
Received 25 January 2024, accepted 10 February 2024, date of publication 21 February 2024, date of current version 27 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3367429

Optimizing Target Recognition in Synthetic
Aperture Radar Imagery: A Hyperparameter-
Tuned Approach With Iterative Transfer
Learning and Branched-Convolutional
Neural Network
BILEESH PLAKKAL BABU AND SWATHI JAMJALA NARAYANAN , (Member, IEEE)
School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

Corresponding author: Swathi Jamjala Narayanan (jnswathi@vit.ac.in)

This work was supported by the Vellore Institute of Technology.

ABSTRACT Real-world deployment of Automatic Target Recognition (ATR) in Synthetic Aperture Radar
(SAR) often faces challenges due to the computational demands of Convolutional Neural Networks (CNNs).
This paper proposes an innovative solution, combining Iterative Transfer Learning (ITL) with a lightweight
branched-CNN architecture, to address these limitations. The proposed approach cleverly decomposes the
multi-class classification problem into smaller, binary subtasks. Each branch in the network, consisting
of specialized Fully Connected (FC) layers, acts as an expert in identifying a specific target class. These
branches are trained sequentially, focusing on one class at a time using a One-vs-All (OVA) strategy.
This simplification reduces the model’s complexity, enabling efficient performance even with a smaller
CNN. Furthermore, the branched architecture significantly alleviates the need for a large labeled dataset.
By dividing the problem into binary tasks, the model learns effectively even with limited data, making it
suitable for resource-constrained scenarios. During inference, the branch with the highest output probability
determines the final target class. The model’s performance was adjusted by meticulous hyperparameter
tuning of batch size, learning rate, and number of epochs, resulting in exceptional accuracy on the MSTAR
dataset. Featuring amere 0.2million parameters and 0.2millionMultiply-Accumulate Operations (MACCs),
it achieves an impressive accuracy of 98.48% under standard conditions. This model performs better than
DenseNet-161, a substantially bigger model with 130 times more parameters and nearly 1000 times more
MACCs. Furthermore, the model consistently achieved accuracies of 97.83%, 98.15%, and 98.53% across
diverse operating conditions, solidifying its potential for SAR applications.

INDEX TERMS Automatic target recognition, computer vision, convolutional neural network, hyperparam-
eter tuning, synthetic aperture radar.

I. INTRODUCTION
Synthetic Aperture Radar (SAR) is a very effective imaging
technology that finds use in several domains, including both
military and civilian sectors, owing to its ability to operate in
all weather conditions and provide images with exceptional
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quality [1], [2]. The process of evaluating SAR images
can present difficulties, mostly attributed to the presence
of speckle noise [3]. This challenge necessitates a certain
level of skill to effectively address and mitigate its impact.
The circumstance has resulted in the emergence of Auto-
matic Target Recognition (ATR) systems that are specially
tailored for SAR data. SAR ATR systems, as envisioned by
Lincoln Laboratory, typically follow a sequential architecture
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with three distinct stages: detection, discrimination, and
classification [4].

The detection stage utilizes a Constant False Alarm Rate
(CFAR) detector to eliminate the possible noise from SAR
images. The discrimination phase involves the utilization of a
binary classifier to effectively eliminate false alarms that may
arise due to the presence of objects such as trees, buildings,
and automobiles. The classification phase assigns precise
classifications to the identified targets. The classification step
is particularly intricate, given that the precision of target
categorization plays a vital role in determining the overall
effectiveness of the SAR ATR system.

The implementation of SAR ATR classification falls
into three distinct categories, each defined by its unique
methodology: template matching, model-based, and machine
learning-based approaches [5]. All methods consist of a
training phase conducted offline and a classification step
performed online. During the offline phase, template-based
technologies are employed to generate and retain templates
for diverse targets under varying situations. During the
online phase, the template of a specific target is compared
to all existing templates to identify the most suitable
match. It should be noted that template-based approaches
have significant drawbacks in terms of memory storage
requirements and computational efficiency [6], [7].
Model-based techniques employ physical or conceptual

models, such as Computer-Aided Design (CAD) models
or three-dimensional scattering centre models, to depict
objectives [8], [9]. During the offline phase, a physical
model that applies to all targets is created. Online classifi-
cation entails feature extraction from the SAR image and
subsequent comparison within a defined feature space [10],
[11]. It should be noted that model-based techniques are
complex and need a significant understanding of SAR target
signatures [12].

Machine learning-based SARATR systems achieved supe-
rior performance compared to traditional template matching
and model-based approaches. These systems generate clas-
sifiers in the offline phase by exploiting extracted features
from training samples. Online testing involves applying
trained classifiers to assign class labels to targets based on
their specific characteristics. However, traditional machine
learningmethods often rely on hand-crafted features, limiting
their overall performance due to inherent biases and potential
for overlooking relevant information.

The emergence of deep learning, namely Convolutional
Neural Networks (CNNs), demonstrated notable advance-
ments through the automation of feature extraction [13],
[14]. CNNs are successfully utilized in the domain of
SAR target detection [15]. This application has yielded
significant enhancements in accuracy, with performance
metrics increasing from 84.7% to a remarkable level above
99%. These developments are more advanced than other
conventional techniques like SVM and AdaBoost [16].
Deeper CNN models tend to exhibit improved classifi-

cation accuracy [17]. These models are characterized by

increased complexity, with a large number of parameters
necessitating substantial amounts of annotated data for
training. The process of producing labelled SAR data is both
time-intensive and costly, hence requiring the implementation
of efficient training methods when working with a restricted
quantity of annotated data.

The issues associated with computational complexity and
weight parameters of CNN classifiers in SARATR have been
tackled by researchers using structural changes and model
compression approaches [18]. To decrease the computational
load, CNN’s architecture can be modified by structural
changes, which may involve the substitution of convolutional
layers with FC layers [19]. In certain cases, FC layers are
completely removed and substituted by SVM modules [20].
To address concerns with computational complexity and

parameter reduction, some researchers have concentrated on
CNN model compression strategies. The common model
compression approaches used on CNN include knowledge
distillation, quantization, pruning, and low-rank optimiza-
tion. Pruning involves removing the weight connections that
are least important in generating a satisfactory outcome,
which lowers the total number of weight parameters.
As opposed to quantization, which uses fewer bits to express
the weight value. Zhong et al. [21] were the first to use
pruning and quantization to SAR ATR. While pruning and
quantization lower the model’s complexity and parameter
count, the precision of the model suffers significantly.

To compute the multiplication and addition of weight
parameters more effectively, low-rank factorization modifies
the matrix representation. CNN kernels are transformed into
sparse ones via the low-rank factorization method used
by Yu et al. [22]. The deployment of such models on an
embedded system is constrained by the demand for a certain
hardware configuration.

Knowledge distillation, which leverages a large teacher
model to train a smaller student, emerges as a popular
technique for model compression in SAR ATR. Notably,
Min et al. [23] utilized this approach to construct a
lightweight two-layered CNN. Similarly, Zhang et al. [24]
achieved a remarkable 65-fold compression of the A-convnet
model through knowledge distillation. Yu et al. [25]
further refined the process by proposing a multi-layer
adaptive network that employs a maximum gradient
criterion to effectively extract discriminative target fea-
tures. However, a persistent limitation of knowledge
distillation lies in its dependence on a pre-trained
primary network and often necessitates training from
scratch.

Researchers have used techniques like data augmentation
and transfer learning to lessen the problem caused by a lack
of labeled data. Data augmentation refers to the process of
transforming a real image using image processing techniques
to produce more samples [26]. The technique of transfer
learning involves the utilization of pre-trained CNN models,
which are then fine-tuned using target data. The utilization
of augmented data and transfer learning has demonstrated
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TABLE 1. Comparison of strategies for enhancing CNN performance in SAR ATR.

efficacy in mitigating overfitting and enhancing the resilience
of models [27], [28], [29], [30].

A multiview deep CNN was suggested by Pei et al. and
trained on multiview SAR data produced using augmentation
methods [29]. The suggested CNN model produced higher
performance and only needed a few raw SAR images
to train the network. To improve the training data for
complex-valued CNN training, Wang et al. adopted sub-
aperture decomposition [31]. Ravikumar et al. finds the effect
of the structure of the neural network on its performance [32],
[33], [34], [35].

Researchers have looked at how transfer learning might
help with CNN’s overfitting problems [36], [37], [38]. CNN
models that have already been trained on a sizable dataset
are used for transfer learning, and the target data is used
to refine the final layers. To predict saliency, Chaabouni et
al. suggested a domain-dependent transfer learning approach
using CNN that significantly decreased the overfitting
problems [39]. To effectively transfer information frommany
imperfect sources, Ding et al. presented a bi-directional
low-rank transfer learning framework [40].
Furthermore, Dong et al. provide evidence for the success-

ful transfer of semantic information between domains [41].
With enough simulated data and little actual SAR data,
Wang et al. [42] trained a CNN model. Like this,
Malmgren et al. used transfer learning to improve a CNN
model that had been pre-trained using simulated data [36].
In addition, Wang et al. used a decomposition method and
optimized a CNN model that had been previously trained on
ImageNet data [43]. Transfer learning and data augmentation
may both effectively reduce CNN overfitting, however deep
CNN models, which have numerous weight parameters and
a large computational cost, are the ones that typically use
both techniques [38], [44]. Because of this, pre-trained

models are inappropriate for embedded applications like SAR
ATR.

Despite the progress made in the field, it is important
to note that deep CNN models with many parameters are
not well-suited for embedded applications such as SAR
ATR due to their significant processing requirements [45].
Hence, the exploration of integrating CNNs to enhance
recognition accuracy has been undertaken [46]. Despite
its effectiveness, this method suffered from significantly
increased computational complexity.

Table 1 summarizes existing methods for optimizing
CNN performance. Techniques like structural modification
and model compression effectively reduce parameter count
and model complexity. However, these approaches often
come with trade-offs: structural modifications can limit
representational power and learning long-range dependen-
cies, while compression techniques often introduce accu-
racy degradation. Similarly, data augmentation and transfer
learning, while effective in alleviating overfitting due to
limited data, exhibit domain dependence. While ensemble
methods effectively mitigate overfitting, their deployment
necessitates increased computational resources due to a rise
in MACCs. Existing research has made significant strides
in reducing CNN complexity and overfitting, but often
through approaches that lack a holistic perspective. This
limitation leaves room for further advancements, particularly
in leveraging the iterative potential of transfer learning.

This study presents a novel iterative transfer learning
(ITL) applied to a branched-CNN architecture, culminating
in a lightweight CNN with compelling advantages for
SAR ATR. The proposed approach uses sophisticated deep
learning techniques, rigorous hyperparameter tuning, and a
branched-CNN architecture to automate target detection in
SAR data. By leveraging ITL, we demonstrate a significant
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reduction in the need for complex deep CNN structures,
a groundbreaking advancement with ramifications that tran-
scend prior SAR ATR research. The main contributions are:
• Effective SAR target identification via ITL: This study
presents a novel method for SAR target identifica-
tion that combines a branched-CNN architecture with
ITL. This strategy shows promising results in SAR
target detection applications by drastically lowering
computational complexity and memory requirements.

• Hyperparameter optimization: By carefully adjusting
hyperparameters to provide the best outcomes, system-
atically improve the performance of neural network
models.

• CNN branch specialization: Every CNN branch has
been fine-tuned to identify distinct target classes, which
enhances recognition precision.

II. METHODOLOGY
In this work, a branched-CNN is suggested for the recognition
of military vehicles in SAR images, which can overcome
the computational cost of a conventional CNN. This section
begins with a brief description of the conventional CNN
followed by the architecture of branched-CNN, which is
followed by the training algorithm named as ITL.

A. CONVOLUTIONAL NEURAL NETWORK
CNNs are a form of deep learning neural network that
excels at image categorization and object recognition [47].
Conventionally, a CNN consists of convolutional layers
(CONV), pooling layers (POOL), and fully-connected layers
(FC). In convolutional layer, a kernel K of size k × k
convolves over an input image I (x, y) of size n × n, and
generates feature-mapF of size ((n−k)/s)×((n−k)/s), where
s is the stride of the convolutional operation. The overall
operation is formulated as:

M l
i = f (

∑
M l−1
i ⊙ K l

i + bl) (1)

where ⊙ represents the convolution operation, M l
i is the i

th

feature map of layer l, bl is the bias vector of the l th layer,
and f (·) is the activation function which helps in the curve
fitting of the model for complex data. ReLU [48] is a popular
non-linear activation function that is defined as

f (M l
i (x, y)) = max{0,M l

i (x, y)} (2)

Pooling is another layer used in CNN that brings transla-
tional invariance. This layer, also known as the subsampling
layer, maps only a subregion of the previous feature map.
Maxpooling is a commonly used pooling technique that
computes the highest value in a selected subregion of the
feature map. Maxpooling operation can be computed as

M l+1
i (x, y) = max(M l

i (x + u, y+ u)) (3)

After successive convolution and pooling layers, the
feature map is converted into a one-dimensional vector to
feed as input to the FC layer, where the neurons are arranged

linearly. Each FC layer adds non-linearity to the existing input
data. The final FC layer is a softmax layer responsible for the
multiclass classification. The softmax function computes the
posterior probability for each class of the target. The softmax
function is expressed as

P(yi|ML) =
exp(M l

i )∑R
j=1 exp(M

L
j )

(4)

whereML is the input to the softmax layer, P(yi) denotes the
probability for a target to be in ith class and R denotes the total
classes.

The training of a CNN requires the optimization of a loss
function. Let T = {(x i, yi), i = 1, 2, . . . ,R} be the SAR ATR
training image set, where x i denotes a SAR training image
sample, and yi is its matching label. The formula for the cross-
entropy-loss function is

L(φ) =
−1
R

R∑
i=1

log(yi|x i, φ) (5)

The loss function is used to indicate how different the
actual and anticipated probability are from each other. CNN
training uses the Adam optimization technique to reduce
the loss function which is based on the gradient descent
principle and optimizes the weight and bias values during
CNN training [49].

During the deployment of CNN, two crucial factors that
come under consideration are the computational burden and
the memory requirement of CNN. The number of MACC
gives a direct measure of the computational requirement of
CNN. TheMACCof the convolution operation in CNN layers
are computed as:

MACCs = k × k × Cin × F × F × Cout (6)

where k denotes the kernel size, F denotes the feature map
size, and the number of input channels is indicated byCin. The
output channels are represented byCout . In two FC layers ofP
andQ neurons, the number ofMACC operations is calculated
as:

MACCf = P× Q (7)

MACC in the CONV layers is more in number thanMACC
in the FC layers. That means CONV layers are the primary
cause of the computational burden of CNNs.Likewise, the
CONV layer’s parameter count is determined by

Ws =

N∑
l=1

(F2
l−1NlK

2)+ Nl (8)

The parameters’ count in FC layers is calculated as

Wf =

L∑
l=1

Nl−1Nl (9)

The parameters in CONV layers is fewer than in the
FC layers due to the weight-sharing mechanism of CONV
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FIGURE 1. Proposed model.

layers. The conventional CNN is computationally expensive
and has excessive weight parameters that cause overfitting.
In the SAR ATR domain, computationally less expensive and
low-memory models are required for the application, and
ordinary CNN is not appropriate. Furthermore, large CNN
model causes overfitting due to the scarcity of labeled training
data in the SAR domain.

By incorporating pre-existing weights, transfer learning
can alleviate the risk of overfitting in newly trained models.
Here, the weight values are transferred to the layers of
a new model and it is finetuned on new data before its
deployment. Transfer learning is defined in terms of domain
and task such that, for an initial domain Di and a task
Ti, a final domain Df and task Tf , where Di ̸= Df or
Ti ̸= Tf , the transfer learning improves the learning of

the final domain’s predictive function Ff (·) in Df using
the knowledge in Di and Ti. Although transfer learning
is computationally efficient and helps achieve better result
using a small dataset, it demands the initial domain and
final domain to be similar. i.e., Di ≈ Df . However, in the
SAR ATR domain, an initial domain similar to the final
one is not available for transfer learning. Most current work
uses the model trained on the ImageNet dataset for transfer
learning. Hence, such models are very deep and consist of
huge parameters and are computationally expensive.

B. ARCHITECTURE OF BRANCHED-CNN
In the context of constructing an effective classification
model, it is essential to meticulously evaluate three connected
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FIGURE 2. Training of branched-CNN.

factors: Vapnik-Chervonenkis (VC) dimension [50], model
complexity, and the number of classes. The VC dimension
measures a model’s ability to detect complex correlations in
data. Larger values indicate greater flexibility, but also a more
significant possibility of overfitting, especially when there is
little information available.

A sophisticated CNN can efficiently capture intricate data
characteristics with many dimensions. Excessive complexity
can result in overfitting, compromising the ability to general-
ize. On the other hand, a basic CNN could fail to adequately
represent the minor differences across classes, resulting in an
inadequate fit to the data.

The interaction is further complicated by the number of
classes. As classes increase, the complexity also increases,
requiring more advanced ability to distinguish between dif-
ferent features. As a result, it is generally necessary to have a
greater VC dimension and a more intricate CNN architecture
to preserve performance and prevent overfitting. It is crucial
to carefully manage this intricacy since an excessive level
of complexity might have negative consequences, such as
overfitting and increased processing demands. Thus, the most
effective classification models are found in the ideal balance
between capturing complex connections and retaining the
generalization capacity.

It is essential to carefully evaluate the VC dimension,
CNN complexity, and the number of classes, which typically
requires data-driven experiments and analysis to attain the

necessary equilibrium. The proposed method utilizes a One-
vs-All (OVA) approach to train the FC layers. The suggested
approach is depicted in Fig. 1.

During the first iteration of transfer learning, the model
assigns one target as the positive class and categorizes
all others as negative. Through this, each branch of the
fully connected layers is converted into a specialized
binary classifier, optimized for accurately identifying its
designated class. This technique cleverly breaks down the
intricate multi-class classification issue into smaller, more
feasible binary jobs. This modularity promotes the precise
performance of each binary classification task, even inside
a CNN with fewer parameters. As a result, the model
can efficiently acquire knowledge and accurately identify
targets, even when training data is scarce. The effectiveness
of this unique ITL approach is in the ability to achieve
performance with a reduced number of training samples.
This approach overcomes the conventional trade-off between
precision and limitations in resources, enabling effective and
precise identification of targets in situations when data are
scarce.

A model possessing a greater VC dimension can discern
intricate correlations within the data, although necessitating
a larger amount of training data. The VC dimension of a
classifier is directly related to the model’s complexity Z . The
relationship between the number of classes R and the model
complexity Z is defined as

R = 2Z/d (10)

where d is the input data dimension.
The classifier’s complexity Z is directly related to the

number of classes to predict for a fixed dimension of
training samples. So, splitting the multi-class classification
task into multiple binary classification task, where each task
is solved by one branch of the branched-CNN improves the
classification result even with fewer weight parameters.

However, the act of developing distinct classifiers for each
target variable results in an augmented computational load.
As an illustration, the CNN described in [46] is composed
of distinct classifiers that are utilized to forecast the class of
individual targets. Consequently, the overall count of MACC
operations is elevated as a result of the several convolutional
layers present in the ensemble model. The formulation of the
total number of MACC operations in the CNN as presented
in [46] is expressed as

MACCtotal =
R∑

CNNi=i

((k i)
2
× C i

in × (F i)
2
× C i

out )(N
i
l−1 × N

i
l )

(11)

where R is the number of target classes. Branched-CNN is
an enhanced version of CNN in [46], where the redundant
convolutional layers have been replaced with two convolu-
tional layer common for all the targets. By restructuring the
architecture, the total MACC operations in branched-CNN
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are calculated as

MACCtotal = (k2 × Cin × F2
× Cout )

R∑
CNNi=1

(N i
l−1 × N

i
l )

(12)

In branched-CNN, the purpose of each CNN branch
is to identify the distinctive qualities of a certain target.
Figure 2’s depiction of the branched-CNN training process
demonstrates how this model maximizes efficiency by
employing shared initial convolutional layers on all targets.
Similar to a traditional CNN, the branched-CNN has typical
layers such as CONV, batch normalization layers (BN),
ReLU, POOL, and FC.

A key deviation from conventional CNNs lies in the
segmented architecture of branched-CNNs. They bifurcate
into separate branches, each housing a compact group of FC
layers. These branches specialize in individual target iden-
tification, functioning as independent experts. The branch
tasked with ‘‘T72’’ classification, for instance, only focuses
on extracting the essential features of this specific target.
During the testing phase, each branch of the branched-CNN
provides a probability estimate for each target. The branch
that generates the highest predicted value determines the
class of the target. Fig. 3 shows the architecture of the
branched-CNN.

The CNN described in [46] is similar to the early
layers of the branched-CNN. The branched-CNN receives
a 24x24 grayscale image and does a 5x5 convolution
operation on it. All layers make use of the ReLU activation
function, except for the final FC layer. The outcome of
the first convolution phase is a 16x20x20-pixel feature
map. Batch normalization, a 2x2 pooling procedure, and
feature mapping reduce feature map’s size to 16x10x10. The
second CONV layer, which has 32 convolution operations,
further decreases feature map’s size to 32x6x6. In the wake
of further 2x2 max-pooling procedures, the feature map
shrinks to 32x3x3. Flattening of feature map into a 1x288
vector makes it a common input for many branches. Each
branch consists of three FC layers, each with 64, 32, and
2 neurons.

C. TRAINING ALGORITHM FOR BRANCHED-CNN
The branched-CNN training algorithm depicted in
Algorithm 1 is an ITL mechanism that takes the dataset
{D} and the set of target class {V } as inputs. It returns the
trained CNN model {U} and its weight parameters {W } as
output. The CNNmodel is initialized with the branched-CNN
architecture using the function branchedCNN (), and the values
of the weight matrix {W } are randomly initialized from
a Gaussian distribution using the function rand(G). The
training of branched-CNN is an iterative transfer learned
mechanism. That is, instead of using the conventional transfer
learningmethod where the initial domainDi and final domain
Df are not similar, in branched-CNN, Di ≈ Df .

Algorithm 1 Pseudocode for Training of Branched-CNN
Input: Training dataset D, Target class {V}
Output: Trained model U , trained weightsW
1: procedure branched-CNN(D,V )
2: U ← branchedCNN
3: W ← rand(G)
4: for each class i in {V} do
5: B← load(U ,W )
6: for each branch b in B do
7: if b ̸= i then
8: B̂← freeze(B, b)
9: U ,W ← train(B̂,D)

10: return U ,W

During each iteration of the algorithm, the task of clas-
sification changes. Hence, similar to conventional transfer
learning, Ti ̸= Tf , where Ti and Tj represent the initial
task and final task, respectively. In branched-CNN, each
branch is trained for a specific target class. That is, for
every target class in {V }, the CNN model B is loaded with
the previously trained model U and its trained weights
W . Then, every branch except the branch corresponding to
the current target class is set into freeze mode using the
function freeze(). Hence, the weights in the layers that in
freeze mode are not updated during that particular training
iteration. Once the model B̂ trained on the subset of the
dataset D, the updated model, B and the weights, W are
saved. After training the model on each target class, the
final model U and the corresponding weight values are
returned. During prediction, a given target’s class is predicted
by each branch of the branched-CNN. The branch that
predicts the highest probability determines the target’s actual
class.

III. RESULT ANALYSIS
This section introduces the MSTAR dataset and then presents
the outcomes of tests carried out in various operating
environments. On a 2.6 GHz CPU, 16 GB of RAM, and
a 4 GB GPU card, the suggested branched-CNN is trained.
The Keras API and Microsoft Windows 10 Pro-64-bit were
used to build each approach.

A. DATASET
Using the MSTAR public dataset, the efficacy of SAR ATR
classification algorithms is assessed and contrasted [51].
This dataset has SAR images of 10 military vehicles with a
resolution of 0.3 meters. Fig. 4 shows images of these objects
taken using SAR and optical technology.

Due to speckle noise and shadows created by the imaging
angle, two objects in Fig. 4 that exhibit considerable changes
in the optical view are difficult to identify from one another.
The MSTAR collection’s SAR images were captured under
two distinct operating circumstances. Training images have a
17-degree depression under Standard Operating Conditions
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FIGURE 3. Architecture of branched-CNN.

(SOC), whereas test images have a 15-degree depression.
The experimental setup employed 2747 images for training
and 2425 images for validation. The target’s background,
depression angle, and intra-class variability alter during
Extended Operating Conditions (EOC).

B. RESULTS IN HYPERPARAMETER TUNING
Hyperparameters are predetermined settings that regulate
many elements of the training process andmodel architecture,
in contrast to model parameters, which are learned from the
training data. The selection of hyperparameters may have a
substantial influence on a model’s performance, including
how quickly it converges, how well it generalizes, and how
resistant it is to overfitting or underfitting. To find the
configuration that gives the optimum model performance
for a certain job, hyperparameter tuning entails methodically
examining various hyperparameter values or combinations.
A machine learning or deep learning model must be
successfully hyperparameter-tuned to produce cutting-edge
findings and make sure that it is appropriate for the task at
hand. The hyperparameters used in this model are batch size,
learning rate and epoch. Figure 5-12 guided the selection of
hyperparameters based on its training (blue) and validation
(red) loss curves.

1) BATCH SIZE
A model’s training and its performance are significantly
impacted by the choice of batch size. To investigate the
influence of batch size on model performance, branched-
CNN is trained using various batch sizes (16, 32, 64, and 128)
and monitored the loss on both the training and validation
sets as shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8. Smaller
batch sizes (16 and 32) exhibited more frequent updates

and noise, leading to less smooth but potentially faster
convergence. The model achieved the lowest validation loss
with a batch size of 32, indicating superior generalization
to unseen data. The training loss for batch sizes 64 and
128 continued to decrease, while validation loss plateaued
or slightly increased, suggesting potential overfitting. This
underscores the importance of monitoring validation loss to
prevent overfitting. Although the batch size of 32 caused
divergence of the loss curve for one target (target 6), but it
made it possible for the model to train well for most of the
other targets. The model was able to update its weights more
often with a batch size of 32 than with higher batch sizes,
perhaps promoting convergence. From the loss curve analysis
of batch sizes 16, 32, 64, and 128, a batch size of 32 was
optimal for branched-CNN.

2) EPOCH
Examining the evolution of the loss function across training
epochs provides valuable insights into the optimization
process and model performance. Figure 9 depicts the loss
curve for our model trained for 200 epochs. Examining key
epochs – 50, 100, and 200, reveals intriguing dynamics in the
learning process. The curve exhibits a steep initial descent in
the first 50 epochs, signifying rapid progress in minimizing
the loss. This suggests the model rapidly grasped the underly-
ing patterns in the data, leading to significant error reduction.
However, the curve does not flatten completely, indicating
potential for further refinement.Between epochs 50 and 100,
the curve exhibits a less dramatic, yet sustained, decrease
in loss. This phase likely reflects the model fine-tuning
its internal parameters and adjusting its understanding of
the data’s complexities. Interestingly, the curve reaches its
minimal point at epoch 100, highlighting this epoch as the one
with the optimal model performance. Beyond epoch 100, the
loss curve plateaus with minimal fluctuations. This indicates
that the model has converged to a local minimum of the loss
function.While further training epochs might result in minute
loss reductions, the risk of overfitting increases significantly,
potentially negating the gains in generalizability.

3) LEARNING RATE
The comparison of loss curves across different learning
rates underscores the crucial role of this hyperparameter in
shaping the optimization process. To investigate the role of
learning rate in the optimization process, branched-CNN is
trained with three different learning rates: 0.1, 0.01, and
0.001. Analyzing the respective loss curves illustrated in
Fig. 10, Fig. 11, and Fig. 12 reveals fascinating insights into
the interplay between learning rate and model convergence.
The validation loss curves for a learning rate of 0.1 and
0.01 exhibits a rapid initial descent, suggesting aggressive
exploration of the loss landscape. Furthermore, these curves
show a sudden convergence even before 10 epochs, raising
concerns about potential overfitting. The curve for the
learning rate of 0.001 strikes a remarkable balance between
speed and stability. It starts with a moderate descent rate,
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FIGURE 4. Optical and SAR images of military vehicles.

FIGURE 5. Loss plot for batch size 16.

ensuring stable exploration, and gradually converges to a
significantly lower loss plateau compared to the other two
rates. This minimal loss value at epoch 100 highlights the
effectiveness of this learning rate in driving themodel towards
the optimal solution.

From the experiments, the following hyperparameters
are selected: learning rate = 0.001, batch size = 32, and
epoch = 100. The model is trained to optimize the categorial
cross-entropy loss function with an Adam optimizer.

C. RESULTS UNDER SOC
The effectiveness of ITL on branched-CNN is assessed by
SOC on a ten-class classification test. Figure 13 illustrates
the training and test images that differs in their azimuth

and depression angles. Training images have a 17-degree
depression angle, while test images captured at a 15-degree.

Figure 14 depicts the confusion matrix for categorizing
the 10 military vehicles under SOC. The target’s real class
is represented by the rows in the confusion matrix and the
classifier’s prediction appears in the columns. As seen in
Fig. 14, the overall classification accuracy of branched-CNN
under SOC is 98.48%, indicating the effectiveness of the
recommended strategy in these circumstances.

The performance of ITL on the branched-CNN is then
assessed using its error rate, number of parameters, MACC,
and training data. The aggregate percentage of targets that
were improperly identified is known as the error rate, which
highlights the classifier’s flaws. MACC is a statistic to
gauge the model’s level of computational complexity. The
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FIGURE 6. Loss plot for batch size 32.

FIGURE 7. Loss plot for batch size 64.

FIGURE 8. Loss plot for batch size 128.

amount of weight parameters reveals the CNN model’s size.
A lightweight-CNN model is more effective for deployment
since it can be trained more rapidly and stored directly on the
chip. It is imperative to train a CNNmodel with fewer images
due to the limited number of annotated SAR images available.
Table 2 contrasts the outcomes of the branched-CNN with

the standard SAR ATRmodels. Among the compared CNNs,
CNN in [30] received its result by our tests, however, the
results of the other CNNs are taken straight from their
publications.

Table 2 shows that compared to the major baseline models,
the suggested branched-CNN has a reduced error rate. All
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FIGURE 9. Loss plot for 200 epochs.

FIGURE 10. Loss plot for learning rate=0.1.

FIGURE 11. Loss plot for learning rate=0.01.

the networks created for SAR target identification achieve
an error rate of around 2%. The suggested model is also
the second lightweight CNN model in terms of parameter
count. Branched-CNN is the most affordable model when
comparing the MACC operations of other models. The

proposed model employs ten times fewer MACC operations
than CNN in [30] and [46], although it uses the same training
data as branched-CNN. According to empirical evidence, the
ITL on the branched-CNN simplify themodel’s computations
without significantly affecting classification accuracy.
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FIGURE 12. Loss plot for learning rate=0.001.

FIGURE 13. Training set and test set under SOC.

TABLE 2. Performance comparison of branched-CNN with baseline
models.

The proposed model is compared with the existing
major transfer learning models and is shown in Table 3.
Table 3 compares the performance of various state-of-
the-art models in SAR ATR. While the proposed model
achieves an accuracy of 98.48%, which is slightly lower
than some other models like DenseNet-161, it offers signif-
icant advantages in terms of model complexity. With only
2.19× 105 parameters, the proposed model is over 130 times
smaller than DenseNet-161 and over 200 times smaller than
ResNet-101, making it a more lightweight and efficient

FIGURE 14. SOC-Confusion matrix of ten-class classification.

FIGURE 15. EOC-1 data distribution.

option for resource-constrained environments. Additionally,
the proposed model requires only 2.74 × 103 training
samples, demonstrating its ability to learn effectively from
limited data. These comparisons highlight the trade-off
between accuracy and model complexity, suggesting that the
proposed model may be a suitable choice for applications
where computational efficiency and resource limitations are
major concerns. The proposed model offers a good balance
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FIGURE 16. Confusion matrix for EOC-1.

TABLE 3. Comparison of proposed model with state-of-the-art transfer
learning methods for SAR target recognition models.

between accuracy and model complexity. While it does not
achieve the highest accuracy on this dataset, it is significantly
smaller and more efficient than the other models under
comparison. This makes it a good choice for SAR ATR
system.

D. RESULTS UNDER EOC
Changes in depression angles can affect SAR images. For
certain applications, it is crucial to assess a SAR ATR
system’s resilience to variations in depression angle. For
studies based on depression angle variation (EOC-1), Fig. 15
shows the data distribution of the training and test images.

The EOC-1 experiment focuses on analyzing the robust-
ness of a target recognition system under differing visual
perspectives. This involves four distinct targets, presented in
Fig. 15. Notably, the training images captured these targets at
a fixed depression angle of 17 degrees, while the test samples
depict them at a different angle of 30 degrees. This shift in
perspective adds a layer of complexity, simulating real-world
scenarios where viewing angles can vary significantly.

The performance of the system under this simulated
variation is further analyzed through the EOC-1 confusion
matrix, showcased in Fig. 16. This matrix provides a detailed
breakdown of the system’s classification accuracy for each
target, revealing potential misidentifications at the 30-degree
angle.

The confusion matrix illustrated in Fig. 16 evalu-
ates the classification model’s performance in EOC-1
scenario. The model demonstrates exceptional performance
overall, with high levels of accuracy across all classes. 2S1
and ZSU23/4 classes exhibit near-perfect classification, with

FIGURE 17. Training data distribution of EOC-2 and EOC-3.

FIGURE 18. Test data distribution of EOC-2.

FIGURE 19. Test data distribution of EOC-3.

only a few misclassifications. T72 and BRDM2 classes also
achieve strong results, with only minor confusion between
them. Misclassifications primarily occur between T72 and
BRDM2, suggesting potential similarities in their features
that the model might need further refinement to distinguish.
It is evident that the model is resistant to changes in
depression angle. The robustness of the suggested model
is examined for various target versions and setups. In this
experimental context, the training set comprises four targets
at a 17-degree depression angle, as shown in Fig. 17. The
target T72 has five configuration options in the EOC-2 test
set as shown in Fig. 18. Like this, the version-variants of EOC
test set shown in Fig. 19 has five T72 variants and two BMP2
variants.

The results for version-variant and configuration-variant
are depicted in Fig. 20 and Fig. 21, respectively. From Fig. 20,
it can be observed that the model achieved a commendable
overall accuracy of 98.15% on the EOC-2 test data, correctly
classifying the majority of instances across all target classes.
The model demonstrated particularly strong performance in
classifying BMP2 variants and also performed remarkably
well in classifying T72 variants, with minimal confusion
between T72 and other target classes. Similarly, the model
effectively distinguished between BMP2 and T72 variants,
with very few instances of one being misclassified as the
other. Furthermore, misclassifications involving BDRM2 and
BTR70 were relatively infrequent, suggesting the model’s
ability to differentiate these targets.
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FIGURE 20. Confusion matrix for EOC-2.

FIGURE 21. Confusion matrix for EOC-3.

The confusion matrix illustrated in Fig. 21 meticulously
evaluate the model’s performance in classifying five different
configuration variants of the T72 military vehicle, aiming to
distinguish them from BMP2, BDRM2, and BTR70 targets.
The model exhibited outstanding performance in classifying
T72 variants, with exceptionally high accuracy of 98.53% on
the EOC-3 test data. The matrix showcases a remarkably low
number of misclassifications involving other target classes
(BMP2, BDRM2, BTR70). This signifies the model’s robust
ability to differentiate T72 variants from non-T72 targets
and suggests that the model effectively captures the distinct
features of each variant. The results show that the suggested
network recognize the targets with varying versions and
configurations.

While the proposed lightweight architecture’s efficiency is
commendable, its representational power may be constrained
compared to more complex CNNs. Future research should
delve into effective methods for balancing model complexity
and performance. Exploring techniques like model com-
pression techniques or architectural search methods could
potentially yield even more efficient architectures without
substantial accuracy degradation. Moreover, the current
study primarily focuses on controlled SAR image target
recognition. Rigorous evaluation under real-world conditions
featuring diverse noise levels, clutter, and environmental vari-
ations is crucial for practical applications. This necessitates
further investigation into domain adaptation techniques or
adversarial training to enhance the model’s robustness and
generalizability.

IV. CONCLUSION
The need for extensive data and computational resources
poses a persistent challenge for traditional SAR target

recognition techniques, even as CNNs have emerged as the
preferred approach. This study proposes a novel method,
ITL with branched-CNN, that alleviates these limitations.
Instead of tackling multi-class classification directly, ITL
decomposes it into smaller, binary subtasks. Each branch of
the CNN specializes in identifying a specific target class,
akin to a team of experts. This simplifies the learning process
and reduces the model’s complexity. Furthermore, training
these branches sequentially using a OVA approach allows for
efficient optimization even with limited labeled data. During
inference, the branch with the highest confidence score
determines the final target class. Hyperparameter tuning
of batch size, epochs, and learning rate further fine-tuned
the model’s performance. By synergizing hyperparameter
optimization and the power of ITL, branched-CNN achieves
an exceptional balance between performance and efficiency.
Its impressive SOC accuracy of 98.48% and strong perfor-
mance under diverse conditions (EOC-1: 97.83%, EOC-2:
98.15%, EOC-3: 98.53%) are attained while maintaining a
remarkably lightweight architecture of 0.2million parameters
and 0.2 million MACCs. This accomplishment paves the way
for efficient and robust SAR target recognition applications.

While this study demonstrates the effectiveness of ITL
within the chosen CNN architecture, its complete potential
remains unexplored. Future work will involve applying ITL
to a wider range of CNN architectures to assess its gener-
alizability and potential for further accuracy enhancement.
This exploration may reveal architecture-specific adaptations
or limitations deserving further investigation.
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