workload
allocation in IoT-fog-cloud architecture using a multi-objective genetic
algorithm,” J. Grid Comput., vol. 18, no. 1, pp. 43-56, Mar. 2020.

[16] N. Bisnik and A. Abouzeid, ‘“‘Queuing network models for delay analysis
of multihop wireless ad hoc networks,” in Proc. Int. Conf. Wireless Com-
mun. Mobile Comput., Jul. 2006, pp. 773-778.

[17] R.B.Leninand S. Ramaswamy, ‘“‘Performance analysis of wireless sensor
networks using queuing networks,” Ann. Operations Res., vol. 233, no. 1,
pp. 237-261, Oct. 2015.

[18] X.Liang, M. Nguyen, and H. Che, ‘““Wimpy or brawny cores: A throughput
perspective,” J. Parallel Distrib. Comput., vol. 73, no. 10, pp. 1351-1361,
Oct. 2013.

[19] V. Bhaskar, “A closed queuing network model with multiple servers
for multi-threaded architecture,” Comput. Commun., vol. 31, no. 14,
pp. 3078-3089, Sep. 2008.

[20] A.Roy,J. L. Pachuau, and A. K. Saha, “An overview of queuing delay and
various delay based algorithms in networks,” Computing, vol. 103, no. 10,
pp. 2361-2399, Oct. 2021.

[21] M. Gonzalez-Martin, M. Sepulcre, R. Molina-Masegosa, and J. Gozalvez,
“Analytical models of the performance of C-V2X mode 4 vehicular com-
munications,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1155-1166,
Feb. 2019.

[22] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2092-2104, Feb. 2020.

JINGYUN WEI was born in Shaanxi, China,
in 1999. She received the B.S. degree in infor-
mation countermeasure technology from Xi’an
Technological University, in 2021, where she
is currently pursuing the M.S. degree with the
School of Computer Science and Engineering. Her
research interests include queuing networks and
edge computing.

XIANGYANG LIANG received the B.S. degree
from Nanjing University of Science and Technol-
ogy, Nanjing, China, in 1996, the M.S. degree
in computer science and technology from Xi’an

o N Technological University, Xi’an, China, in 2004,

3 and the Ph.D. degree in computer simulation from

\3 Northwestern Polytechnical University, Xi’an,

in 2008. Since June 1996, he has been with the

i School of Computer Science and Engineering,
-

Xi’an Technological University, where he is cur-
rently a Professor of computer science and technology. His current research
interests include computer vision, big data analysis, artificial intelligence,
system modeling, and distributed interaction simulation.

31333

http://dx.doi.org/10.1109/TNET.2023.3286709

