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ABSTRACT Breast UltraSound (BUS) imaging is a commonly used diagnostic tool in the field of counter
fighting breast diseases, especially for early detection and diagnosis of breast cancer. Due to the inherent
characteristics of ultrasound images such as blurry boundaries and diverse tumor morphologies, it is
challenging for doctors to manually segment breast tumors. In recent years, the Convolutional Neural
Network (CNN) technology has been widely applied to automatically segment BUS images. However, due
to the inherent limitations of CNNs in capturing global contextual information, it is difficult to capture
the full context. To address this issue, the paper proposes a novel BGRD-TransUNet model for breast
lesion segmentation, based on TransUNet. The proposed model, first, replaces the original ResNet50
backbone network of TransUNet with DenseNet121 for initial feature extraction. Next, newly designed
Residual Multi-Scale Feature Modules (RMSFMs) are employed to extract features from various layers
of DenseNet121, thus capturing richer features within specific layers. Thirdly, a Boundary Guidance (BG)
network is added to enhance the contour information of BUS images. Additionally, newly designed Boundary
Attentional Feature FusionModules (BAFFMs) are used to integrate edge information and features extracted
through RMSFMs. Finally, newly designed Parallel Channel and Spatial Attention Modules (PCSAMs)
are used to refine feature extraction using channel and spatial attention. An extensive experimental testing
performed on two public datasets demonstrates that the proposed BGRD-TransUNet model outperforms
all state-of-the-art medical image segmentation models, participating in the experiments, according to all
evaluation metrics used (except for few separate cases), including the two most important and widely used
metrics in the field of medical image segmentation, namely the Intersection over Union (IoU) and Dice
Similarity Coefficient (DSC). More specifically, on the BUSI dataset and dataset B, BGRD-TransUNet
achieves IoU values of 76.77% and 86.61%, and DSC values of 85.08% and 92.47%, respectively, which
are higher by 7.27 and 3.64, and 5.81 and 2.54 percentage points, than the corresponding values achieved
by the baseline (TransUNet).

INDEX TERMS Breast disease, breast ultrasound (BUS), tumor segmentation, medical image segmentation,
TransUNet.

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

I. INTRODUCTION
According to the latest global cancer data report [1],
from 2015 to 2019, the number of women breast cancer
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incidences has continued to increase, resulting in a quite high
mortality rate reaching second place after the lung cancer.
It has become the deadliest cancer among women, posing a
serious threat to their health. Early diagnosis and treatment
of breast cancer are crucial for improving the cure rate and
survival rate. Breast X-ray examinations and magnetic reso-
nance imaging (MRI) are methods used in breast screening.
However, due to radiation concerns, both doctors and patients
often approach these types of examinations with caution.
Breast UltraSound (BUS) imaging technology, on the other
hand, is a radiation-free, real-time, and cost-effective means
for detection, [2]. Therefore, it has been rapidly accepted by
both medical professionals and patients and is increasingly
being used in breast tumor detection. Segmenting tumors
fromBUS images is a crucial step in assisting doctors in accu-
rately locating and describing tumor regions. However, BUS
tumor images inherently present uncontrollable issues such
as blurry lesion boundaries and diverse tumor morphologies.
These challenges make it difficult for doctors to accurately
segment breast tumors manually. To enhance the objectivity
and accuracy of diagnosis, creating computer-aided diagnos-
tic systems to assist doctors in segmenting BUS images is an
urgent need in current research.

To date, research in image segmentation primarily has
followed two directions utilizing traditional methods and
deep learning methods, respectively. Relying on manually
designed features and rules, traditional methods, such as
threshold segmentation, region growing, edge detection, etc.,
can generally only handle images where the target and
background have significant differences [2]. Consequently,
traditional methods have limitations such as high demand
for image quality and sensitivity to parameters. With the
advancement of machine learning to deep learning, more and
more researchers are turning to using deep learning methods
to improve segmentation accuracy. Deep learning convo-
lutional neural networks (CNNs) have gained widespread
application in medical image segmentation as they offer
significant advantages over traditional segmentation meth-
ods [3]. Boosted by the recent developments, CNNs have
been repeatedly applied to BUS image segmentation [4].
Among these, the most representative example is U-Net [5].
Characterized by its symmetric encoder-decoder U-shape,
U-Net is a prevalent model in medical segmentation. Mul-
tiple variations of U-Net, such as U-Net++ [6], Attention
UNet [7], Res-UNet [8], and others, have been developed and
used to date.

However, due to the inherent limitations of CNN oper-
ations, U-Net often struggles to capture global contextual
information, [9]. This limitation arises because the size of the
convolutional kernel in CNN determines its local perception
ability, restricting a single convolutional kernel to focus on a
limited local region, [10]. While CNN models can gradually
expand the receptive field of convolutional kernels by stack-
ing numerous convolutional layers (which allows higher-level
convolutional kernels to focus on global features), lower and
intermediate-level convolutional kernels remain constrained

and can only focus on local regions. In contrast to the
CNN architecture, the Transformer architecture [11] excels
at capturing global contextual information. Consequently,
some researchers have combined Transformer with U-Net,
giving rise to the representative work of TransUNet [9].
TransUNet draws inspiration from the Vision Transformer
(ViT) model [12] and incorporates Transformer into the
encoder part of U-Net. Although TransUNet addresses the
issue of CNN’s difficulty in capturing global information,
it presents some new challenges. Compared to other image
segmentation datasets, medical image datasets (especially
BUS datasets) are often extremely limited in size, typically
comprising only a few hundred or thousand data samples.
Training TransUNet directly on these small-size datasets can
easily lead to model overfitting. Another issue is that due
to the semantic differences between the shallow encoder
and decoder in TransUNet, shallow-level features with less
semantic information may impair the final model perfor-
mance through simple skip connections. Furthermore, the
problem of fuzzy lesion boundaries in BUS images remains
unaddressed.

To cope with the aforementioned issues, we propose
an improved model based on TransUNet, named BGRD-
TransUNet, with the following main contributions:

1) In the encoder, the original ResNet50 backbone net-
work [13] of TransUNet is replaced with DenseNet121
[14]. This leverages DenseNet’s features, such as
parameter sharing and feature reuse, to address the
model overfitting problem caused by small-size BUS
image datasets;

2) During the skip connection process, newly designed
Residual Multi-Scale Feature Modules (RMSFMs) are
employed to expand the receptive field, allowing to
capture richer features at specific layers;

3) A newly designed Deformable Atrous Spatial Pyramid
Pooling Module (DASPPM) is introduced between the
encoder and decoder to enhance the extraction of com-
plex shapes;

4) The original skip connection mechanism of TransUNet
is enhanced by introducing a newly designed Boundary
Guidance (BG) network that separately trains boundary
features to address the issue of fuzzy lesion boundaries
in BUS images;

5) Newly designed Boundary Attentional Feature Fusion
Modules (BAFFMs), incorporating a multi-scale chan-
nel attention mechanism, are used by the proposed
model to obtain attention-based fusion features. This
mitigates the semantic differences between the shal-
low encoder and decoder. Additionally, within each
BAFFM, boundary features, extracted by BG, are inte-
grated;

6) In the decoder, the proposed model uses newly
designed Parallel Channel and Spatial Attention Mod-
ules (PCSAMs) to better capture essential features in
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the images by simultaneously considering both channel
information and spatial information.

The remaining structure of this paper is the following.
Section II describes related work done in this area. Section III
describes the proposed BGRD-TransUNet model in detail.
Section IV presents the conducted experiments and analyses
the obtained results, followed by conclusions presented in
Section V.

II. REALATED WORK
A. APPLICATION OF TRANSFORMERS IN MEDICAL IMAGE
SEGMENTATION
Influenced by the significant success of Transformer mod-
els in the field of Natural Language Processing (NLP),
Transformers have been further extended into the realm
of computer vision. Dosovitskiy et al. [12] introduced an
improved model based on Transformers, known as ViT,
which was designed to address the shortcomings of CNNs in
capturing distant semantic dependencies [15]. This innova-
tion garnered widespread attention in the field of computer
vision. In the domain of medical image segmentation, the
application of ViT has also demonstrated immense potential.
One of themost noteworthy developments was the integration
of ViT with the U-Net architecture, which can be categorized
into two main approaches: (i) supplementing a U-shaped
CNN network structure with Transformers; and (ii) construct-
ing an independent U-shaped Transformer architecture.

Among the models that supplement the U-shaped CNN
network structure with Transformers, one of the most repre-
sentative examples is TransUNet [9]. Within the TransUNet
encoder, there are 12 stacked Transformer layers, which
employ tokenized pathways to extract abstract features from
the original input, thereby capturing global context informa-
tion. In the decoder pathway, encoded features are combined
with high-resolution CNN feature maps and used for upsam-
pling. This process enables precise localization [15].
Subsequently, some researchers proposed an alternative

approach that does not rely on traditional CNNs but rather
constructs segmentation networks solely using Transformers.
A notable example in this group is Swin-UNet, where Swin
Transformer blocks [16] serve as a primary structure of a
U-shaped network [17]. Swin Transformer plays a crucial
role in visual tasks, operating as an efficient linear trans-
former with the ability to support hierarchical architectures.
A key design feature of Swin Transformer is its shift window
scheme, which enables the Transformer to calculate rela-
tionships among various patches within the same window.
Subsequently, the window shifts across patches and calcu-
lates attention within it. This continuous shifting operation,
along with the capture of local contextual information among
patches within the window, can be stacked multiple times.
Finally, a patchmerging layer is used to construct hierarchical
feature maps by merging deep-level patches. This concept
shares similarities with the U-Net structure and has been suc-

cessfully applied in the field of medical image segmentation,
resulting in the Swin-UNet architecture.

In recent years, Transformer-based models have continued
attracting much attention in the field of medical image seg-
mentation and achieved remarkable results in solving prob-
lems caused by blurred lesion boundaries. A series of models,
represented by TransDeepLab [18] and HiFormer [19],
make full use of the Transformer’s self-attention mecha-
nism and cross-context attention mechanism, as well as
utilize the Swin-Transformer module to achieve multi-scale
feature fusion. These models effectively improve segmenta-
tion performance and efficiency by capturing long-distance
dependencies and spatial correlations. By cleverly combin-
ing the advantages of CNNs and Transformers, they achieve
detailed fusion of global features and local features, thus
further improving the processing of boundary areas. Different
from thesemodels that rely on Transformers, DBGA-Net [20]
proposes a novel idea, using a dual-branch global-local atten-
tion network. This model focuses on the global features of
the entire image by designing a global channel attention
module (GCAM). Although Transformer is not used directly,
through GCAM’s global average pooling and weight vector
mapping, effective extraction of global information is suc-
cessfully achieved, bringing new ideas for use in the image
segmentation task. Overall, these two new groups of models
introduce global information in different ways and fuse local
information, effectively improving the their performance and
robustness in medical image segmentation tasks. These stud-
ies provide useful inspiration for further developments in the
field.

In this paper, we have made improvements to the Tran-
sUNet architecture by replacing the network model in the
CNN part. This change assists the model in retaining more
features, reducing the risk of overfitting, and improving the
segmentation performance.

B. MULTI-SCALE FEATURE EXTRACTION
In natural scenes, the presence ofmulti-scale visual patterns is
a common occurrence. Firstly, objects within a single image
may vary significantly in size, such as the notable size differ-
ence between a table and a cup. Secondly, crucial contextual
information about objects can extend far beyond the bound-
aries of the objects themselves. For example, to accurately
determine whether a small black spot on a large table is a cup
or a pencil holder, we rely on the context provided by the large
table. Thirdly, gathering information from different scales
is incredibly important for understanding object parts and
wholes, especially in tasks such as fine-grained classification
and semantic segmentation. Therefore, designing an effective
multi-scale feature extraction method is essential for visual
tasks.

In previous research, many state-of-the-art multi-scale
feature extraction networks were proposed. For example,
AlexNet [21] introduced a stacked convolution operation
approach, enabling data-driven multi-scale feature learning.
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Subsequently, the efficiency of multi-scale capabilities was
further improved by using convolutional layers with different
kernel sizes, as seen in the Inception architecture. Addi-
tionally, Gao et al. [22] introduced a simple yet effective
multi-scale processing method called Res2Net. It divides the
input feature maps into several groups. Initially, a group of
filters extracts features from one set of input feature maps.
Then, the output features from the previous group are com-
bined with another set of input feature maps and sent to the
next group of filters. This process repeats several times until
all input feature maps are processed. Finally, features from all
groups are concatenated and sent to another set of 1× 1 filters
for information fusion.

In the case of BUS images, cancer can vary in terms
of size and position. Therefore, building upon Res2Net,
we have designed a novel Residual Multi-Scale FeatureMod-
ule (RMSFM) to extract more detailed features. This module
is described in detail in Subsection III-B.

C. BOUNDARY GUIDANCE (BG)
For BUS images, accurate lesion segmentation remains chal-
lenging due to poor image quality, such as low contrast and
high speckle noise, as well as edge blurring [23]. In previ-
ous research, several methods were proposed to address this
issue. MLMSNet [24] used supervised foreground boundary
detection and edge detection. AFNet [25] developed a metic-
ulous feedback module to better explore target structures.
CPDNet [26] introduced a partial decoder to refine high-level
features for generating precise saliency maps. CF2-Net [27]
employed two consecutive convolutional layers with kernel
sizes of 1 × 1 and 3 × 3, respectively, to extract edge infor-
mation from fused features generated from skip connections.
Subsequently, a 1 × 1 convolutional layer further extracted
high-level edge semantic features, whichwere then connected
with the fused features as input for a mini U-Net. In this
context, we further propose a boundary prediction approach
to enhance lesion segmentation accuracy. This is explained in
detail in Subsection III-D.

D. DenseNet121
DenseNet121 is a deep neural network, part of the Dense
Convolutional Network series (DenseNet) [14], Figure 1.
The ‘‘121’’ in the name represents the number of layers in
the network, including 121 layers of convolutional and fully
connected layers.

Unlike traditional CNNs, DenseNet121 adopts a dense
connectivity design, where each layer is connected to all
preceding layers. This enables thorough information propa-
gation and sharing within the network, effectively alleviating
the issue of gradient vanishing. It also makes the network
more compact and efficient. The basic building blocks of
DenseNet121 consist of multiple dense blocks, each contain-
ing several convolutional layers, batch normalization layers,
and dense connections. Additionally, to further reduce the
dimensionality of feature maps, DenseNet121 introduces

FIGURE 1. The DenseNet structure.

transition layers. These layers employ 1×1 convolutions and
average pooling to compress the size of feature maps, thereby
reducing computational complexity. DenseNet121 achieved
outstanding results in the ImageNet image classification com-
petition and has been widely applied in various computer
vision tasks, including object detection and image segmen-
tation. Its design philosophy of dense connectivity provides
crucial insights and references for constructing efficient and
accurate deep neural networks.

III. PROPOSED MODEL: BGRD-TransUNet
In this section, the overall structure of the proposed
BGRD-TransUNet model is first introduced, followed by a
detailed description of its main modules.

A. OVERALL STRUCTURE
The BGRD-TransUNet model is an improvement upon the
TransUNet model. Currently, some models based on Tran-
sUNet, such as DA-TransUNet [28] and IB-TransUNet [10],
introduce bottleneck modules between the CNN and Trans-
former to optimize the feature maps fed into the Transformer.
However, the CNN components of these models still utilize
the original ResNet50 [13] structure of TransUNet without
modification. Due to the specific nature of our research
and the limited size of the utilized datasets, using ResNet50
as the CNNbackbone is insufficient for our needs. Tomitigate
the risk of model overfitting due to the scarcity of data,
we propose, for the first time, replacing the ResNet50 in the
CNN backbone of TransUNet with DenseNet121 [14].

The proposed BGRD-TransUNet model consists of an
encoder, skip connections, a decoder, and a boundary guid-
ance (BG) network, as shown in Figure 2.
In the encoder, the original ResNet50 backbone network

of TransUNet is replaced with DenseNet121, where each
layer has access to information from all previous layers
in the network, which helps alleviate the gradient vanish-
ing problem. Additionally, due to using dense connections,
DenseNet121 achievesmore efficient parameter sharing. This
means that compared to ResNet50 with the same depth,
DenseNet121 typically requires fewer parameters, reducing
the risk of model overfitting and improving parameter effi-
ciency. As previously mentioned, the BUS dataset is small
in size, but Transformer models have a large number of
parameters, which can pose a risk of model overfitting in
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FIGURE 2. The proposed BGRD-TransUNet model.

segmentation tasks. Therefore, by replacing ResNet50 with
DenseNet121, we leverage the inherent characteristics of
the latter to mitigate model overfitting issues. Additionally,
a newly designed module, DASPPM, is introduced after ViT
to expand the receptive field.

In skip connections, newly designed modules, RMSFMs,
are introduced to help alleviate semantic differences between
the shallow encoder and decoder, and extract richer feature
information. Different from the commonly used multi-
resolution fusion, e.g., in IB-TransUNet, or adding attention
mechanism, e.g., in DA-TransUNet, to modify the skip link,
we propose to use the residual multi-scale feature extraction
method to strengthen the skip connections. Convolutions with
different convolution kernel sizes are used to extract fea-
tures of each layer in parallel to achieve multi-scale feature
extraction in the encoding stage. Compared with previous
works, this operation not only reduces the semantic difference
between the encoding stage and decoding stage, but also
more fully extracts the information of lesions of different
sizes in the images, making the model more suitable for
segmenting images in datasets with different target sizes.
In addition, unlike the residual multi-scale feature fusion
method mentioned by Qin et al. [29], we did not choose
to share feature information in the residual connection of
different scale feature information, but adopted a top-down
cumulative transfer method, as shown in Figure 3, to prevent
the generation of redundant features and reduce the impact of
redundant feature information on the model performance.

A separate boundary guidance (BG) network was designed
by us and used to enhance boundary information. In the
decoder, newly designed modules, BAFFMs, are inserted to
better fuse skip connection information and BG informa-
tion. Specifically, we designed a simple boundary detection
network that connects three layers of features from the
DenseNet121 backbone and uses convolution to obtain a

boundary map supervised by the GT boundary map. Finally,
the predicted boundary map is fused with the trunk features
as boundary features to enhance the sensitivity of the model
to boundaries. Unlike previous works of boundary guidance,
we do not fuse the boundary map with the backbone fea-
tures directly by channel splicing or pixel-by-pixel point
summation. In order to achieve fuller use of the bound-
ary information, we adopt the affine operation to fuse the
boundary features with the backbone features, which is per-
formed by the BF module utilized by BAFFMs, described
in Subsection III-E. More specifically, the affine operation
is conducted with two parameters – a scaling parameter and
a translation parameter, which learn to adjust the scaling
and translation of the input data during the training process,
so as to improve the expressive ability and adaptability of the
model. The purpose of fusing boundary features with back-
bone features using the affine operation is to adaptively adjust
the contribution of boundary information through learning
parameters, strengthen the boundary features, make the net-
work more focused on the task requirements, and make full
use of important information about the shape and location of
the lesion during the fusion process.

Additionally, after each BAFFM, another newly designed
module, PCSAM, is added to further enhance the model’s
segmentation performance. Finally, through a 3 × 3 convo-
lutions and upsampling, the original image size is restored.

B. RMSFM
Due to the limitations of traditional sequential convolu-
tion operations, it is not possible to extract rich contex-
tual information. Inspired by the Inception module [30]
and Res2Net [22], a newly designed module, called
RMSFM (Figure 3), is proposed here to enhance the
model segmentation performance by extracting richer feature
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information and alleviating the semantic gap between the
shallow encoder and decoder.

FIGURE 3. The designed residual multi-scale feature module (RMSFM).

RMSFM employs parallel convolution operations, pro-
gressively enlarging the receptive field using residual blocks.
RMSFM utilizes five branches to capture different scales of
information. Four of these branches start with a 1× 1 convo-
lution layer. The subsequent two layers consist of 1×(2k-1)
and (2k-1)×1 convolutional layers, employing asymmetric
convolutions to reduce computational complexity. The final
layer is a 3 × 3 convolutional layer with a dilation rate of
(2k-1) when k > 2. The general operation of these four
branches is performed according to the following formula:

Branchik =


Conv1×1(Fi); k = 1
Conv1×1,1×3,3×1,3×3(Fi ⊕ Branchi1); k = 2
Conv1×1,1×5,5×1,3×3(Fi ⊕ Branchi2); k = 3
Conv1×1,1×7,7×1,3×3(Fi ⊕ Branchi3); k = 4

(1)

where Fi denotes the i-th input feature map generated by
DenseNet121, k denotes the output of the k-th branch
in Branchik , ⊕ denotes element-wise addition, and Conv()
refers to the stacked convolutional layers mentioned above.
The outputs of these branches are then concatenated, and
1× 1 convolutions are applied to adjust their channel dimen-
sions to match the input channel size. The fifth branch,
which does not undergo any operations, is combined with
the other four branches. Then, a 3 × 3 convolution operation
is performed, followed by a ReLU activation, to obtain the
ultimate feature. Finally, the output featureRMSFi is obtained
as follows:

RMSFi = Conv3×3(Cat(Fi,Conv1×1(Cat4k (Branch
i
k ))) (2)

where Cat4k denotes the concatenation of all four branches
and Cat denotes the concatenation of the input feature Fi and
fused features from the four branches.

C. DASPPM
Traditional convolution operations divide the feature map
into sections of the same size as the convolutional kernel
and perform convolution. Each section’s position on the fea-
ture map is fixed. This approach may work well for objects

with regular shapes, but it becomes less effective for com-
plex objects like tumors, which have varying shapes, sizes,
and positions. Therefore, a newly designed module, called
DASPPM (Figure 4), is introduced between the encoder and
decoder of the proposed model to enhance the extraction of
complex shapes.

FIGURE 4. The designed deformable atrous spatial pyramid pooling
module (DASPPM).

DASPPM consists of a 3 × 3 deformable convolution
followed by a serial connection with Atrous Spatial Pyramid
Pooling (ASPP) [31]. The deformable convolution uses addi-
tional offsets to increase spatial sampling positions within
the module. These offsets are learned from the target task,
allowing the entire module to better consider changes in the
target’s shape. ASPP, on the other hand, employs multiple
parallel void convolutional layers with different sampling
rates. It processes the features extracted for each sampling
rate in separate branches to capture multi-scale object infor-
mation and then combines them to generate the final result.
In DASPPM, the deformable convolution and ASPP are seri-
ally connected, leveraging the dual advantages of deformable
convolution and ASPP to address the challenges posed by the
complex and diverse features of targets.

D. BG NETWORK
For the BUS image segmentation task, it is known that pix-
els near the object boundaries are complex, [32]. Since the
encoder uses multiple convolutional layers and Transformers
to extract features, a significant amount of upsampling is
needed to restore the resolution, which results in some degree
of spatial information loss. This issue is particularly pro-
nounced in BUS data segmentation because the boundaries of
objects in ultrasound images are already unclear, and further
information lossmakes the boundaries evenmore ambiguous.
Therefore, we attempted to extract boundary information and
integrate it into the feature space of the decoder to enhance
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the model’s sensitivity to boundaries. With prior knowledge
of object boundaries, one can easily identify objects with
patterns similar to the background. Thus, boundary infor-
mation plays a crucial role in the image segmentation task.
However, during the model training phase, we cannot directly
use the gradient map of the ground truth as guidance. Instead,
we need to train a separate network to obtain the boundary
map.

We designed a simple Boundary Guidance (BG) network
(Figure 5) that takes the three featuremaps from the backbone
and processes them through a 3 × 3 convolution operation.
Subsequently, the images from the first two layers are upsam-
pled with scale_factors of 4 and 2, respectively, to ensure that
all three feature maps have the same size. These three feature
maps are then fused and (through a linear layer and a bilinear
interpolation layer) optimized during the training phase with
the corresponding loss to obtain the final boundary feature
map.

FIGURE 5. The designed boundary guidance (BG) network.

The ultimate boundary prediction is calculated as follows:

E = BI

{f [Cat(up (Conv (e1) , 4) , up (Conv (e2) , 2) ,Conv(e3))]},

(3)

where ei(i =1, 2, 3) denote the three feature maps generated
by the backbone network,Conv() denotes a 3×3 convolution,
up() denotes the upsampling layer with its second parameter
being the sampling rate, Cat denotes a concatenation opera-
tion, f denotes the linear layer operation, and BI denotes a
bilinear interpolation.

E. BAFFM
To better fuse the skip-connection information with edge
feature information and alleviate further the semantic gap
between the shallow encoder and decoder, a newly designed
module, called BAFFM, is proposed here, as shown in
Figure 6a.

FIGURE 6. (a) The designed boundary attentional feature fusion module
(BAFFM); (b) The MSCA block [33], utilized by BAFFM.

This module effectively fuses multi-level features using
AFF that introduces Multi-Scale Channel Attention (MSCA)
[33], shown in Figure 6b, which possesses strong adaptability
to targets of different scales. MSCA consists of two branches
– one branch employs global average pooling to capture
global contextual information, while the other branch retains
the original feature size to obtain local contextual informa-
tion. Both branches utilize pointwise convolution operations
to compress and restore features in the channel dimension,
facilitating the fusion of multi-scale channel contextual infor-
mation.

The AFF computation is performed as follows:

A = M (X ⊕ up (Y ))

⊗ X ⊕ (1 −M (X ⊕ up (Y ))) ⊗ up (Y ) , (4)

AFF = Conv(M (A) ⊗ X ⊕ (1 −M (A)) ⊗ up(Y )), (5)

where M denotes MSCA, X denotes the feature maps gen-
erated by the main network, Y denotes the feature maps
generated by skip connections, up() denotes upsampling,
⊕ denotes the initial fusion of X and Y (Y is upsampled
and pixel-wise added to X ), ⊗ denotes element-wise multi-
plication, and (1−M(X⊕up(Y))) corresponds to the dashed
line in Figure 6a. Finally, the features are passed through a
3 × 3 convolutional layer, followed by batch normalization
and ReLU activation.

After AFF, themain features are already fusedwith the skip
connection features. Then, the fused features are passed to a
Boundary Fusion (BF) module, shown in Figure 7. The BF
module has two inputs – one accepts the previously fused
main features and the other accepts the edge features that
are separately trained as described in Subsection IV-D. The
edge prediction is used as a condition. Through this module,
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spatial information is integrated into the feature maps, aiding
in capturing boundary features more effectively.

FIGURE 7. The BF module, utilized by BAFFM.

FIGURE 8. The designed parallel channel and spatial attention module
(PCSAM).

The BF operation is defined as follows:

BF = CB (AFF) ⊗ NC (E) ⊕ NC (E) , (6)

where CB denotes a 3 × 3 convolution followed by batch
normalization (BN), AFF denotes the main features gen-
erated, NC denotes nearest-neighbor interpolation and the
3 × 3 convolutional layer, used for encoding the edge map
information.

F. PCSAM
Inspired by the Convolutional Block Attention Module
(CBAM) idea [34], in order to enhance the model’s ability to
analyze complex scene information, a newly designed mod-
ule, called PCSAM, is proposed here, as shown in Figure 8.

In this module, first, the BAFFM output is passed in paral-
lel through two 3×3 convolutions, feeding two branches. One
branch employs channel attention to generate attention fea-
ture maps, which are then element-wise multiplied with the
original input feature maps for adaptive feature refinement,
producing the final feature maps. The other branch processes
the feature information generated by spatial attention in
parallel to the other branch, following the same steps. Subse-
quently, the feature maps produced by these two branches are
pixel-wise added and then passed through a 3×3 convolution
operation. These are further fused with the BAFFM output
and, finally, another 3×3 convolution operation is applied to
obtain the ultimate feature representation.

G. LOSS FUNCTIONS
The Binary Cross-Entropy (BCE) loss function [35] is widely
used in many tasks, including image segmentation. BCE
is well-suited for pixel-level binary classification and can
directly measure the difference between each pixel’s predic-
tion and the true label, thereby encouraging the model to
make accurate classifications. This helps achieve precise seg-
mentation boundaries, enhancing the quality of segmentation
results. Additionally, the BCE loss function is compatible
with deep learning models and can be used in conjunction
with CNNs, enabling a model to learn rich image features.
As a result, it is widely popular in practical applications and
provides an effective solution for segmentation problems. The
BCE loss is calculated as follows:

LBCE = −

∑N

i=1
[Gi ln(Pi) + (1 − Gi) ln(1 − Pi)], (7)

where Gi denotes the value of pixel i in the ground-truth
labels and Pi denotes the value of pixel i in the segmentation
prediction results.

However, BCE has a notable drawback – when the number
of target pixels is significantly lower than background pixels,
the model tends to heavily bias towards the background,
resulting in poor segmentation performance. To achieve bet-
ter results, we combined the BCE loss function with the Dice
loss function as proposed in [36].

The Dice loss function plays a crucial role in image seg-
mentation. It is used to measure the similarity between the
segmentation results and the ground-truth masks, encour-
aging the model to produce more precise segmentation
boundaries.

The Dice loss function is robust to small objects and class
imbalance issues, which helps improve segmentation perfor-
mance. Additionally, it tends to lead to more stable model
training and faster convergence, making it a preferred loss
function for many segmentation tasks. Moreover, using the
Dice loss function can reduce model overfitting. The Dice
loss is calculated as follows:

LDice = 1 − 2

∑N
i=1GiPi∑N

i= G
2
i +

∑N
i=1 P

2
i

(8)

The combined use of the BCE and Dice loss functions
allows to leverage their respective advantages effectively.
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This approach encourages accurate pixel classification,
enhances segmentation boundary precision, manages class
imbalance issues, and ensures stable convergence, thereby
improving the quality of image segmentation. The combined
BCE+Dice loss function is calculated as follows:

LBCE+Dice =
1
2
LBCE + LDice (9)

Due to the fact that the proposed model has two supervised
outputs, namely the segmentationmap and the boundarymap,
the final overall loss function used is shown below:

L = αLt (P,G) + β(EP,EG), (10)

where P denotes the segmentation prediction result, G
denotes the ground-truth label image for segmentation, EP
denotes the boundary prediction result, EG denotes the
ground-truth boundary image, α = 0.8, and β = 0.2.

IV. EXPERIMENTS AND RESULTS
A. DATASETS AND IMAGE PRE-PROCESSING
Two widely used public datasets were employed to evaluate
the segmentation performance of the proposed BGRD-
TransUNet model. The first dataset, referred to as Breast
UltraSound Image (BUSI) dataset, was established by Al-
Dhabyani et al. [37]. It consists of 780 BUS images with
an average size of 500 × 500 pixels, accompanied by cor-
responding segmentation masks from 600 female patients,
with 210 malignant cases, 437 benign cases, and 133 normal
cases. These images were acquired at Bahaya Hospital using
two different ultrasound devices – LOGIQ E9 and LOGIQ
E9-Agile. The second dataset used, referred to as dataset B,
was curated by Yap et al. [38]. It comprises 163 images (53
images with cancerous masses and 110 images with benign
lesions) with an average size of 760 × 570 pixels, captured
using the Siemens ACUSON Sequoia C512 system 17L5 HD
linear array transducer (8.5 MHz).

In the experiments, the BUSI dataset was used in two
different ways: (i) including normal cases; and (ii) excluding
normal cases. In both of these, we randomly split the BUSI
dataset into training, validation, and test sets in an 8:1:1 ratio,
as shown in Table 1. Due to the limited number of images
contained in the dataset B, we used an 8:2 random split into
training and validation sets, with no separate test set (Table 1).
To address the data scarcity in dataset B, we applied data
augmentation techniques, including random flips, random
rotations, and random cropping, to the training set. The vali-
dation set remained unchanged during this process.

B. EVALUATION METRICS
In the experiments, five metrics were used to evaluate the
model segmentation performance, including Intersection over
Union (IoU), Dice Similarity Coefficient (DSC), recall, pre-
cision, and accuracy.

One of themost commonmetrics in semantic segmentation
is IoU, a.k.a. Jaccard index, used to measure the degree of

TABLE 1. Splitting the datasets in the experiments.

overlap between two regions, as follows:

IoU =
TP

TP+ FP+ FN
, (11)

where TP, FP, and FN respectively denote the accurate
segmentation of breast lesions, incorrect segmentation of
background regions as breast lesions, and incorrect segmen-
tation of breast lesions as background regions.

DSC is the other widely used metric in the field of med-
ical image segmentation. It measures the overlap between
a model’s segmentation results and the ground-truth labels,
as follows:

DSC =
TP

2TP+ FP+ FN
, (12)

Recall (Rec) is used to assess the proportion of true pos-
itives correctly identified by the model within the actual
positive instances, which represents the model’s coverage of
the target region, as follows:

Rec =
TP

TP+ FN
, (13)

Precision (Pre) examines how many of the predictions
made by a model are correct when it predicts positive
instances, as follows:

Pre =
TP

TP+ FP
. (14)

Accuracy (Acc) measures the overall pixel-level segmenta-
tion performance, as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
, (15)

where TN denotes correct segmentation of background
regions.

Together these fivemetrics form the confusion matrix, pro-
viding a comprehensive evaluation of themodel segmentation
performance.

C. EXPERIMENTAL ENVIRONMENT
Using PyTorch version 2.0.1 [40] and Python version 3.9.16,
the experiments were conducted on a Windows 10 operating
system. The hardware setup included a computer with a 13th
Gen Intel®Core™ i5-13600KF CPU, 32GB of RAM, and an
NVIDIA GeForce RTX 3060 GPU equipped with 12GB of
RAM. Model training extended over 100 epochs, employing
the Adam optimizer [41] with an initial learning rate of 1e-
4. We adopted the CosineAnnealingLR scheduler [42], a
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TABLE 2. Ablation study: compositions of components and corresponding versions of the developed model, along with their segmentation performance
results.

TABLE 3. Segmentation performance comparison of the proposed model with state-of-the-art models, based on experiments conducted on BUSI dataset
and dataset B.

momentum of 0.9, and a batch size of 4. In terms of input
image dimensions, all experiments utilized a consistent image
size of 512 × 512 pixels.

D. ABLATION STUDY EXPERIMENTS
To assess the performance of different components of the
developed model, we conducted ablation study experiments
on the BUSI dataset, utilizing TransUNet as a baseline.

Table 2 provides a detailed breakdown of the various
compositions of components resulting in different model
versions, along with their segmentation performance results
(the best results are shown in bold). The presented results
indicate that the newly designed modules, presented in the
previous section, all contributed positively to enhancing the

segmentation performance of the developedmodel. As shown
in Table 2, the addition of these modules (one after the other)
to the baseline resulted in a gradual increase in all metrics,
except for few cases of IoU (v4 vs. v3), recall (v4 vs. v1-3
& v6 vs. v5), precision (v5 vs. v2-4), and accuracy (v2 vs.
v1 & v5 vs. v4). In particular, v1 (with DenseNet121 as a
backbone) outperforms v0 (with ResNet50 as a backbone)
according to all evaluation metrics, demonstrating that image
segmentation with DensNet121 as a backbone performs bet-
ter than when using ResNet50 as a backbone, which proves
the feasibility of replacing the backbone network. After
integrating all designed modules, the sixth version (v6) of
the developed model, i.e., the proposed BGRD-TransUNet
model, demonstrated an increase of 7.27 percentage points
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FIGURE 9. Illustration of segmentation performance comparison of the
proposed model with state-of-the-art models, based on experiments
conducted on BUSI dataset.

in IoU, 5.81 percentage points in DSC, 6.08 percentage
points in recall, 4.52 percentage points in precision, and
0.82 percentage points in accuracy, compared to the baseline
(TransUNet). This suggests that combining all these compo-
nents together aids the model in learning more robust feature
representations from BUS images.

Table 2 also shows the number of parameters of each
version of the developed model as an indicator of its com-
putational complexity. As can be seen, the parameter count
gradually increases with each additional type of module
added to the model. In the final version (v6) of the model,
named BGRD-TransUNet, the number of parameters rose to
109.65 million. However, this number is still much smaller
than the parameter count of the baseline (TransUnet), equal
to 184.02 million.

E. SEGMENTATION PERFORMANCE COMPARISON
EXPERIMENTS
Next, we compared the image segmentation performance of
the proposed BGRD-TransUNet model with that of state-of-
the-art models on both datasets, whereby BUSI was used for
training, validation, and testing, while dataset B was used
for training and validation only. The results obtained on the
BUSI dataset are summarized in the left-hand part of Table 3
(the best results are shown in bold). As can be seen, BGRD-
TransUNet outperforms all other models according to all
metrics (including IoU and DSC which are the two most
important and widely used metrics in the field of medical

TABLE 4. Segmentation performance comparison of the proposed model
with state-of-the-art models, based on BUSI dataset results reported in
literature (years 2022-2023).

image segmentation), except for recall where it takes third
place by closely following the leader (DoubleU-Net [43])
and first runner-up (FPN [39]). More specifically for all
other four metrics, BGRD-TransUNet achieves values that
are respectively higher by 2.74 percentage points for IoU,
1.51 percentage points for DSC, 0.37 percentage points for
precision, and 0.27 percentage points for accuracy, compared
to the second-best performing model (DCSAU-Net [44]).
Visual comparisons of breast lesion segmentation results of
the compared models are presented in Figure 9.

The right-hand part of Table 3 contains image segmenta-
tion performance results of the proposed BGRD-TransUNet
model and state-of-the-art models, obtained on dataset B (the
best results are shown in bold). As can be seen, the proposed
model outperforms all other models according to four (out of
five) metrics, including IoU and DSC which are the two most
important and widely used metrics in the field of medical
image segmentation. The only exception is precision, where
BGRD-TransUNet takes third place by closely following the
leader (FPN [39]) and the first runner-up (DeepLabV3+
[45]). For the other four metrics, BGRD-TransUNet achieves
values that are respectively higher by 0.91 percentage points
for IoU, 0.69 percentage points for DSC, 2.53 percentage
points for recall, and 0.14 percentage points for accuracy,
compared to the second-best performing model (FPN [39]).
Table 3 also shows the parameter count of each model as

an indicator of the model computational complexity. As can
be observed, the proposed model has more parameters com-
pared to other models, which is due primarily to addressing
the demands of complex tasks, including the incorpora-
tion of the Transformer architecture and larger embedding
dimensions. However, compared to the baseline (TransUNet),
the proposed BGRD-TransUNet model has a much smaller
parameter count.

Next, the proposed model was compared to other most
recently proposed models according to their results achieved
on the BUSI dataset, as reported in the corresponding lit-
erature sources, as shown in Table 4 (the best results are
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TABLE 5. External validation results of segmentation performance of the proposed model and state-of-the-art models, trained on BUSI dataset and
tested on datasets B and BUSI (including normal cases).

shown in bold). Again, the proposed model outperforms all
other models according to four of the metrics (including IoU
and DSC which are the two most important and widely used
metrics in the field of medical image segmentation), except
for recall, where BGRD-TransUNet takes second place by
closely following the leader (DPCTN [49]). More specifi-
cally, for the other four metrics, compared to the second-best
performing model, BGRD-TransUNet achieves values that
are respectively higher by 1.66 percentage points for IoU
(compared to CSwin-PNet [48]), 1.40 percentage points for
DSC (compared to CSwin-PNet [48]), 0.18 percentage points
for precision (compared to CSwin-PNet [48]), and 0.01 per-
centage points for accuracy (compared to AMS-PAN [2]).

F. ROBUSTNESS ANALYSIS EXPERIMENTS
Finally, we conducted robustness analysis experiments con-
sisting of two parts: (i) external validation experiments; and
(ii) model segmentation performance comparison experi-
ments on the BUSI (normal) dataset.

Due to the significant differences in data collected from
various sites, substantial variability among the acquired data
may be present, [23]. This variability may lead to mod-
els performing well on the training set but experiencing a
drop in performance when dealing with external data, [46].
So, in the external validation experiments, we used dataset
B (without data augmentation) as an external data source
to test the segmentation performance of models trained on
the BUSI dataset. The obtained results are summarized in
the left-hand part of Table 5 (the best results are shown
in bold). As can be seen, the proposed model still demon-
strates the best performance according to three (out of five)
evaluation metrics (including the two most important in the
field of medical image segmentation, i.e., IoU and DSC).
At the same time, one can also notice that precision, achieved
by BGRD-TransUNet in this experiment, is significantly
lower. This could be attributed to the fact that the anno-
tation information in the BUSI dataset and dataset B was
provided by different sets of doctors. Subjective personal
factors and different annotation focuses may have resulted
in errors in the annotation of the edges of lesions in dataset

B. In addition, the proposed BGRD-TransUNet model adds
steps of boundary information extraction and fusion, which
makes it focus more on the boundary labeling habits of the
training dataset, making the problem of boundary labeling
differences more prominent when validating the model on
another dataset. Finally, the value of precision depends on
TP and FP values, where TP represents the number of correct
pixel predictions, and FP represents the number of incorrect
pixel predictions. As can be deducted from (14), when the
number of pixel prediction errors increases, this leads to low
precision. The reason for the significant increase of FP could
be due to errors in boundary prediction, which is also the
fundamental reason for low precision. Other metrics, such
as DSC and IoU, may be relatively tolerant to the accuracy
of the predicted boundaries because these metrics consider
the overlap between the predicted value and ground-truth
value. Judging from these two metrics, the generaliza-
tion performance of the proposed model is still excellent.
However, precision is sensitive to boundaries. If a model
shows errors near the predicted boundaries, precision will be
low naturally.

Next, we conducted an assessment of the impact of
ultrasound images, containing normal cases, on the model
segmentation performance. The right-hand part of Table 5
contains the results obtained on the BUSI dataset (includ-
ing normal cases). In comparison to the previous findings
(c.f., Table 3), one can note a significant influence of intro-
ducing ultrasound images, containing normal cases, on the
model segmentation performance. Similarly, Xue et al. [55]
pointed out that including normal-case ultrasound images in
the experiments is unfavorable for breast lesion segmentation.
Nonetheless, the comparison between Table 3 and Table 5
indicates that regardless of the presence of normal-case
ultrasound images, the proposed BGRD-TransUNet model
demonstrates the best segmentation performance among the
compared models in both cases – with and without inclusion
of BUSI normal-case ultrasound images in the experiments.
This suggests that the proposed model is capable, to a certain
extent, of mitigating the interference caused, by surrounding
tissues with similar intensity distributions.
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V. CONCLUSION
This paper has introduced a novel TransUNet-based model,
named BGRD-TransUNet, to address the challenges of breast
lesion segmentation. BGRD-TransUNet starts by replac-
ing the ResNet50 backbone network of TransUNet with
DenseNet121. This substitution is aimed at mitigating the
problem of model overfitting caused by small-size Breast
UltraSound (BUS) image datasets. Secondly, to reduce the
semantic gap between the shallow encoder and decoder,
the proposed model employes newly designed Residual
Multi-Scale Feature Modules (RMSFMs) in skip connec-
tions to extract features from various layers of DenseNet121,
thus capturing richer features within specific layers. Thirdly,
a newly designed Deformable Atrous Spatial Pyramid Pool-
ing Module (DASPPM) is introduced between the encoder
and decoder to enhance the extraction of complex shapes.
Additionally, given that BUS images often have low resolu-
tions, which can result in unclear lesion boundaries and affect
the segmentation performance, a Boundary Guidance (BG)
network was designed and used to enhance the contour infor-
mation of BUS images for improved segmentation. In the
decoder, the proposed model utilizes two newly designed
types of modules. The first one is the Boundary Atten-
tional Feature Fusion Module (BAFFM), which leverages
Multi-Scale Channel Attention (MSCA) to fuse features from
the main network, skip connections, and the BG network,
thus further reducing the semantic gap between the shallow
encoder and decoder. In each fusion process, a second type
of modules, Parallel Channel and Spatial Attention Modules
(PCSAM), combining both channel and spatial attention,
is added to enhance the model’s ability to analyze complex
scene information.

Regarding the loss function, the Binary Cross-Entropy
(BCE) and Dice loss functions were jointly used to address
the issue of highly imbalanced positive and negative samples.
Furthermore, multiple sets of experiments were conducted
using two publicly available datasets. These experiments
included an ablation study, image segmentation performance
comparisons with state-of-the-art models, and robustness
analysis. In the ablation study, the presented experimental
results have demonstrated that the segmentation performance
reached its peak when all newly designed components were
integrated into the model. Additionally, the performance
of the model improved with the addition of each indi-
vidual component. In the performance comparisons with
state-of-the-art models, it became evident that the proposed
BGRD-TransUNet model outperformed all other models
according to the majority of the evaluation metrics (including
IoU and DSC which are the two most important and widely
used metrics in the field of medical image segmentation),
regardless of the dataset used. For the final robustness anal-
ysis, external validation experiments were conducted, along
with additional model segmentation performance comparison
experiments on the BUSI dataset (including normal cases),

providing strong evidence that BGRD-TransUNet exhibits
excellent generalization capabilities.

Even though the proposed model demonstrated superior
results in breast lesion segmentation, there are still some
aspects for improvement, as indicated by Tables 3–5, namely
addressing the following limitations: (i) as the BG network
is not yet perfect, the accurate obtaining of target con-
tours still remains a challenging task; (ii) the quantity of
available datasets is still limited, and they may not cover
all types of breast lesions. To address these limitations,
we plan to further enhance the BG network and incorpo-
rate foreground-background information to improve contour
recognition. Additionally, we aim to explore more compre-
hensive datasets to enhance feature diversity and boost the
model’s generalization capabilities.

In conclusion, the proposed BGRD-TransUNet model is
both feasible and effective, and holds the potential to serve
as a reference point for further integration of artificial intel-
ligence into early-stage breast cancer clinical diagnostics.
Moving forward, our future research will focus on exploring
the applicability of this model in other medical domains as
well.
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