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ABSTRACT Recently, deep clustering networks, which able to learn latent embedding and clustering
assignment simultaneously, attract lots of attention. Among the deep clustering networks, the suitable
regularization term is not only beneficial to training of neural network, but also enhancing clustering
performance. In the paper, we propose a deep fuzzy clustering network with mixed matrix norm
regularization (DFCNR). Specifically, DFCNR uses the weighted intra-class variance as clustering loss,
ℓ1,2 norm and the Frobenius norm of soft assignment matrix as regularization term, where the minimization
of ℓ1,2 norm aims to achieve balanced assignment, and maximization of Frobenius norm aims to achieve
discriminative assignment.Moreover, by solving the quadratic convex constraint optimization problem about
soft assignment, we derive the activation function of clustering layer. Extensive experiments conducted on
several datasets illustrate the superiority of the proposed approach in comparison with current methods.

INDEX TERMS Autoencoder, deep fuzzy clustering, deep learning, matrix norm regularization.

I. INTRODUCTION
Clustering analysis is an unsupervised learning method that
divides unlabeled datasets into several clusters by some
similarity measurement method. It’s one of the important
technologies in the field of data mining andmachine learning,
and is widely used in many fields, such as data analysis,
visualization, image segmentation [1]. Comparing with the
hard clustering methods [2] which assign each data point to a
single cluster, fuzzy clustering methods [3] allow data point
is assigned to more than one cluster with a certain probability,
which offers more flexibility and robustness. However,
fuzzy clustering methods still suffers from the difficulties in
separate real high-dimensional data with complex intrinsic
distribution.

In recent years, the powerful nonlinear fitting ability
and feature representation ability of deep learning have
shown advantages in unsupervised deep clustering models,
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which can better alleviate the defects of traditional clustering
algorithms. Deep clustering algorithms based on autoen-
coder(AE) [4], [5], [6], variational autoencoder(VAE) [7], [8],
adversarial autoencoder(AAE) [9], and generative adversarial
network(GAN) [10], [11], have achieved remarkable success
in various unsupervised applications [12], [13]. There are
also some deep clustering frameworks based on graph
convolutional networks(GCN). For example, Peng et al.
[14] proposes an attention-driven graph clustering network
to jointly perform feature learning and cluster assignment
in an unsupervised manner. Dong et al. [15] proposes an
attention-based hierarchical denoised deep clustering model,
which enables GCN to learn multiple layers of hidden
information and uses the attention mechanism to strengthen
the information, and uses denoising autoencoder to reduce
the impact of the clustering. In addition, Nguyen et al. [16]
improved the transformer based clustering structure on the
limitations of GCN to achieve automatic visual clustering
via an unsupervised attention mechanism. Mahon et al. [17]
proposes an ensemble clustering algorithm, called selective
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pseudo-label clustering (SPC), which combines reconstruc-
tion and clustering loss, and uses ensemble technique to select
different loss functions for different data points.

To enhance the performance of deep clustering networks,
various regularization techniques have been proposed in the
literature [18], [19], [20], [21]. IMSAT [18] follows the
regularized information maximization framework and uses
data augmentations to avoid degenerate solutions. Pang et.al
[19] uses extended mutual information as regularization to
achieve fair but firm assignment. Dizaji et al. [20] proposes
a deep embedding regularized clustering algorithm based
on relative entropy regularization. Jabi et al. [21] connects
several recent discriminative models directly with K-means
through theoretical proof, thus leading to a new soft and
regularized deep K-means algorithm. Most of these deep
clustering algorithms are based on mutual information and
entropy as regularization. However, in machine learning
techniques, matrix norm regularization is also widely used
in many fields, such as regression analysis, feature selection
[22]. Specifically, Ming et al. [22] proposes a flexible feature
selection method via ℓ1,2 norm regularization, which obtains
features that generally perform better in many real datasets.

In this paper, we propose a deep fuzzy clustering network
with mixed matrix norm regularization(DFCNR), which
extracts latent features through deep neural networks and
takes weighted intra-class variance as the clustering objective
to jointly optimize the representation learning process and
clustering process. The ℓ1,2 norm and the Frobenius norm
of soft assignment matrix are used as regularization, the
minimization of ℓ1,2 norm and themaximization of Frobenius
norm can achieve balanced and discriminative assignment.
In addition, the activation function of the cluster layer is
derived by solving the quadratic constraint optimization
problem. Finally, experiments are performed on several
datasets and compared with some classical and advanced
clustering algorithms. A large number of experiments show
the superiority of the proposed method.

Our main contributions are summarized as follows:
• We propose a simple but efficient end-to-end representa-
tion learning and clustering framework with only a few
hundred parameters.

• We employ a mixed matrix norm as a regularization
term to guide the representation learning and clustering,
which achieves balanced and deterministic clustering
assignment.

• We derive a novel activation function of fuzzy clustering
layer by approximately solving a quadratic optimiza-
tion problem, where the deterministic of predicted
clustering assignment is automatically controlled by a
hyper-parameter.

II. DEEP FUZZY CLUSTERING NETWORK WITH MATRIX
NORM REGULARIZATION
A. NOTATIONS AND PRELIMINARY
Given a data matrix A ∈ RN×K , the Frobenius norm of

matrix A is ∥A∥F =

(∑N
n=1

∑K
k=1 a

2
nk

)1/2
. In general,

TABLE 1. Basic notations for the proposed DFCNR.

the ℓp,q norm of matrix A is defined as ∥A∥p,q =(∑K
k=1(

∑N
n=1 |ank |p)q/p

)1/q
, with the computational math-

ematics convention that ℓp norm on the first index n and ℓq
norm on the second index k . Denote ⊙ as the element-wise
hadamard product, i.e., (A ⊙ B)nk = ankbnk and A(m) =

A ⊙ · · · ⊙ A, i.e., [A(m)]nk = amnk . And 1K is the vector in
RN with all entries equal to 1.

Denote the soft assignmentmatrix asP = [p1, · · · , pN ]T ∈

RN×K , where the element pnk represents the probability that
the n-th data point is assigned to the k-th class. And denote

πk =
1
N

N∑
n=1

pnk (1)

as the soft cluster frequencies, which are equal to the
proportion of data points assigned to each class. The notations
are summarized in Tab. 1.

B. OBJECTIVE FUNCTION
The objective function of the proposed DFCNR consists of
three terms, the weighted intra-class variance for compact-
ness of the representation, ℓ1,2 norm and Frobenius norm
regularization for balanced and deterministic assignment.

1) WEIGHTED INTRA-CLASS VARIANCE
The weighted intra-class variance is used to enhance the
compactness of the representation.

Lc ≜ ∥P(m) ⊙ D∥1,1

=

K∑
k=1

N∑
n=1

pmnk∥zn − µk∥
2 (2)

where the distance matrix D restores the squares of the
Euclidean distances of representation zn and the cluster
centers µk , i.e., Dnk = ∥zn − µk∥

2. The hyperparameter
m ∈ [1, +∞) controls the smoothness of soft assignment.
We set m = 2 for all experiments.

2) ℓ1,2 NORM
The ℓ1,2 norm is applied to obtain balanced clusters. Consider
that the probability pij ≥ 0, we have

Lb ≜ ∥P∥
2
1,2

=

K∑
k=1

(
N∑
n=1

|pnk |)2

=

K∑
k=1

(
N∑
n=1

pnk )2
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FIGURE 1. Network architecture of DFCNR.

= N 2
K∑
k=1

π2
k (3)

Since
∑K

k=1 πk = 1, the ℓ1,2 norm (3) reaches a minimum

value of N 2/K 2 at πk = 1/K for every k , i.e. each cluster
is selected with uniform probability. Therefore, the ℓ1,2
norm (3) helps to avoid large cluster that most instances are
assigned to the same cluster.

3) FROBENIUS NORM
The Frobenius norm is used to improve the deterministic
of clustering assignment. According to the definition of
Frobenius norm, we have

Lf ≜ ∥P−
1
2
∥
2
F

=

N∑
n=1

K∑
k=1

(pnk −
1
2
)2 (4)

Since
∑K

k=1 pnk = 1 for each n, the above term (4) reaches
a maximum value ofNK/4 if and only if each pn is an one-hot
vector, specifying a deterministic distribution.

4) THE TOTAL LOSS FUNCTION
The overall objective function of the proposed DFCNR is
given by

L = Lc + αLb − βLf

= ∥P(2) ⊙ D∥1,1 + α∥P∥
2
1,2 − β∥P−

1
2
∥
2
F (5)

where α and β are the hyperparameters that balance the three
objective terms, note that the value of α and β are different
for different datasets and are very critical.

C. NETWORK ARCHITECTURE
The architecture of the proposed DFCNR consists of two
parts of layers. Specifically, the representation learning layer
for feature extraction and the clustering layer for clustering.
Fig. 1 shows the network architecture of DFCNR.

1) REPRESENTATION LEARNING LAYER
Given the data point xn, we utilize convolutional neural
network to learning its latent representation zn as follows:

zn = CNN(xn; θ ) (6)

where CNN represents convolutional neural network, and θ

is the parameter of CNN.

2) CLUSTERING LAYER
Given the n-th latent feature vector zn ∈ Rr , the clustering
layer predicts its clustering assignment pn ∈ Rk via (13)
with network parameters µ = {µ1, µ2, . . . , µk} ∈ Rr×k ,
where pnk represents the probability that the n-th data point
is assigned to the k-th class. We consider this layer as
fully-connected layer with customized activation function
shown in (13).
According to the loss function (5), the sub-problem about

soft clustering assignment can be rewritten as the following
constraint optimization problem:

argmin
P

∥P(2) ⊙ D∥1,1 + α∥P∥
2
1,2 − β∥P−

1
2
∥
2
F

s.t. P ≥ 0; P1K = 1N (7)

In general, ∥P(2)⊙D∥1,1 and ∥P∥
2
1,2 are non-smooth functions

of P due to the existence of absolute value sign in the
definition of ℓ1,1 and ℓ1,2 matrix norm. Fortunately, the
non-negativity constraint of P eliminates the non-smoothness
of problem (7).
The above optimization problem (7) does not have closed

form solution, but we can derive its approximate solution by
the Lagrange multiplier method. The following is the detailed
derivation process. First, its Lagrangian function is

L =

K∑
k=1

N∑
n=1

p2nk∥zn − µk∥
2
+ α

K∑
k=1

(
N∑
n=1

pnk )2

− β

N∑
n=1

K∑
k=1

(pnk −
1
2
)2 + λ[

K∑
k=1

pnk − 1] (8)

And then we take the derivative of L with respect to pnk ,
and we set the derivative to be 0.

∂L
∂pnk

= 2∥zn − µk∥
2pnk + 2α

N∑
n=1

pnk − 2β(pnk −
1
2
) + λ

= 0 (9)

Assuming that πk = 1/K in (1) and substituting it into (9)
for simplification, we obtain:

2∥zn − µk∥
2pnk +

2αN
K

− 2βpnk + β + λ = 0 (10)

Then:

pnk =
−λ − β −

2αN
K

2(∥zn − µk∥
2 − β)

(11)

Since
∑K

k=1 pnk = 1, the sum of k on both sides of the
above equation yields an expression for λ:

λ = −
2∑K

k=1
1

(∥zn−µk∥2−β)

− β −
2αN
K

(12)

VOLUME 12, 2024 28679



F. Chen et al.: Deep Fuzzy Clustering Network With Matrix Norm Regularization

Algorithm 1 DFCNR Algorithm
Input: The input data X , the number of clustersK , Maximum
iterationsMaxIter
Output: The soft clustering assignment matrix
P
1: Initialize θ and µ

2: for iter ∈ 1, 2, · · · ,MaxIter do
3: Compute the latent representation zn by (6)
4: Compute the soft assignment pnk by (13)
5: Update θ and µ by Adam
6: end for

TABLE 2. Datasets description.

Finally, taking the expression of λ into (11). By simplifi-
cation, the final expression of pnk is obtained as follows:

pnk =
(∥zn − µk∥

2
− β)−1∑

k ′ (∥zn − µk ′∥2 − β)−1 (13)

Note that formula (13) degenerates into the activation
function of DEC [4] andDFC [19] if we set β = −1 or β = 0.
In this article, we set β as a small positive number to ensure
pnk is a probability function. The larger value of β we set, the
more deterministic assignment it got.

D. DFCNR ALGORITHM
Given an initial guess of parameters of representation
learning layer and clustering layer, the proposed DFCNR
algorithm conducts the following two steps alternatively.
In the forward step, DFCNR estimates the latent embedding
and its soft assignment via neural networks. In the backward
step, DFCNR updates the parameters via adaptivemomentum
algorithm(Adam). The whole algorithm is summarized in
Algorithm 1.

III. EXPERIMENTAL ANALYSIS
In this section, experiments are carried out on four classical
datasets, handwritten digit image datasets (MNIST-full,
MNIST-test), a clothing image dataset consisting of images
such as skirts and jackets (Fashion-MNIST) and a text dataset
(Reuters), respectively. For Reuters, we randomly sampled
a subset of 10000 examples and followed DEC [4] using
4 root categories: corporate/industrial, government/social,
markets and economics as labels and excluded all documents
with multiple labels. We also calculated tf-idf features on
the 2000 most frequent words. A brief description of these
datasets in summarized in Tab. 2.

The proposed DFCNR algorithm is compared with some
classical clustering algorithms (K-means [2], FCM [3],
GMM [23], N-Cuts [24]), as well as some recent deep
clustering algorithms (SEC [25], DEC [4], IDEC [5], VaDE

[7], DCC [26], JULE [6], DEPICT [20], ClusterGAN [10],
DSCDAN [27], SR-K-means [21], S3VDC [28], GrDNFCS
[29], ACe/DeC [30], DFC [19], ADEC [9]).

A. EVALUATION METRICS
The commonly used clustering accuracy (ACC) and normal-
ized mutual information (NMI) are used as evaluation metrics
to measure the performance of clustering.

ACCmeasures the similarity between the true label and the
predicted label:

ACC = max
m

∑N
n=1 1 {ln = m(cn)}

N
(14)

where N is the total number of samples, ln is the ground-
truth, cn is the cluster assignment produced by the algorithm,
and m ranges over all possible one-to-one mappings between
clusters and labels.

NMI measures the degree of agreement between two data
distributions based on the idea of information entropy:

NMI =
MI (c, l)

max (H(c),H(l))
(15)

where H(l) is the entropy of l and MI is the mutual
information of c and l.

B. EXPERIMENTAL SETUP
For image and text data, the convolutional autoencoder
(ConvAE) and the stacked autoencoder (SAE) are used for
feature extraction. For datasets using ConvAE, the structure
parameter is Conv532 → Conv564 → Conv3128, where Conv

k
n

represents a convolution layer with the number of channels n,
and the convolution kernel size k , and then a fully connected
layer is used to map to the K -dimensional embedding space.
For Reuters, the SAE also consists of four fully connected
layers. Before training, all raw data is normalized to [0, 1],
the learning rate is set to 0.001 and adopts Adam [31] as
optimization method.

C. CLUSTERING RESULTS
The experimental results on four datasets are shown in Tab. 3
(in terms of ACC and NMI), where the best results are
marked in bold. Most of the clustering results by different
methods were taken from their published articles. Mark (*)
indicates results from their own published paper, mark (†)
indicates results presented in other authors’ published
articles, and mark (−) indicates that no actual results could
be obtained. From the experimental results, we can see that
DFCNR achieves better performance on all datasets, and
obtains the best ranking on MNIST-full and Fashion-MNIST.
Compared to traditional clustering methods such as K-means,
it clearly has superior clustering performance. Compared
with other existing deep clustering methods such as DEC,
IDEC, GrDNFCS, the superiority of the method is still
demonstrated. Especially on Fashion-MNIST, we surpassed
ADEC 12.3% on ACC.

28680 VOLUME 12, 2024



F. Chen et al.: Deep Fuzzy Clustering Network With Matrix Norm Regularization

TABLE 3. Comparison of the Clustering Performance.

FIGURE 2. The evolution of features and their corresponding clustering accuracy (in brackets) across the whole training
stage on MNIST-test dataset, the colors indicate the clustering assignment obtained from DFCNR.

D. EMBEDDING VISUALIZATION
The proposed DFCNR algorithm is capable of simultane-
ously learning latent embedding and clustering assignments.
In order to observe how DFCNR converges to the final result,
we perform t-SNE [32] at four different stages on MNIST-
test dataset. Based on the results shown in Fig. 2, the original
data all mixed together before training. As the training
process goes, it is clear to see that the learned embedding
gather and scatter more distinctly, and the intra(inter)-cluster
variance has a significant decreases(increase), which means
that the learned embedding become more and more suitable
for clustering, also the clustering accuracy is keep increasing.

E. PARAMETERS SENSITIVITY
As mentioned before, the choice of α and β is crucial
for DFCNR. We experimented by sampling the effect of
different α and β on the performance. For the Reuters
dataset, we conduct experiments by sampling α =

{0.001, 0.01, 0.1, 1, 10} and for the other datasets by sam-
pling α = {0.1, 1, 10, 50, 100}. All datasets are experimented
by sampling β = {0.001, 0.01, 0.1, 1, 10}. Fig. 3 shows the
clustering accuracy of the proposed model on the datasets
MNIST-full, MNIST-test, Fashion-MNIST, and Reuters with
the two varying hyper parameters. From Fig. 3, we can
observe that the model achieves the best performance when

FIGURE 3. ACC with different α and β.

setting α = 1 and β = 10 on MNIST-full, MNIST-test
and Fashion-MNIST datasets, β = 1 on Reuters dataset.
We suggest to choose α = 1 for the proposed model and vary
β in [1,10] for difference datasets in the paper.

F. ABLATION ANALYSIS FOR REGULARIZATION
In order to prove the effectiveness of the proposed mixed
matrix norm regularization, experiments are carried out on
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FIGURE 4. Performance comparison with and without Lb and Lf
regularization terms on the Reuters dataset.

FIGURE 5. Plot of clustering assignment matrix with and without Lf
regularization on the MNIST-test dataset.

the Reuters dataset to evaluate the influence of regularization
(Lb and Lf ) on the clustering performance, where Lb
represents the ℓ1,2 norm and Lf represents the Frobenius
norm. Fig. 4 shows the effect of the presence or absence of
regularization on ACC and NMI. It is clear that ACC and
NMI are much higher after using two terms as regularization,
which indicates that the mixed matrix norm regularization
term is beneficial to improve the clustering performance.
As mentioned above, the mixed matrix norm regularization
aims to achieve discriminative and balanced cluster assign-
ments. We conducted experiments with and without mixed
matrix norm regularization on the MNIST-test dataset, and
Fig. 5 plots the the ordered clustering assignment matrix
with and without Lf on MNIST-test dataset. Notice that the
assignment obtained with Lf regularization has much more
clearly block structure and larger color difference, which
reflects the discriminant of assignment; on the other hand,
comparing with Fig. 5(a), the size of block is almost uniform
in Fig. 5(b), which implies the balance of assignment.

We also carry out corresponding experiments to illus-
trate the balance of allocation. We conduct experiments
on MNIST-full, MNIST-test, Fashion-MNIST and Reuters
datasets respectively. Fig.6 shows the impact of Lb with
respect to the number of points assigned into each class,
which calculated from predicted clustering assignment.
As can be seen from Fig.6, taking the Fashion-MNIST dataset
as an example, the ground truth distribution of clustering
label is shown in green line, which are uniformly distributed.
The red line represents the result according to our objective

FIGURE 6. The impact of Lb on clustering results on different datasets.
The horizontal axis represents the number of clusters in the dataset,
and the vertical axis represents the proportion of the number of each
class to the total number.

TABLE 4. Performance comparison of three different soft assignment
estimation methods based on ACC and NMI.

function, the orange one without Lf (Frobenius norm), and
the blue one without Lb (ℓ1,2 norm). It is obvious that the
distribution of the blue line points is very uneven, and most
of the data points are assigned to the second and third classes.
The red and orange lines with Lb are more evenly distributed
than the blue line, and the same conclusion can be drawn
for the other two datasets. Therefore, it also verifies the
effectiveness of Lb (ℓ1,2 norm) to measure the balanceness.

G. INFLUENCE OF ACTIVATION FUNCTIONS
We further investigate the impact of activation functions,
reporting model performance (ACC and NMI) using three
different activation functions on different datasets. The
activation functions used include Fuzzy C-means(FCM),
t-distribution and formula (13). In Tab.4 we mark the best
results in bold, and it can be seen that the formula (13)
outperforms the other activation functions in all tests.

IV. CONCLUSION
In this paper, we propose a mixed matrix norm regularized
deep fuzzy clustering network (DFCNR) for feature learning
and cluster assignment in an end-to-end manner. The
encoder network is used to map the original data into
a more appropriate latent space, and the learned latent
representation is fed to the designed fuzzy clustering layer
(FCL) to predict the soft assignment. For clustering, weighted
intra-class variance is used to enhance the compactness

28682 VOLUME 12, 2024



F. Chen et al.: Deep Fuzzy Clustering Network With Matrix Norm Regularization

of the learned embedding. From the perspective of matrix
norms, ℓ1,2 norm and Frobenius norm are proposed as
regularizations to obtain more balanced and discriminative
soft assignments. The effectiveness of the proposedmethod is
verified by experiments on different datasets. Compared with
the traditional clustering methods and the current popular
deep clustering methods, the proposed method has higher
clustering accuracy. It effectively solves the performance
defects of traditional algorithms, improves the clustering per-
formance of fuzzy clustering on high-dimensional complex
datasets, and verifies the superiority of the proposed model.
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