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ABSTRACT In recent years, research in social recommendation has shown that modeling implicit relations
effectively alleviates data sparsity and cold-start problems. However, related research often overlooks the
influence of user and item rating biases when constructing implicit relations. The divergence in user rating
systems and item evaluation standards often results in ratings displaying starkly contrasting extremes,
making it difficult to identify implicit relations among users (or items) to fulfill the requirements of
personalized recommendations. To this end, we propose a fusion of personalized implicit relations for
social recommendation (FIR-REC) based on graph neural networks. First, we regard the average ratings
of users and items as benchmarks to eliminate the bias of user-item ratings. Based on this benchmark,
user-user (item-item) pairs with the same preferences are regarded as implicit candidate pairs. Considering
the heterogeneity of social relationships, we propose a preference hedging formula to calculate preference
correlation coefficients for each implicit candidate pair and select the top-k ranked implicit friends for each
node to construct a personalized implicit network. Specifically, this formula can utilize different scoring
strategies to calculate the preference scores for consistency and inconsistency in implicit pairs. To enhance
robustness, it introduces a balancing factor to mitigate the influence of less interacted implicit pairs. Next,
we utilize a Graph Attention Network to aggregate neighbor node information in explicit and implicit social
relations. Finally, we utilize a user-specific gating mechanism to integrate user representations from explicit
and implicit social relations. This helps assess the importance of the two types of relations for different
users, enabling precise and stable predictions. Extensive experiments on three open datasets demonstrate the
superiority of our model compared with state-of-the-art social recommendation models.

INDEX TERMS Social recommendation, implicit social networks, recommender system, graph neural
networks.

I. INTRODUCTION theories and homophily, when users consider purchasing spe-

In the era of information proliferation, the development
and progress of recommendation systems have effectively
mitigated the issue of information saturation. Traditional
recommendation models that rely solely on user-item inter-
action data have not demonstrated ideal performance due to
data sparsity and the cold start problem in practical applica-
tions. To address this issue, recommender systems that treat
social relations as supplementary information have garnered
widespread attention. As well supported by social influence
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cific products, their friends within their social circle often
play a significant role in their decision-making process, lead-
ing to similar preferences. With the widespread popularity
of online social networks, communication between users has
become more frequent and intimate, further amplifying social
factors” impact. Consequently, researchers have started to
explore methods to incorporate these social factors into rec-
ommendation models, opening valuable avenues to alleviate
data sparsity and enhance the overall performance of recom-
mendation systems.

To model the two relations in the social recommendation,
namely user-user and user-item relations, existing research
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always regards them as two graphs. They utilize Graph
Neural Networks (GNNs) [1], [2] which mimic biological
neural networks to aggregate neighbor information from
both graphs and connect them to learn integrated represen-
tations. This approach effectively simulates social relations
among users and interactions between users and items. For
instance, in SRMGCNN [3], to obtain graph embeddings
for users and items, Graph Neural Networks (GNNs) were
employed. These embeddings were integrated with Recurrent
Neural Networks (RNNs) to facilitate a diffusion process.
GraphRec [4] utilizes Graph Neural Networks (GNNs) to
capture and integrate information from bipartite graphs and
social networks, effectively modeling graph data for social
recommendation.

While there have been enhancements in the performance
of these social recommendation models, we contend that the
existing social recommendation models remain inadequate.
The sparsity and unbalanced distribution of observable social
connections have impeded the further development of social
recommendations. Previous research [5] and [6] has already
pointed out that the benefits of incorporating social data into
recommendation systems are not ideal due to the limited
quantity of social relations. To this end, some work [7], [8]
mines implicit relations of users and items to enrich data.
Implicit user relations are established between two users with
similar preferences but unobserved social connections, while
implicit item relations are indicated by items preferred by
the same user. Implicit relations are better at reflecting user
preferences compared to explicit relations. We can obtain
more comprehensive data and make more accurate recom-
mendations by combining these two types of relations.

In research related to the fusion of implicit relations
[9], [10], we found that none of the research focused on
addressing the bias issues in user and item ratings during the
construction of implicit relations. Specifically, when using a
5-point scale, some users might think rating an item with a
score of 3 is quite low, while others might consider a score of
1 indicative of poor quality. For different types of products,
such as electronics and everyday goods, their rating distribu-
tions often exhibit distinct differences. Rating bias leads to
biases in recommendation systems, making it more difficult
to capture users’ true interests and preferences. Users may
only see items similar to what they have rated in the past while
potentially missing out on other items that might align with
their interests. This can lead to the recommendation system
being unable to accurately capture user interests, resulting in
a decrease in recommendation accuracy. Therefore, how to
eliminate the bias of user and item ratings to construct more
personalized implicit relations becomes an important issue
that needs to be addressed urgently.

To address this, we propose a model for social recom-
mendation based on graph neural networks called ‘Fusion of
Personalized Implicit Relations for Social Recommendation.
To eliminate the bias of user and item ratings, we regard
the average rating of each user and item as their preference
benchmarks, enabling each individual to have a personalized
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preference standard. Considering the heterogeneity influ-
enced by social relations, we categorize the preferences of
implicit pairs into consistent and inconsistent preferences.
We design a preference hedging formula to comprehensively
measure the preference correlation of implicit pairs, con-
structing personalized implicit social networks and implicit
item networks. This partially mitigates the problem of data
sparsity. Finally, we employ a gating mechanism to assess
the importance of these two social networks for differ-
ent users, weakening unimportant features and strengthen-
ing important features, thereby improving recommendation
performance.

In summary, the main contributions of this work are as
follows:

(1) We propose a construction method for personalized
implicit networks and design a new preference corre-
lation formula that relieves data sparsity while elimi-
nating user and item rating bias.

(2) We devise a user-specific fusion mechanism to con-
struct the ultimate representation for each user within
the context of both social networks. In this way, the
importance of the two social networks for different
users can be determined.

(3) We evaluate our model on a real-world dataset and
demonstrate the effectiveness of our proposed model.

The rest of the paper consists of the following sections.
The paper reviews related work on recommender systems
and implicit relations modeling in Section II, Section III
describes the basic concepts and detail of the algorithms of
this paper. Experimental results on real datasets are show-
cased in Section IV, where a thorough analysis of the out-
comes is provided. Section V summarizes the work of this
paper and gives an outlook.

Il. RELATED WORKS

A. GRAPH-BASED RECOMMENDATION

In recent years, the application of Graph Neural Network
(GNN)-based methods has garnered significant attention due
to their impressive performance in effectively modeling and
learning from graph-structured data [11], [12], [13]. A promi-
nent utility of Graph Neural Networks (GNN5s) lies in their
ability to capture a holistic and comprehensive representation
of all nodes within a graph. This is often achieved by employ-
ing multiple graph propagation layers to aggregate influential
information from higher-order neighbors. Hamilton’s study
[14] reduces the complexity of the recommendation system
significantly by limiting the number of neighbors through
sampling. Building upon this, PGE [15] introduced fur-
ther enhancements to the sampling procedure, incorporating
neighbor similarity as a weighted factor, thereby refining the
information aggregation process. RGAT [16] delved into the
realm of relational information-based attention mechanisms,
encompassing both intra-relationship and cross-relationship
graph attention. Zhu et al. proposed a recommendation model
[17] applied to MOOCs, which utilizes the attention mecha-
nism to extract information from heterogeneous graphs and
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FIGURE 1. The overall architecture of the model. It consists of three main components: User modeling, item

modeling, and score prediction.

knowledge graphs to eliminate noise and improve the robust-
ness of the model.

B. SOCIAL RECOMMENDATION

Inspired by social theory studies such as homogeneity [18]
and social influence [19], the choices made by users are
frequently shaped by the preferences of their social friends,
which has led to the proposal of a number of recommendation
models that incorporate social relations.

In the early stages, research on social recommendation pri-
marily revolved around discussing how to effectively leverage
explicit social relations to enhance recommendation per-
formance. Ma et al. [20] proposed a model that connects
social information and rating data by sharing latent user
features and conducting co-factorization on the rating matrix
and relationship matrix. NSCR [21] employed users with
social acquaintances as intermediaries to propagate user rep-
resentations modelled through attribute-aware collaborative
filtering. GraphRec [4] combines user-item interactions with
the social graph to encompass interactions and opinions. This
approach consolidates user and item data to capture user
preferences.

Subsequent research findings [22] have indicated that
employing explicit social relations yields less than ideal
results, prompting a shift in focus towards implicit rela-
tions. CUNE [23] identifies trustworthy implicit friends
through random walks and employs them to regularize matrix
factorization prediction models. Wang and his colleagues
[24] proposed leveraging strong and weak social relations
between two nodes in the context of social recommenda-
tions. In [25], the model distinguishes between close friends
and casual acquaintances by learning personalized similar-
ity thresholds for different users. Furthermore, some studies
have introduced trust metrics aimed at identifying trustwor-
thy implicit connections by calculating and forecasting trust
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ratings derived from user interactions [26], [27]. Despite the
improvements achieved by the aforementioned models, they
tend to overlook the bias in user and item ratings.

We refer to a number of models based on scoring bias.
In [28], The model combines individuals’ trust bias with
impersonal topological information to propose a classifica-
tion method to solve the trust/distrust prediction problem.
TrustTF [29] utilizes users’ social trust information and
implicit feedback to extend the bias tensor decomposition,
effectively alleviating the data sparsity problem. Inspired by
related papers, we propose a graph neural network-based
approach that fuses implicit social networks for rating pre-
diction while simultaneously addressing user and item rating
bias, thereby enhancing the model’s performance.

lil. METHOD

We propose a comprehensive model structure, as depicted
in Fig. 1, comprising three core modules: User Modeling,
Item Modeling, and Rating Prediction. Our approach aims
to overcome biases inherent in user and item ratings, con-
structing personalized implicit relation graphs for users and
items. These graphs lay the foundation for capturing nuanced
associations.

The User Modeling module encompasses three essential
facets: the user-item interaction graph, the user-implicit rela-
tion graph, and the user-social graph. Each graph offers a
distinct lens to comprehend user dynamics. At the founda-
tional level, the Item Aggregation module deciphers user
preferences by consolidating interactions alongside associ-
ated ratings. Subsequently, the Social Aggregation module,
operating as the second layer, synergizes implicit user con-
nections and explicit social ties. This approach enables a dual
semantic perspective on user social information, enriching
our understanding of their preferences. The resulting user
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embeddings from these two semantic viewpoints harmo-
niously merge to yield final latent factors.

Turning our attention to Item Modeling, we tackle two
critical aspects: the item-user interaction graph and the item’s
implicit relation graph. To obtain features from these two
different graphs, we use two different aggregations. First, user
aggregation is implemented at the foundational level by ana-
lyzing user interactions to shape item representation. Then,
the second layer enhances item representation by leveraging
latent project relationships. Finally, model parameters are
optimized within the score prediction module.

In the following sections, we provide detailed explanations
for each component of the model. This holistic approach
ensures a deep understanding of the proposed model archi-
tecture and functions.

A. PRELIMINARIES
In this section, to better understand the FIR-REC model,
we first define the key concepts.

DEFINITION 1. User-user graphs (social networks). Rep-
resent a social network by a graph G = (U — U, E,)), where
U = {uy,uy,...,u,} is the set of nodes (users), U — U
denotes a set of users and E,, denotes an edge between users.
If (u;, uj) € E, indicates that there is a relation between nodes
u; and u;, (u;, u;) is also called a user pair. For a given node u;,
N, denotes the set of first-order neighbors of user u.

DEFINITION 2. User-item bipartite graph. Represent a
user-item network by a graph G = (U — V, Ey), here V =
{vi, v, ..., v} is the set of nodes (items), U — V denotes
a set of user-item pairs, and R, denotes the ratings (edges)
between users and items. If u; rates v;, r; is the rating score.
Otherwise, we use 0 to denote the unknown rating from u; to
\{i, i.e., r,:,' =0.

DEFINITION 3. Adaptive Preference Benchmarks. To
eliminate the influence of user and item rating biases, the
average rating is used as a personalized benchmark to classify
preferences.

I = ZVjENu ru’vj (1)
u — Nv
. Ty u;
r_V _ Zu,eNV VUi (2)
Ny

where N, and N, are the set of first-order neighbors of users
uandv.

DEFINITION 4. Personalized preferences. According to
the delineated adaptive preference cut-off. The preferred item
of user {u# : v|r,, > 7,}. The non-preferred item of user
{u : vlry,y < 7y}. The preferred user of item {v : u|r, , > 7,}.
The non-preferred user of item {v : u|r, , < 7)}.

DEFINITION 5. Implicit candidate pairs. If users u; (item
v;) and u; (item v;) are not directly related in a social (item)
network, but may have certain similar preferences (pre-
ferred), i.e., they have the same preference for interacting
items (users), they are said to be implicit candidate pairs.

DEFINITION 6. Preference scores. According to the per-
sonalized preference calculation, implicit candidate friend
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pairs (item pairs) preference for the same set of items (users)
are registered as N,, the two preferences are not the same set
of items (users) are registered as Ny, through the different
preference scoring strategy to calculate the preference scores
I, of the two as well as non-preference scores I, in this
paper, we directly use the implicit pairs of the two sets of the
number of items (users) within the set (i.e., each interaction
item (user) score value of 1) as the final scores.

DEFINITION 7. The preference correlation coefficient k.
The preference scores I, obtained according to Definition 6,
as well as the non-preference scores I, are passed through
the preference hedging formula:

R ®
p up

the preference correlation coefficient k € [0, 1) of the two

is obtained, where « is called the balancing factor, which

can reduce the influence of low frequency interacting user

pairs (item pairs) and improve the reliability of the implicit

network.

B. BUILDING IMPLICIT RELATIONS

The user-item bipartite graph is a special kind of graph in
which links between two disjoint nodes usually differ in type
and have different semantics. Compared to modeling general
graphs, bipartite graphs can provide additional information.
First, we can directly model the main structure of a bipartite
graph by observing the links between two nodes (user-item
interactions in a user-item bipartite graph), which reveal the
exchange of information flow between two distinct types of
nodes, forming an interclass relationship.

In addition to considering modeling interclass relations
between different sets of nodes, it is also important to model
intraclass messages passed between nodes of the same type.
Compared to ordinary homomorphic graphs, bipartite graphs
exhibit a distinct characteristic: connections within a bipar-
tite graph can exclusively occur between two separate sets
of nodes, with no direct links between nodes of the same
type. For example, in Fig. 2(a), connections between the U
and V node sets create a bipartite graph, and nodes of the
same type remain unconnected. Nevertheless, the bipartite
graph embedding model must not solely focus on direct
links between distinct node sets, as implicit associations
among nodes of the same type also contain valuable semantic
information.

Although there is no direct explicit link between nodes
of the same type, there may be an implicit relation between
nodes of the same type. If two nodes from the set of nodes
U(V) can be connected through a node of the set of nodes
V(U), then we consider these two nodes from U(V) to
have higher connectivity. We can extend this straightforward
observation into a broader theory: in a bipartite graph, when
two nodes of the same type are connected by a path, it implies
the existence of an implicit intra-class relationship between
them.
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FIGURE 2. Building potential implicit networks.

As in Fig. 2 (b) and (c), in this paper, we take all the
user (item) pairs with the same preference for interacting
items (users) as implicit candidate pairs and filter each
implicit candidate pair by defining 5 to the set of items (users)
with the same preference denoted as N, and the set of items
(us- ers) with dissimilar preference denoted as N, and com-
pute the preference scores I, as well as the non-preference
scores I, of the two according to different preference scoring
strategies. At this point, we find that there is a problem. For
an implicit pair, when the count of items (users) with the
same preference is 8, and the count of differing preference
items (users) is 4, its similarity will be the same as that of an
implicit pair when the count of items (users) with the same
preference is 2, and the count of differing items (users) is 1.
However, the former with the total interactions as 12 will have
a higher degree of credibility of the similarity than that of
the latter with the total interactions as 3 because, according
to the statistical principle of the law of large numbers, the
total number of the same interacting items The more, the
closer to the true probability, i.e., the true similarity, so in
Definition 7 we add a balancing factor « to reduce the weight
of implicit pairs with fewer identical interactions, while o has
little effect on the weight of implicit pairs with more identical
interactions.

After obtaining all implicit candidate pairs and their cor-
responding preference correlation coefficients for each inter-
acting item (user), to further determine similar users (items),
we sort the preference correlation coefficients of all implicit
candidate pairs for each user (item). We then select the top-k
similar users (items) for each user (item) to construct the final
implicit relation graph.

The pseudo-code of the implicit network generation
algorithm proposed in this paper is shown in Table 1.

C. USER MODELING

The objective of user modeling is to uncover underlying user
factors. For this purpose, we segment user modeling into
three components: user-item interaction graph, user-implicit
relationship graph and user-explicit relationship graph. The
initial layer, referred to as item aggregation, is employed to
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TABLE 1. Implicit network generation algorithm based on personalized
preferences.

Input: user-item interaction set, user-item rating set, item-user interac-
tion set, item-user rating set.
Output: user-user (implicit friend) set, item-item (implicit item) set.

1. According to Definition 3, the adaptive preference baseline of
the user (item) is calculated.

2. According to Definition 4, filtering (non)preferred items (users)
for users (items) based on preference benchmarks.

3. According to Definition 5, construct the set of implicit candidate
pairs.

4. According to Definition 6, compute the preference scores I, as
well as the non-preference scores I, for implicit candidate
pairs.

5. According to Definition 7, compute the preference correlation
coefficient & for implicit candidate pairs.

6.  Sort the relative preference coefficients of the implicit candidate
pairs containing the users (items) and take the top-k as the final
implicit friends (items) of u; (v)).

7. Returns the set of implicit friends (items).

acquire user latent factors within the item space through the
user-item graph. Subsequently, the second layer, known as
social aggregation, is utilized to capture latent representations
of users within implicit and explicit social relationships. The
two representations in the second layer are then adaptively
fused to obtain the final user embedding.

1) ITEM AGGREGATION

This section is dedicated to extracting latent item character-
istics from the user-item interaction graph to gain insights
into user preferences. Within the user-item graph, one can
find interactions between users and items and users’ assess-
ments and ratings of these items. By considering user-item
interactions and ratings, we can aggregate this information to
uncover latent user factors within the item space. Specifically,
we use the following equation to aggregate this information
to form initial user preferences.

B =W - fugg item({Xia Ya e NOD +b) (4

where N (@) is the set of items with which user u; interacts,
Xiq 1s a representation vector representing the opinion-aware
interaction between u; and item Vg, fuge_irem denotes the item
aggregation function which is a nonlinear activation function,
and W and b are the weights and biases of the neural network,
respectively.

Opinions on items (r € {1, 2,3, 4, 5}) capture the user’s
preference for the items, so an opinion embedding. vector
(e, € RY) is introduced to represent each type of opinion r.
We then employ MLP to process the item embedding g, and
e, to obtain the opinion-aware interaction representation x;:

Xia =fMLP(qa Dey) (5)

where @ represents the operation of concatenate vectors.
The aggregation strategy for fuee irem 1S inspired by
the attention mechanism [30], [31] to assign personalized
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weights to each user-item pair:
- .
hi =o(W- {ZaeN(i) UjgXia} + D) (6)

where «;, represents the opinion perception of the user u;

direct interaction items obtained by normalizing the attention

score of x;, for v; embedded p; using the SoftMax function:
exp(w] - o (Wilxia @ pil +b) +b)

> aen) XPWS - o (Wilxia ® pil + b) + b)

N

Qig =

2) SOCIAL AGGREGATION

According to social correlation theory [32], users’ prefer-
ences are influenced by their friends. For both the obtained
implicit and explicit relations of users, we process them
through GAT:

;= (W - fugg sociat({h}, Yo € N(D}) + b) ®)
B =o(W- {ZoeN(o Bioh'} + b) ©)

exp(wh - o(Wi[h! ® pi] + b) + b)
> oen() expws - o (Wilhl @ pil + b) + b)

Bio = (10)
where B;, can be regarded as the degree of correlation
between users.

3) LEARNING USER LATENT FACTORS

To enhance the acquisition of user latent factors, it’s essential
to collectively consider latent factors related to items and
those linked to social connections because user-item graphs
and social graphs offer distinct perspectives on user informa-
tion. We use MLP to fuse the user’s preference profile with
each of the two social profiles:

P = o (Wil @ ;') (11)

1

W™ = o (Wilh! @ 13*]) (12)

4) USER EMBEDDING FUSION

In the above section, we have obtained the embedded repre-
sentations of each user under two different relations, corre-
sponding to the user’s explicit and implicit social relations.
Now we need to design a strategy to integrate these two
representations. For this purpose, we can employ a variety
of common strategies such as concatenation and average
pooling. Next, we will delve into the detailed implementation
of these strategies individually.

a: CONCATENATION

To obtain a higher-level feature representation, we can
employ a concatenation strategy to connect the explicit and
implicit social relation embedding representations of users.
Specifically, we concatenate these two embedding represen-
tations along the dimension direction and map them to a
D-dimensional vector space using a learnable weight matrix.
For each user, the strategy can be formulated as follows:

hy = Welh§™® @ B (13)
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b: AVERAGE POOLING

To combine the explicit and implicit social relation embed-
ding representations of users, we can adopt an average pool-
ing strategy. Specifically, we compute the average of these
two embedding representations in each dimension and form
a D-dimensional vector of these averages as the integrated
embedding representation. For each user u, the strategy can
be described as follows:

1 .
hy = E[h?*p + 1" (14)

c: GATING MECHANISMS

Although the above two strategies are simple and easy to
understand, we believe that they cannot generate satisfac-
tory embedding representations for each user. Specifically,
for each user, these two separate embedding representa-
tions should play different contributions to generate an
information-rich user representation. Therefore, drawing on
the idea of LSTM [33] modeling, we employ a user-specific
gating mechanism, serving as an adaptive fusion strategy,
to assess the significance of the two social relations in the
ultimate representation of a specific user. The computational
form of this gating mechanism is as follows:

gu = o (W™ + Woh"™) (15)

hy =g O M +(1-g)on™ (16)
where © denotes the elementwise product operation between
two vectors, o denotes the sigmoid function, W and W
denote the learnable weight matrix. Through the gating mech-
anism, the user’s embedding based on implicit and explicit
relations is fused into the final user representation.

D. ITEM MODELING

Item modeling is used to learn the underlying factors of item
vj. Items are not only associated with users in the user-item
graph, but also with items in the item-item implicit graph,
and to intrinsically combine these two graphs, we model the
item-user graph and the item-item graph through GAT in the
same way as for user modeling, respectively.

1) USER AGGREGATION

The aggregation of user information involves consolidating
data from all users associated with a project in the userproject
graph. The user’s opinions on the item is pivotal in acquiring
item characteristics. Therefore, we aggregate users’ score to
represent item embeddings:

hjs = U(W ‘fagg_user({gjh vt € N(])}) + b) (17)
gjt = fuLp(p: @ er) (18)
hf =o(W- {ZteN(j) Wje8jt} + b) (19)

_expw] -a(Wilg @ qjl +b) + b)
DeNG) exp(wl - o(Wilgjr ® qj] + b) + b)

ﬂia (20)
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user attention pj; is employed to capture heterogeneous influ-
ences from user-item interactions to learn the underlying
factors of user-space items.

2) IMPLICIT ITEM AGGREGATION

We use GAT to model the implicit item relations. The implicit
relations between items allow the recommender systems to
gain a more comprehensive understanding of users who share
preferences for similar items and make it easier to extract
deeper connections from the network:

h = oW - fiem_item(Kjr, V1 € N()}) + b) 1)
hyZ“WWELW@@@H”) (22)
_expw] -o(Willy ® g1 +b) +b)

> ien) ©XPWE - o (Willis @ gjl + b) + b)

where fisem_irem 18 the aggregation function of the implicit
item graph Gi,,. Additionally, we incorporate an attention
mechanism to discern the significant weight of relevant items
using a two-layer neural attention network.

kjt

(23)

3) LEARNING ITEM LATENT FACTOR

Similar to user modeling, we fused two different repre-
sentations of the item with MLP to obtain a final latent
representation:

hy = o(WIh @ hj']) (24)

E. RATING PREDICTION

With the latent factors of users and items, we combine them
and input them into the MLP for the purpose of rating
prediction.

Tuy =fMLP(hu @ hy) (25)

F. MODEL TRAINING

To accomplish the task of rating prediction, we employ a
widely utilized loss function to optimize the model param-
eters in FIR-REC:

2 (26)

Loss = L .
2|0] i,jeO
|O| is the number of observed ratings, r;; is the factual rating
of item v; by user u;.

We use the RMSprop optimizer [34] to optimize the
loss, learn the randomly initialized item embeddings ¢;, user
embeddings p;, and opinion embeddings e, in the model, and
then predict the ratings. To prevent model overfitting, we use
a dropout strategy.

/
(rij_rij)

IV. EXPERIMENT

A. EXPERIMENTAL SETTINGS

1) DATASETS

We evaluate the effectiveness of our framework using four
publicly representative datasets and compare the outcomes to
a state-of-the-art baseline followed by parameter sensitivity
experiments.
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TABLE 2. Statistics of the datasets.

Dataset Ciao Epinions Yelp Flixster
Users 7317 18,088 21,461 58470
Items 10,4975 261,649 102,433 38076
Ratings 283,319 764,352 894,435 3,619,736
Ratings Density 0.0368% 0.0161%  0.0407%  0.1625%
Social Relations 111,781 355,813 497,206 667,313
Link Density 0.2087% 0.1087%  0.1079%  0.0195%
TABLE 3. Experimental environment configuration.
Name Configuration Information

Windows 10
Python 3.8.17

Operating System

Development Language

Framework Pytorch 1.13.0 + cuda 11.7
CPU AMD R7-5800H

GPU RTX 3060

RAM 500G

(1) Ciao and Epinions: These two datasets are from
popular social networking sites (http://www.ciao.co.
uk) and (http://www.Epinions.com). Users can socially
networking platforms to rate, comment and make
friends with various items. As a result, these platforms
provide rich data on ratings (ratings at [1] and [5]) as
well as social relations.

(2) Yelp and Flixster: Yelp (https://www.yelp.com) is a
popular online review platform where users can make
friends, review and give ratings in the [1] and [5]
range. The Flixster (https://www.flixster.com) dataset
also contains rating and social information. The rating
values of the Flixster dataset are 10 discrete numbers in
the range [0.5 5], with a step size of 0.5.

We tested our FIR-REC model on four representative datasets
Ciao, Epinions, Yelp and Flixster, details of which can be seen
in Table 2.

The experimental environments and hardware-related con-
figurations in which the models are trained in this paper are
shown in Table 3.

2) BASELINES

For performance evaluation, we conducted a comparative
analysis of our FIR-REC model against three categories of
methods: traditional recommender systems, traditional social
recommender systems, and deep neural network-based rec-
ommender systems. Within each category, we select repre-
sentative baselines, and these are outlined below:

« PMF [36]: Probabilistic matrix factorization via
Gaussian distribution using user-item rating matrix to
model user and item latent factors.

o SoRec [20]: Probabilistic matrix decomposition of
user-item rating matrix and user-user social relations
matrix for social recommendation.
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TABLE 4. Comparison of the performance of all methods on the three datasets for the two metrics MAE and RMSE. The best baseline is underlined and

the best performance among all methods is in bold.

Datasets Ciao Epinions Yelp Flixster
Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Algorithms PMF 1.1238 0.9021 1.2128 0.9952 1.1282 0.7559 1.0042 0.7559
SoRec 1.0652 0.8410 1.1437 0.8961 1.0736 0.7303 0.9693 0.7303
SoReg 1.0848 0.8611 1.1703 09119 1.0621 0.7415 0.9727 0.7415
SociaiMF 1.0501 0.8270 1.1328 0.8837 1.0368 0.8137 0.9705 0.7378
TrustMF 1.0479 0.7690 1.1395 0.8410 1.0680 0.8226 0.9380 0.7091
NeuMF 1.0617 0.8062 1.1476 0.9072 1.0281 0.7946 0.9698 0.7420
DeepSoR 1.0316 0.7739 1.0972 0.8383 1.0435 0.8132 0.9548 0.7190
GCMC+SN 0.9931 0.7526 1.0711 0.8590 1.0296 0.7993 0.9613 0.7351
GraphRec 0.9824 0.7416 1.0647 0.8187 1.0254 0.7962 0.9481 0.7182
SMIN 0.9671 0.7268 1.0448 0.7875 1.0182 0.7823 0.9135 0.6836
GL-HGNN 0.9679 0.7252 1.0474 0.7957 1.0207 0.7858 0.9229 0.7041
GDSRec 0.9740 0.7323 1.0566 0.8047 1.0228 0.7914 0.9285 0.6988
GraphRec+ 0.9815 0.7349 1.0592 0.8112 1.0235 0.7934 0.9326 0.7049
FIR-REC 0.9658 0.7234 1.0512 0.8020 1.0216 0.7875 0.9126 0.6842
Improvement (%) 0.14% 0.25% -0.60% -1.80% -0.33% -0.66% 0.10% -0.09%

o SoReg [37]: Constraining matrix decomposition by
modeling social information through regularization
terms.

o SocialMF [38]: Applies preferences as well as prefer-
ence propagation to the matrix decomposition model to
make a user’s behavior closer to the average preferences
of his neighbors.

o TrustMF [39]: The method employs matrix decomposi-
tion techniques to decompose rating and trust data by
sharing user latent vectors, mapping users into two low-
dimensional spaces: the trustor space and the trusted
space.

o NeuMF [40]: It extracts low-dimensional and high-
dimensional latent features through matrix decomposi-
tion and MLP.

e DeepSoR [41]: This model employs deep neural net-
works to extract potential features of users from social
relations and then predicts ratings through probabilistic
matrix decomposition.

o« GCMC+SN [42]: This model processes bipartite graphs
with graph convolution, which fully uses node infor-
mation and topology for recommendation and leads to
state-of-the-art results.

o GraphRec [4]: This model incorporates attention mech-
anisms into its framework to capture the interplay
of opinions within the user-item graph. Simultane-
ously, it aggregates neighborhood information from the
user-item bipartite graph and social information from the
user-user social network.

o SMIN [29]: This model utilizes a heterogeneous graph
neural network guided by meta-paths to learn the social
and knowledge dependencies between users and items.
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It introduces a self-supervised learning framework to
enhance the modeling of graph structure information.

o GL-HGNN [43]: This model captures high-level seman-
tic relationships and topological information through a
heterogeneous global graph. It utilizes graph regulariza-
tion to design graph learners for reducing computational
complexity.

o GDSRec [44]: This model has dealt with the original
graph by transforming it into a decentralized graph using
statistical information. It treats the rating biases of users
and items as vectors, providing a decentralized perspec-
tive for learning latent factor offsets of users and items.

o GraphRec+ [9]: The model builds implicit item-item
graphs by cosine similarity and adds them to GraphRec
to better learn user and project representations.

3) EVALUATION METRICS

To assess the prediction accuracy of recommendation algo-
rithms, two widely employed metrics, Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), are frequently
utilized. Smaller MAE and RMSE values correspond to
higher prediction accuracy. It is worth emphasizing that
even minor enhancements in both metrics can substantially
enhance the quality of top-N recommendations [34].

4) PARAMETER SETTINGS

For each dataset, we use 80% of it as a training set for
learning the parameters, 10% as a validation set for tuning
the hyperparameters, and 10% as a test set. The embedding
size was set to {8, 16, 32, 64, 128, 256}, the learning rate
was set to {0.005, 0.001, 0.005, 0.01, 0.05, 0.1}, and in order
to test the validity of the balancing factor «, we set o to
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{0, 1,2, 3,4, 5}, and in order to build an implicit network of
users and items, The k-values of the most similar users/items
were tested in {3, 5, 8, 10, 15, 20, 30, 50, 70}.

B. EXPERIMENTAL RESULTS AND ANALYSIS

We compare the recommendation performance of all methods
on the four datasets in Table 4. We have the following main
findings:

e In terms of both metrics, we can observe that
FIR-REC performs better on the Ciao and Flixster
datasets compared to other models. Compared with
the latest model performance, it shows comparable
performance on the Yelp dataset, while exhibiting
a slight decrease in performance on the Epinions
dataset. This suggests the effectiveness of our approach
to constructing implicit social networks, particu-
larly for densely rated datasets such as Ciao and
Flixster, where rich statistical information enhances
the reliability of the implicit social network we have
constructed.

e Among various baselines, the performance of Graph
Neural Network (GNN) social recommendation mod-
els such as GraphRec and GDSRec surpasses that
of models not utilizing GNN. This suggests that the
graph structure embedding aggregation paradigm is
an effective solution for social-aware recommendation
systems, validating the effectiveness of GNN in social
recommendations. Additionally, SMIN and GL-HGNN
achieve better performance when constructing implicit
project graphs, indicating that adding extra implicit
relationship connections in the user-item graph may
contribute to social recommendations. Our model not
only constructs implicit project relationships but also
builds implicit social relationships, achieving further
performance improvement through attention mecha-
nisms for information aggregation.

e We can observe that recently proposed models
employing meta-path-guided heterogeneous networks
(i.e., SMIN and GL-HGNN) exhibit significantly
improved performance compared to models uti-
lizing homogeneous networks (i.e., GraphRec and
GraphRec+). This highlights the superiority of het-
erogeneous networks in capturing high-order complex
semantic relationships. Despite employing a homo-
geneous graph, our FIR-REC achieves performance
that matches or even surpass+ses models using het-
erogeneous networks, demonstrating the superiority of
our implicit social network construction and fusion
approach.

e While GDSRec also took into account the impact of
user and project rating biases. Through the comparison
between FIR-REC and GDSRec, we can observe that
removing rating biases and adopting feature-adaptive
selection methods during the construction of implicit
social networks is more effective in enhancing
performance.
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TABLE 5. The impact of fusion strategy of FIR-REC.

Dataset Metrics AF CC AR
. MAE 0.7234 0.7315 0.7294
Ciao
RMSE 0.9658 0.9734 0.9708
.. MAE 0.8020 0.8116 0.8137
Epinions
RMSE 1.0512 1.0557 1.0542

TABLE 6. The impact of different part of FIR-REC.

Dataset Metrics  FIR-REC Without IS Without IT Without AF
. MAE 0.7234 0.7303 0.7324 0.7315
Ciao
RMSE 0.9658 0.9709 0.9678 0.9734
. MAE 0.8020 0.8084 0.8068 0.8113
Epinions
RMSE 1.0512 1.0545 1.0551 1.0582

C. EFFECTS OF MODEL COMPONENTS AND MODEL
HYPERPARAMETERS

1) EFFECTS OF INDIVIDUAL MODEL COMPONENTS

To better understand the effect of the different parts of
the model, we compared our model with three variants:
i.e., without Implicit Social relations (IS), without Implicit
Item relations (IT) and without Adaptive Fusion (AF), and
the results are shown in Table 6. We can observe that the
worst performance without the adaptive module is because
feature splicing does not distinguish well the importance of
the two networks for a specific user. The performance of the
other two variants is also significantly lower with respect
to the original model since modeling the implicit relations
between users and items reveals different semantics than
the explicit one and can indirectly represent the potential
relationship between users/items from the item/user point of
view, thus improving the recommendation accuracy. It can
also be seen that FIR-REC, which only employs implicit item
relations, has a substantial performance improvement rela-
tive to GraphRec+-, which also uses implicit item relations,
reflecting the superiority of our implicit network construction
strategy.

2) IMPACT OF FUSION STRATEGIES
To investigate the impact of our designed user-specific gating
mechanism on recommendation performance, we employed
alternative fusion strategies, namely Concatenation (CC) and
Average Pooling (AR), for comparison. We compared the
performance of different fusion strategies on the Ciao and
Epinions datasets, as shown in Table 5. As anticipated, our
FIR-REC model with the user-specific gating mechanism
(AF) outperforms other strategies in terms of performance.
This result further validates the rationality and effectiveness
of the fusion strategy we devised.

The Concatenation strategy exhibited the poorest perfor-
mance, possibly due to the insufficiency of the weight matrix
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FIGURE 4. Effect of top-k related users/items on ciao and epinions.
datasets.

to extract each user feature from the two spaces. While Aver-
age Pooling showed a slight improvement over Concatena-
tion, it still fell short of the gating mechanism’s performance.
This could be attributed to the fact that averaging the two
features does not adequately capture the significance of each
network for the users.

3) SENSITIVITY ANALYSIS OF HYPERPARAMETER «

In this section, to test the validity of the balancing factor o we
consider different values of @ € (0, 1, 2, 3, 4, 5) on the Ciao
and Epinions datasets to compare model performance. As
shown in Fig. 3, when o = 2, FIR-REC demonstrates better
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FIGURE 5. Effaect of embedding size on ciao dataset.

performance on both datasets. As « increases, it impacts the
implicit candidate pairs with many of the same interactions
too heavily, resulting in a decrease in performance. Con-
versely, when o decreases, the effect on the implicit candidate
pairs with a small number of the same interactions becomes
too marginal to yield a significant performance increase.

4) THE EFFECT OF TOP-K RELATED USERS/ITEMS

We empirically select the top-k similar users/items for each
item to construct the implicit user and implicit item graphs.
In this subsection, we investigate the impact of the value of
k on the proposed model’s performance. Fig. 4 illustrates
the performance of FIR-REC across different values of k.
The optimal performance on the Ciao dataset is achieved
with an implicit social relations parameter of k = 8 and an
implicit item relation parameter of k = 5. On the Epinions
dataset, the best performance is observed with k = 8 for
the implicit social relation and £ = 15 for the implicit item
relation. Initially, the performance tends to improve as the
value of k increases, indicating that incorporating the most-
similar users/items are beneficial. However, when the value
of k is too large, performance tends to degrade noticeably,
as it introduces excessive noise in implicit social and project
relationships.

5) THE EFFECT OF EMBEDDING SIZE

We assess the impact of embedding size on model per-
formance using the Ciao dataset. As illustrated in Fig. 5,
we observe a trend there is a notable performance enhance-
ment as the embedding size increases from 8 to 32. However,
an excessively large embedding size can also increase the
complexity of our model, leading to a decrease in perfor-
mance. Thus, it becomes imperative to identify an optimal
embedding length that strikes a balance between model per-
formance and complexity.

V. CONCLUSION

To construct a personalized implicit network by eliminating
the bias of user and item ratings, we propose an FIR-REC
social recommendation model based on the GNN. The exem-
plary performance of this framework can be attributed to two
key factors: Firstly, the devised method for constructing per-
sonalized implicit networks facilitates precise learning of user
and item representations. Secondly, the user-specific gating
mechanism discerns the significance of explicit and implicit
social networks for distinct users, con- sequently facilitating
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a more precise fusion of embeddings across both networks.
Notably, our approach to constructing implicit relations
exhibits generalizability, rendering its applicability to other
models noteworthy. Importantly, empirical results across four
real-world datasets demonstrate the substantial enhancement
of social recommendation performance achieved by our pro-
posed method.

Expanding upon our future research endeavors, we will
delve into a more exhaustive examination of the impacts of
various preference scoring strategies on model performance.
Our focus will particularly revolve around the precise compu-
tation of preference scores, and we intend to shed light on this
aspect through a series of rigorous experiments. Furthermore,
it is imperative to recognize that both implicit and explicit
relational networks frequently carry a considerable amount of
noise within them. While the attention mechanism has proven
to be effective in mitigating this noise, it still faces limitations
in entirely eradicating it. Consequently, a pivotal facet of our
forthcoming research will involve the identification and sub-
sequent removal of these noise nodes that can potentially be
more detrimental than beneficial to the network. In essence,
our mission is to enhance the robustness and efficiency of our
models in the face of noisy data and evolving preferences.
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