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ABSTRACT Dispersion in optical coherence tomography (OCT) poses a challenge that is exacerbated by
the increased spectral bandwidth, which leads to image blur and feature loss. In this paper, we present
a straightforward and cost-effective approach for dispersion compensation in OCT. To achieve this,
we employed a pixel-to-pixel (Pix2Pix) generative adversarial network (GAN) architecture customized
for image-to-image translation. Two data groups with varying amounts of training image data and
epochs were used. The Pix2Pix GAN was trained to generate clear OCT images from the corresponding
dispersion-affected OCT images in paired datasets. According to the experimental results, the Pix2Pix
GAN technique demonstrated a substantial improvement over the basic GAN. Specifically, it increases
the peak signal-to-noise ratio (PSNR) by 159%, structural similarity index (SSIM) by 370%, and Fréchet
inception distance (FID) by 274%. These outcomes indicate that the proposed model can generate images
with resilience and effectiveness, particularly when dealing with dispersion-affected OCT data.

INDEX TERMS Generative adversarial network, optical coherence tomography, Pix2Pix.

I. INTRODUCTION
Optical coherence tomography (OCT) is a noninvasive imag-
ing method that performs high-resolution cross-sectional
imaging. It can produce cross-sectional images of tissue
features at the micron scale both in situ and in real time. The
basic idea behindOCT is to use low-coherence interferometry
(LCI) technology to quantify the path length distribution of
scattered or reflected light from an object using a coherence
gate [1]. One benefit of OCT is that it can be integrated into a
variety of medical devices and implemented using small fiber
optic components. According to Fujimoto et al. [2], OCT
reduces excisional biopsy sample errors. OCT is a state-of-
the-art imaging technique for medical diagnostics that does
not require tissue sample removal for microscopic examina-
tion. OCT can generate in situ and real-time tissue images
by analyzing the interference signals reflected from the
reference and sample ends of low-coherence light with high
bandwidth and power. Compared to other medical modalities
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such as computed tomography (CT) and magnetic resonance
imaging (MRI), the resolution of OCT is noticeably higher.
It has a lateral resolution similar to that of a confocal
scanning laser ophthalmoscope, and an axial resolution
similar to that of a confocal microscope. Time-domain optical
coherence tomography (TD-OCT) and frequency-domain
optical coherence tomography (FD-OCT) are two types of
OCT system architectures. TD-OCT takes advantage of a
low-contrast light source and scan reference delay. A laser
source, typically a low-coherence superluminescence diode
(SLD) or pulsed laser, is divided into two channels using an
optical splitter. A reference mirror moved by the transmission
motion bounces light back from the first path, allowing it
to travel a known path length and encounter a changeable
measurable delay. When the light traveling along the second
path is aimed at the sample, the internal structure of the
sample scatters the light back, creating interference patterns
with the reference light traveling along the same optical
channel. This allows for the determination of the depth of
the sample and the locations of the different structures within
it. In contrast to TD-OCT measurements, in which light
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echoes are sequentially detected by the step-movement of a
reference mirror, FD-OCT measurements detect light echoes
as modulations in the source spectrum, with all spectral
components being recorded simultaneously. The primary
distinction between these two technologies is that, unlike the
TD-OCT system, the reference arm of the FD-OCT system
features a static mirror. FD-OCT systems may be able to
collect data more quickly than TD-OCT systems because of
the elimination of mechanical translation.

In biomedical applications, FD-OCT has become a ground-
breaking imaging method that provides high-resolution,
noninvasive biological tissue visualization. Despite its great
success, dispersion remains a major obstacle to realiz-
ing the full potential of FD-OCT. Dispersion causes a
wavelength-dependent phase shift in the obtained OCT
signals and is caused by the wavelength-dependent refractive
index of biological tissues. The reconstructed images become
distorted because of this occurrence, which affects both
the clarity of the images and the precision of tissue
characterization. Phase distortion and color separation are
caused by the dispersion effect, which occurs when light
interacts with biological tissues. Different wavelengths travel
at different speeds. Dispersion plays a crucial role in FD-OCT
because it builds images through the interference of light
waves, thereby influencing the accuracy and integrity of
the collected data. This difficulty is particularly noticeable
in situations where maximizing the longitudinal resolution of
imaging is required.

The fine trade-off between minimizing the negative
effects of dispersion and attaining a high longitudinal
resolution is at the center of the technical gap in dispersion
compensation for FD-OCT. One common technique for
improving the longitudinal resolution of FD-OCT is to
employ low-coherence light sources. However, this method
accentuates the dispersion effect, resulting in blurry images
and the loss of important details. The quest for novel and
efficient dispersion correction techniques that can harmonize
these competing needs has been sparked by the tradeoff
between resolution and dispersion.

Dispersion adjustment in FD-OCT is currently achieved
mostly through intricate algorithms and calibration processes.
Dispersion effects can be mitigated using conventional tech-
niques, such as spectrum shaping and numerical algorithms.
Using inverse transforms, numerical algorithms seek to
computationally correct the distortions caused by dispersion.
Using spectral shaping techniques, the dispersion effects are
offset by adjusting the spectral characteristics of the light
source. However, these approaches exhibit several draw-
backs. In real-world situations, it can be difficult to obtain
precise prior information on the sample properties, which is
a requirement for many numerical algorithms. Furthermore,
their performances may be limited under dynamic imaging
conditions or with variable tissue characteristics. Although
somewhat successful, spectral shaping techniques can be
difficult to use and may not be sufficiently flexible for the
variety of tissue features found in biomedical imaging.

The shortcomings of the dispersion correction techniques
currently used highlight the need for more durable and flex-
ible solutions to improve the dependability and adaptability
of FD-OCT imaging. The search for better techniques is not
only an academic endeavor; it is essential to realizing the
full promise of FD-OCT in clinical and research applications.
Owing to the dynamic nature of in vivo imaging and
the intrinsic complexity of biological tissues, compensation
approaches must be able to adjust to changing situations
effectively without compromising accuracy.

The capacity of machine learning paradigms to handle
challenging issues in image synthesis and analysis has made
them well-known in recent years. Generative adversarial
networks (GANs) are remarkably effective in this con-
text. A particular GAN family architecture, pixel-to-pixel
(Pix2Pix), has demonstrated promise for image-to-image
translation applications. Pix2Pix offers an innovative solution
that uses deep learning to address dispersion-related issues
in FD-OCT and dispersion compensation. Pix2Pix operates
based on the principle of learning a mapping function
between the input and output image pairs in a supervised
manner. In FD-OCT, the output images show optimally
compensated versions of the scans, whereas the input images
show scans distorted by dispersion. Pix2Pix’s conditioning
feature makes it possible to produce realistic images, making
it particularly suitable for the complex process of dispersion
correction.

There are various benefits to using Pix2Pix for dispersion
adjustment in FD-OCT. First, Pix2Pix can comprehend
the complex link between compensated and distributed
images by learning intricate mappings from paired datasets.
To handle the changing nature of tissue characteristics and
imaging situations experienced in practice, adaptability is
essential. In contrast to conventional techniques that may
not work well in dynamic settings, Pix2Pix can dynamically
modify the parameters it has learned, thereby offering
real-time correction of distortions caused by dispersion.
Second, Pix2Pix’s conditional structure enables the creation
of images with the required properties. This is particularly
helpful in FD-OCT, where it is crucial to preserve important
features and precisely depict tissue structures. Another factor
in the overall improvement of image quality is Pix2Pix’s
capacity to produce images with improved clarity while
maintaining significant detail.

The intrinsic difficulties caused by dispersion and
the potential of machine learning to handle difficult
image-translation problems are the driving forces behind
the use of the Pix2Pix GAN for dispersion compensation in
FD-OCT. Dispersion is a major obstacle in FD-OCT, a potent
imaging method with many applications in biomedicine.
This can seriously impair image quality and jeopardize the
precision of tissue characterization. Pix2Pix GAN’s special
strengths in the field of image-to-image translation makes it
an attractive solution to this problem. A few main factors
justify the adoption of the Pix2Pix GAN for dispersion
compensation in FD-OCT.
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• Adaptability to complex relationships: The basis of
Pix2Pix operation is the supervised learning of intricate
mappings between pairs of input and output images.
The link between compensated and dispersed images
in the context of FD-OCT dispersion compensation is
complex and dynamic, and changes depending on the
imaging settings and tissue characteristics. Owing to
its flexibility, Pix2Pix can identify and comprehend
intricate linkages, providing a solid foundation for
dispersion compensation.

• Conditional image generation: Pix2Pix’s conditional
feature is especially helpful for FD-OCT dispersion
adjustment. This allows the network to create tai-
lored visuals meeting specific requirements. For tasks
requiring precision in maintaining details and faithfully
representing tissue architecture, Pix2Pix’s conditional
image generation proves especially beneficial.

• Versatility across tissue types: The dispersion effect
varies depending on the characteristics of the biological
tissues and how they interact with light. Pix2Pix
adapts well to many tissue types because it can learn
from various datasets. This flexibility is essential for
dispersion correction techniques to be applicable in real-
world situations, where tissue characteristics may differ
significantly.

• Real-time compensation: Pix2Pix’s machine learning-
based approach enables real-time adaptation to changing
imaging settings. Unlike conventional techniques strug-
gling with quick adjustments, Pix2Pix dynamically
modifies learned parameters, providing swift and flexi-
ble dispersion compensation. This real-time capability is
particularly valuable in time-sensitive clinical situations.

• Possibility for generalization: Pix2Pix has demonstrated
efficacy in experimental environments; however, one of
its primary driving forces is its potential application in
various OCT systems and imaging modalities. Subse-
quent investigation and advancements may concentrate
on verifying and refining the Pix2Pix model to enhance
its generalizability, ensuring its efficacy in various
biomedical imaging scenarios.

In this study, a Pix2Pix GAN was implemented for
dispersion compensation of FD-OCT. Themain contributions
of this study are as follows.

• Pix2Pix GAN is implemented in the medical imaging
domain, which demonstrates its superiority in various
areas.

• The method has the feature of simple implementation,
effectiveness, and robustness.

• Two data groups of different sizes were used to verify
the effect of the training dataset size on the ability of the
model to produce high-quality images.

• This study provided and observed qualitative and
quantitative results to validate the proposed method.

The remainder of this paper is organized as follows.
Section II presents the existing literature and related works
in the fields of OCT and GAN to provide a contextual

background, highlighting prior research, methodologies,
and advancements in both OCT imaging and GAN-based
techniques. Section III outlines the theoretical foundations
and experimental setup for applying the Pix2Pix GAN
technique to address dispersion in FD-OCT, including the
Pix2Pix architecture. It also describes in detail how the
network is structured to learn and generate compensated
images from dispersed OCT scans, the composition of the
training datasets, parameters used in training the Pix2Pix
model, and any modifications made to adapt the technique
to FD-OCT dispersion compensation. Section IV presents
the outcomes of the experiments conducted to validate the
efficacy of the Pix2Pix GAN in compensating for dispersion
in FD-OCT, with qualitative and quantitative comparative
analyses with basic GAN methods. Section V concludes the
paper by summarizing the key findings of the study.

II. RELATED WORKS
In OCT, even though professionals are trained, there are
still some artifacts when scanning samples [3]. When the
critical characteristics of a sample structure are obscured by
these aberrations, it can be difficult for doctors to examine
the images. The phase-shift technique is frequently used to
achieve a full-range FD-OCT for artifact reduction. For the
suppression of complex conjugate artifacts, Lin et al. [4]
presented a five-frame variable phase shift algorithm (FVP)
spectral domain optical coherence tomography (SD-OCT).
The well-known five-frame invariant phase shift approach is
inferior to the FVP method. Additionally, a higher complex
conjugate artifact (CCA) suppression rate can considerably
enhance the quality of the OCT images. Bao et al. [5]
presented a sophisticated technique based on a real spectral
phase shift that achieved extremely good artifact reduction.
This algorithm provides the highest suppression ratios of all
currently used sophisticated artifact suppression techniques,
making it suitable for fast, highly precise, and extremely
long-range dimensional measurements. Orthogonal polar-
ization with phase-shifting algorithms was suggested by
Cheng et al. [6] for use in FD-OCT to increase the image
scanning speed and withstand vibrations and other envi-
ronmental disturbances. By doubling the measurement area,
this technique generates sample reconstruction parameters
comparable to those obtained from conventional time-domain
OCT in one-shot and full-range measurements.

Deep learning (DL), a subset of machine learning tech-
niques, provides solutions to several challenging artificial
intelligence (AI)-related issues. The DL model comprises
several layers, each of which is connected to its lower
and upper levels by different weights. The capacity of DL
models to learn feature hierarchies from many forms of data
opens up the possibility of tackling a wide range of issues,
including those related to medical imaging. Using under-
sampled spectral data and a DL-based image reconstruction
framework, Zhang et al. [7] suggested amethod for producing
swept-source OCT (SS-OCT) images free of spatial aliasing
artifacts. This DL-enabled approach to image reconstruction
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can be used with several types of SD-OCT systems to speed
up imaging without compromising the image quality or
signal-to-noise ratio. Rahul et al. [8] suggested a DL-based
approach to classify 347 scans from 134 superficial capillary
plexus images of patients using the ResNet152 neural
network classifier. In both low- and high-quality images,
the results from [8] demonstrated outstanding area under
the curve (AUC) metrics. Ahmed et al. [9] introduced
a centralized unsupervised DL denoising framework for
OCT images, and their experimental findings demonstrated
that the system could efficiently reduce speckle noise and
provide images with higher quality than existing denoising
techniques.

GAN [10] is a method of unsupervised learning. It com-
prises two neural network models: a generator and a dis-
criminator. By learning through the adversarial relationship
between these two networks, a GAN can generate more
realistic data from a small amount of data, which is useful for
training neural networkmodels. This leads to an improvement
in the overall performance of the AI system.

Over time, the GAN architecture has evolved significantly,
leading to improved training and generation qualities. The
progressive growing of GANs (PGGANs) is another archi-
tectural innovation that progressively increases the resolution
of images generated during training. PGGANs’ superior
image quality and stability over conventional GANs enable
the production of high-resolution images [11]. Because
GANs are adversarial networks, they are inherently unstable,
which makes training difficult. Numerous methods have been
implemented to address this problem and enhance the training
stability. By introducing a new loss function based on the
Wasserstein distance, the Wasserstein GAN (WGAN) and
its variations stand out in their ability to generate images of
higher quality and maintain more stable training dynamics
than conventional GANs [12]. Another approach involves
controlling the Lipschitz constant of the discriminator using
regularization techniques such asweight clipping and spectral
normalization. Employing these strategies aids in stabilizing
the training process and preventing mode collapse, where the
generator struggles to capture the full diversity of the target
distribution.

GANs have been effectively used in a number of fields
such as text production, video production, picture synthesis,
and music composition. Recent developments have focused
on creating domain-specific GAN models to satisfy the
difficulties and demands of various application domains.
For example, text-to-image synthesis GANs (T2I GANs)
were designed to produce realistic images based on textual
descriptions [13]. These models bridge the gap between text
and image modalities by utilizing deep learning and natural
language processing techniques. GANs have been used in
music generation to produce original compositions andmusic
in various genres. Alternatives, such as WaveGANs and
musical instrument digital interface (MIDI) GANs, have
demonstrated encouraging results in producing realistic and
varied musical compositions [14].

Cao et al. [15] developed a DL method to create high-
resolution (HR) OCT images from low-optical and low-
digital-resolution (L2R) data. The superresolution GAN
(SR-GAN) architecture was designed to accommodate the
unique traits of the OCT images better, such as their
high structural similarity and textural consistency. The
results showed promising visual quality and quantitative
performance improvements compared to existing methods.
In [16], SiameseGAN, a deep generative model, was
used to denoise low signal-to-noise ratio (LSNR) B-scans
from SD-OCT. It demonstrated that speckle noise can be
quickly and effectively reduced using the proposed method.
Bayhaqi et al. [17] used OCT to monitor the smart laser
osteotomy ablation process, while DL with a GAN was
used to reduce noise. The outcomes demonstrated the
potential of DL techniques as a preprocessing stage for tissue
classification in laser osteotomy. Taj et al. [18] presented a
novel approach for generating more realistic OCT images by
using a dual-discriminator Fourier acquisitive GAN (DDFA-
GAN). Two discriminators are used by the DDFA-GAN
to assess the quality of the generated images. The model
considers both the spatial and spectral properties of the
images because one discriminator works in the spatial domain
and the other works in the Fourier domain. Consequently, the
DDFA-GAN can generate images that are more precise and
realistic, and can be employed in clinical examinations of the
retina, improving the accuracy of the following measures.

The development of conditional GANs (cGANs), which
enable controlled generation by conditioning the model
on additional data, is a noteworthy breakthrough. cGANs
are useful for image-to-image translation tasks, such as
translating images from one domain to another or creating
realistic images from sketches. Isola et al. [19] proposed
a cGAN called Pix2Pix. It is a variation of the GAN
in which the input image serves as a condition for the
generator network to produce the output image. Pix2Pix
performs well in various image-to-image translational tasks.
For instance, a Pix2Pix GAN is adept at generating realistic
images corresponding to a given input image, making it
a valuable tool for image-to-image translation applications.
This involves transferring images across domains while
preserving the essential structures. Pix2Pix GAN has proven
to be a successful tool for completing various image-
translation tasks, including turning sketches into realistic
images, converting black and white images to colors, and
turning daytime images into nighttime images. Owing to its
versatility, it can be used in various computer vision, graphics,
and creative applications [19]. Its ability to produce visually
appealing and high-quality images is further enhanced by
conditioning the generator with additional data to ensure that
the generated imagesmatch the desired output characteristics.
This leads to better image quality compared with traditional
GANs. To address the common training instability in GANs,
Pix2Pix GAN introduces a conditional framework that
stabilizes the training process and enables more efficient
training of the generator and discriminator networks. The
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conditioning information contributed to a more predictable
and consistent training phase. Moreover, it provides an easy-
to-use interface that enables interactive manipulation of
the generated outputs, allowing users to input the desired
conditions and promptly observe the results. This feature
has contributed significantly to the widespread popularity
of Pix2Pix GAN among researchers, designers, and artists
engaged in image generation and manipulation.

Dispersion in OCT leads to wavelength-dependent phase
distortions that result in poor axial resolution. In practice,
all-depth dispersion suppression is challenging, particularly
for irregularly structured samples and high-speed processing.
Liu et al. [20] proposed an approach to measure dispersion in
the fractional Fourier domain (FRFD) and a new dispersion
correction technique based on the FRFD stepped detection
algorithm, which is capable of adaptively compensating for
dispersion at all depths of the sample. The results show that
the proposed algorithm for biotissue dispersion correction
is practical. A computational method for performing dis-
persion compensation in FD-OCT and detecting dispersion
mismatches was proposed in [21]. The experimental findings
demonstrated the applicability of the proposed method for
the identification and correction of dispersion mismatches
in FD-OCT. Both spectral-domain and swept-source OCT
systems can benefit from a robust calibration approach to
simultaneously determine the correction vectors for nonlinear
wavenumber sampling and dispersion compensation in
OCT [22]. Another experimental approach for the estimation
and compensation of dispersion in an OCT system was
presented in [23]. Dispersion compensation was achieved
using the method suggested in [23], and the axial resolution
in air increased from 10.6 to 1.9 m. In [24], we proposed
using a Pix2Pix GAN as a solution to eliminate artifact
noise in FD-OCT images. Artifact noise, which includes
conjugate, direct current (DC), and autocorrelation noise, has
a significant impact on the accuracy of FD-OCT imaging.
As demonstrated by simulation results in [24], the proposed
model was designed to translate images with added Gaussian
noise into artifact-free FD-OCT depth profiles, successfully
eliminating the effect of artifact noise, as demonstrated by
simulation results. Furthermore, the Pix2Pix GAN incor-
porates a loss function that integrates the adversarial loss
with the pixel-wise loss. While adversarial loss compels the
generator to produce outputs resembling real OCT images,
pixel-wise loss guarantees an exact alignment between the
generated and target images at the pixel level [25].

III. THEORETICAL AND EXPERIMENTAL SETUP
In the FD-OCT system, an SLD is used as the primary light
source. A coupler divides the light into two paths, one of
which enters the reference arm, and the other enters the
sample arm. The sample to be measured is placed at the
sample end and the two light paths are directed towards
the reference and sample mirrors, creating interference upon
return. The interference light is introduced into an optical

spectrum analyzer (OSA), and its optical information is
analyzed. Finally, an inverse fast Fourier transform of the
interference pattern yields the depth information of the
sample. The basic structure of FD-OCT is shown in Fig. 1.

FIGURE 1. Basic FD-OCT architecture.

The sample signal obtained through OSA is as follows:
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where ID is the received photocurrent magnitude, ED is the
received spectrum, SD is the received photoelectric field
intensity, τi = 2(lsi – ls0)/c is the time delay caused by the
optical path difference from the ith layer interface to the
sample surface, τR = 2(lR – ls0)/c is the time delay caused by
the optical path difference of the light source from the beam
splitter to the surface of the sample end and the reference end.

According to (1), the interfering light is composed of
four components that result in a pattern of constructive and
destructive interference. The first term is the signal reflected
through the sample end and the second term is the signal
reflected from the beam through the reference end. The third
term describes the interference signal generated by each
layer of the multilayer structure, if the measured sample is
a multilayer structure. The last term refers to the interference
between the reference end and the interface of the sample end.

A. DATASET
In this study, a compact OCT system, Lumedica OQ
LabScope, was used as the scanning tool. The experimental
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FIGURE 2. Experimental setup of Lumedica OQ LabScope.

setup is illustrated in Fig. 2. This system is designed
specifically for high-resolution imaging of biological tissues,
utilizing an SLD with a wavelength of 840 nm as its light
source, emitting near-infrared light with an output power
of 750 µW. The coherence length of this SLD adequately
supports the interferometric measurements in OCT. Within
the Lumedica OQLabScope, scanning is executed employing
various mechanisms tailored to its specific configuration.
These mechanisms enable rapid and precise traversal of the
light beam across the sample, ensuring meticulous imaging
of the sample.

To generate optical depth information from the sample,
the SLD is combined with an interferometer and a high-
resolution spectrometer. The light source is split into two
beams by a splitter, with one beam directed to the sample
arm and the other to the reference arm. Within the sample
arm, light is reflected back with sample information by the
reflective mirror. This reflected light is then combined with
light from the reference arm, resulting in interference that
is detected by the spectrometer. The interface between the
sample and the OCT system may vary depending on the
specific application. Interference occurs at the spectrometer
when light returns from both the reference arm and the sample
arm, generating a pattern containing depth information about
structures within the sample. Ultimately, optical depth images
of the sample are computed using a computer, and the
resulting OCT data is displayed in real-time, providing high-
resolution cross-sectional images of the sample.

Using this system, we generate a dataset of 500 paired
image for training purposes. First, the Lumedica OQ
LabScope scanned a clear tape image without dispersion.
To simulate practical scenarios, the dispersion factor was
varied randomly to produce a corresponding tape image
affected by dispersion. The two images were then paired and
included in the dataset. The two images shown in Fig. 3
were captured using a Lumedica OQ LabScope. Fig. 3(a)
shows a tape image with dispersion and Fig. 3(b) shows
a clear tape image without dispersion. For conciseness,
these two types of scanned OCT images are referred to as

dispersion-affected and clear OCT images in the remainder
of this paper. Dispersion decreases the sensitivity and image
quality of the FD-OCT system.

B. IMPLEMENTATION SETUP
We suggest using a Pix2Pix GAN with FD-OCT systems
to simply and inexpensively reconstruct dispersion-affected
OCT images. The Pix2Pix GAN [26] is a cGAN model
composed of a generator and discriminator. The main
difference between cGANs and regular GANs is that the
former uses additional information to guide the generation
process, allowing the generator to be trained to produce
samples with specific attributes or characteristics. Therefore,
a dataset comprising pairs of dispersion-affected and clear
OCT images was used to train the GAN model. Specifically,
the generator model was trained to learn the mapping from
the input dispersion-affected OCT image to a corresponding
clear OCT image, which is referred to as the generated image.
In addition, a discriminator model was trained to distinguish
the generated image from a real, clear OCT image. Using
this approach, the system was able to improve the quality
of the FD-OCT images. Fig. 4 illustrates the functioning of
a cGAN through a block diagram. The central element in
this process is the random noise vector, represented as Z .
This noise serves as a crucial input for the generator in a
GAN. Introducing stochasticity ensures that the generator
produces diverse outputs under the same input conditions.
Additionally, fake labels, denoted as yfake, are introduced
to provide the generator with supplemental conditional
information. These labels guide the generation process in
the cGAN, enabling the generator to produce samples with
specific features or characteristics.

By utilizing Z and yfake as inputs, the generator generates
xfake, representing the artificially created data. The primary
objective of the generator is to craft data that closely resem-
bles actual samples by combining conditional information
and random noise. On the other hand, the real input data is
represented as xreal , such as actual images from a dataset that
the GAN aims to enhance or imitate. The corresponding gen-
uine labels that match the real input data are denoted as yreal .

In the cGAN framework, real input samples are paired
with labels, and the discriminator learns from these pairs. The
discriminator takes xreal and yreal , as well as xfake and yfake,
as inputs. Its role is to distinguish between real and generated
images by evaluating the authenticity of input data and labels.
The ultimate output of the cGAN system is represented as y,
with its interpretation varying according to the specific task
of the cGAN. For instance, in an image-to-image translation
task, y may denote the generated output, expected to closely
resemble the real input data.

During the training process, the generator strives to gener-
ate fake data (xfake) that closely mirrors the real data (xreal)
by leveraging conditional information (yfake) and random
noise (Z ). Simultaneously, the discriminator is trained with
xfake and xreal , along with their corresponding labels, i.e.
yfake and yreal , to effectively distinguish between real and
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FIGURE 3. Depth image with dimensions of 600 pixels wide and 600 pixels high. (a) Source image with severe dispersion.
(b) Clear target image.

FIGURE 4. Block diagram of conditional GAN.

generated data. As training progresses, the discriminator
enhances its accuracy in making distinctions, leading to an
improvement in the generator’s capacity to generate realistic
outputs through the adversarial interplay between the two
components.

The generator creates target images that are comparable
to the source image using an encoder-decoder model and
U-Net architecture. Fig. 5 depicts the architecture of the
convolutional neural network used in this study. The sizes
of the feature maps learned by the convolutional layers
are indicated in red and the number of channels in each
layer is denoted in black. The encoder on the left side of
the U-Net architecture extracts important information from
the input image, whereas the decoder on the right side
reconstructs this information to generate target image. A skip
connection is added between the symmetrical positions on
both sides to prevent information loss. Pix2Pix GAN falls
within the cGAN category, meaning that it uses additional
information to direct image production during training. These
additional data, in the context of Pix2Pix, are pairs of
clean and dispersion-affected OCT images. The training
dataset comprises two sets of clean OCT images with
dispersion issues. Each pair functions as a guide for the
cGAN. The model learns to map an OCT image affected
by dispersion to its equivalent clean OCT image. There
is only one discriminator and generator in the Pix2Pix
GAN. The generator captures the source images (dispersion-
affected OCT images) and converts them into target images

(clean OCT images). The generator adheres to the U-Net
architecture and uses an encoder-decoder mechanism. The
discriminator is trained to distinguish between real and
clear OCT images and generated images. The generator is
motivated by this adversarial process to generate images
that are identical to real OCT images. The generator is
taught to learn the mapping from dispersion-affected to
clear images, thereby improving the quality of the FD-OCT
images. This process is aided by a discriminator, which
provides a generator input to produce more realistic images.
TheU-Net architecture is adhered to by a Pix2Pix’s generator.
Convolutional neural networks with a U-Net architecture are
well known for their effectiveness in image-segmentation
applications.

The encoder is located on the left side of the U-Net design,
whereas the decoder is on the right side. From the input
dispersion-affected OCT image, the encoder pulls the nec-
essary information that the decoder reconstructs to provide
the desired clear OCT image. Skip connections are added
to prevent information loss during the encoding-decoding
process. The network can maintain fine-grained information
owing to these connections, which link symmetrical locations
on both sides of the U-Net architecture. The encoder is
responsible for obtaining the input image and extracting
the pertinent characteristics. Important information regarding
dispersion-affected OCT images is probably captured by the
encoder in the context of Pix2Pix. To create the desired
clear OCT image, the decoder uses the encoded data and
reconstructs it. In this rebuilding procedure, skip connections
are essential for maintaining details. The generator is
trained to produce clear OCT images as the output from
dispersion-affected OCT images as the input. The discrimi-
nator assesses the produced images in tandem with real OCT
images. The generator’s capacity to generate high-quality
OCT images that are difficult for the discriminator to discern
from authentic images is improved through the adversarial
training procedure. The primary limitation in the process of
noise reduction and image enhancement is the kernel size;
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FIGURE 5. FD-OCT image enhancement system using Pix2Pix GAN technique.

thus, considerable attention must be paid when selecting the
kernel [27]. All convolutional layers in the network used
a stride of 2 and a kernel size of 4 × 4. Because of its
relatively modest size, a 4 × 4 kernel enables the model
to identify local features in the input image. Furthermore,
the model is computationally more efficient because smaller
kernel sizes typically result in fewer parameters. Using a 4 ×

4 kernel achieves a compromise between considering global
information and capturing local features because Pix2Pix
GANs are designed to transform an input image into a
corresponding output image. This design choice enables the
network to learn complex features from the input images and
effectively perform image enhancement.

Adversarial loss and L1 loss, which calculate the differ-
ences between the generated and expected target images, are
used to optimize the generator during training. The generator
model is designed to produce an accurate translation of the
source image using this additional loss. The objective of the
proposed model is as follows [28]:

LGAN (G,D) = Ex,y[logD(x, y)] + Ex[log(1 − D(x,G(x)))]

(2)

where x is the original image, y is the corresponding target
image set to the ground truth of x, and LGAN (G,D) is the
adversarial loss between the generator and discriminator.

To increase its adversarial discriminator D, the generator G
attempts to reduce this aim with the following optimized
outcome:

G∗
= argmin

G
max
D

LGAN (G,D) (3)

where G∗ is the optimized generator.
The L1 losses of the generated and expected target images

can be assessed using the following criteria:

L1 (G) = Ex,y
[
∥y− G (x)∥1

]
(4)

The proposed model final objective can be expressed as
follows:

G∗
= argmin

G
max
D

LGAN (G,D) + λL1 (G) (5)

The design of the discriminator is based on the PatchGAN
model [29]. The output is a matrix each element of which
represents a local region of the input image; we get 1 (Real)
if the local region is real, and 0 (Fake) otherwise. In this
method, the model focuses more on the details owing
to the discriminative output through several small blocks
of the image. Except for the output layer, which uses a
sigmoid function to map the output to the range [0,1],
all convolutional layers use a rectified linear unit (ReLU)
activation function. To accelerate the convergence and
mitigate overfitting, a batch normalization layer is included
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after each convolutional layer in the neural network, except
for the output layer.

To assess the quality of the generated image and how
closely it approximates the corresponding real OCT image,
three evaluation metrics were used: the peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), and Fréchet
inception distance (FID). These metrics were chosen because
they are commonly used to measure the differences between
images and provide an accurate estimate of their degree of
similarity.

PSNR computes the ratio of the maximum value of the
image signal to the noise. Typically, PSNR is converted into
decibels (dB) using a logarithmic function, with a higher
value indicating a better image quality. PSNR is calculated
using the following formula [30]:

PSNR = 10 log10
L2max

MSE
(6)

where Lmax is the highest pixel value that may be assigned
to an image. Mean squared error (MSE) is the most popular
regression loss function, and is the average of the sum of the
squares of the differences between the target and generated
images. The formula for MSE is as follows:

MSE =
1
N

N∑
i

(x − y)2 (7)

whereN represents the number of elements in the array. x and
y are the target and generated images, respectively.

SSIMmeasures the similarity between two images. A score
between 0 and 1 is provided, with a number closer to
1 indicating a greater similarity between the images. [31].
The primary purpose of the SSIM algorithm is to detect the
similarity between two images of the same size, or to measure
the degree of image distortion. The SSIM algorithm compares
the brightness, contrast, and structure of two images, weights
these three elements, and is expressed by the following
equation [32]:

SSIM (x, y) = [l(x, y)]α[c(x, y)]β [s(x, y)]γ ,

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
,

c(x, y) =
2σxσy + C2

σ 2
x + σ 2

y + C2
,

s(x, y) =
σxy + C3

σxσy + C3
, (8)

where l(x, y) compares the brightness of x and y; c(x, y)
compares the contrast; and s(x, y) compares the structural
information. The values of α, β, and γ are positive parameters
that can be used to fine-tune the sensitivities of l(x, y), c(x, y),
s(x, y). µx (or µy) and σx (or σy) represent the average and
standard deviation of x (or y), respectively. σxy denotes the
covariance between x and y.C1,C2, andC3 are constants used
to ensure the stability of l(x, y), c(x, y), s(x, y), respectively.
For practical use, the formula is typically simplified by

setting the parameters α = β = γ = 1 and C3 = C2/2,

resulting in the following equation:

SSIM =
(2µxµy + C1)(2σx,y + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(9)

Fréchet inception distance (FID) is a widely employed
metric in image generation, particularly within the framework
of GANs. It is a quantitative measure used to assess the
fidelity of generated images compared with real images.
Developed to enhance earlier metrics such as the inception
score, FID incorporates statistical and perceptual aspects in
its evaluation.

FID (x, g)

=
∥∥µx − µg

∥∥2 + Tr
(∑

x +

∑
g− 2

(∑
x

∑
g
)1/2)
(10)

where µx and µg are the means, and
∑
x and

∑
g are

the covariance matrices of the real and generated image
features, respectively. The term

∥∥µx − µg
∥∥2 represents

the squared Euclidean distance between the means and
Tr

(∑
x +

∑
g− 2

(∑
x

∑
g
)1/2) is the trace of the square

root of the product of the covariance matrices. A lower
FID score indicates better agreement between the real and
generated image distributions.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed GAN-based FD-OCT model for dispersion
compensation is presented in this section, along with the
experimental findings. The model was developed using
Python 3.7 with the Tensorflow library and trained by the
RTX 3080Ti. First, we present the results from the basic GAN
in Fig. 6, which was trained with 150 epochs for 500 training
images with an image size of 600× 600 pixels. Because basic
GANs generate samples from random noise, the generated
images are of poor quality. The basic GAN is different
from the Pix2Pix GAN, which leverages paired training data
consisting of input-output image pairs. This pairing provides
explicit supervision during training, enabling the model to
learn the specific mapping between the input and output. This
supervised learning approach contributes to more stable and
reliable training compared with the unsupervised nature of
basic GANs. The PSNR, SSIM, and FID values of the images
generated with the basic GAN were worse than those of the
others.

Two data groups (#1 and #2) of different sizes were
prepared for the Pix2Pix experiments. Both groups contained
training and validation datasets. In data group#1 (data
group#2), the training and validation datasets were generated,
and consisted of 250 (500) and 50 image pairs, respectively,
with an image size of 600 × 600 pixels. The images in the
training dataset were used to train the GAN and the validation
dataset was used to verify the effectiveness of the trained
network. Using these two datasets allowed us to assess the
effect of the size of the training dataset on the ability of the
model to produce high-quality images. The translated images
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FIGURE 6. Basic GAN. (a) Clear target image (b) Generated image.

FIGURE 7. Image generation results of FD-OCT based on Pix2Pix GAN for data group#1. (a) Severely dispersive source image.
(b) Target image. (c) Generated image from models trained with epoch 10. (d) Generated image from models trained with epoch 150.
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FIGURE 8. Image generation results of FD-OCT based on Pix2Pix GAN for data group#2. (a) Severely dispersive source image.
(b) Target image. (c) Generated image from models trained with data group#2 with epoch 10. (d) Generated image from models
trained with data group#2 with epoch 150.

produced by the saved model after every 10 epochs were used
to observe the results.

A. TRAINING ON DATA GROUP#1
Data group#1 was trained with a smaller number of images
to observe the effect of image quantity on dispersion
compensation. A dataset of 250 images was input into the
GAN for training. Two different number of epochs was
implemented to see the image quality. The number of epochs
was set to 10 and 150 to compare image quality. For every
epoch, the training data were passed through the algorithm,
updating the hyperparameters. The results were saved and
evaluated after every 10 epochs. In the case with 150 epochs,
a total of 15 trained models were saved in H5 format. After
training, 50 dispersed images from the validation dataset
were randomly selected and input into the trained models
to generate a clear image. Fig. 7 presents the results of

FD-OCT based on the Pix2Pix GAN trained with data
group#1. Fig. 7(a) shows one of the 50 severely dispersed
images in the validation dataset. Fig. 7(b) shows the target
image. Fig. 7(c) shows a clear image generated by the model
trained for 10 epochs. The lines in the blue box are still blurry.
In contrast, the model trained for 150 epochs generated a
sharper image that is closer to the target image, as shown in
Fig. 7(d).

B. TRAINING ON DATA GROUP#2
Further training was conducted for data group#2, which had
more images than in data group#1. For training, a dataset
of 500 images was input into the GAN. The number of
epochs was set to 10 and 150 to compare image quality.
After training, 50 dispersed images from the validation
dataset were randomly selected and input into the trained
models to generate a clear image. Fig. 8 presents the results
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TABLE 1. Results of accuracy and similarity quantitative comparison of severely dispersive images and generated images.

of FD-OCT based on the Pix2Pix GAN trained with data
group#2. Fig. 8(a) shows one of the 50 severely dispersed
images in the validation dataset. Fig. 8(b) shows the target
image. Fig. 8(c) shows a clear image generated by the model
trained for 10 epochs. The lines in the blue box are still blurry.
In contrast, the model trained for 150 epochs generated a
sharper image that is closer to the target image, as shown in
Fig. 8(d). The lines in the red box indicate that the resulting
image is sharper than the heavily dispersed image.

A summary of the experiment is presented in Table 1,
which shows the average quantitative analysis of the image
quality generated by the network model trained by data
groups#1 and #2 for the 50 images in the validation dataset.
The PSNR, SSIM, and FID values of the images generated
by the model trained for 150 epochs in data group#2 are
significantly better than the others. The number of training
epochs and training image affected the generated image. The
images produced by the model trained for 10 epochs in data
group#2 had poor feature learning ability despite the high
number of images and modest number of training cycles.
In data group#1, the number of training images was too
small; even after training for 150 epochs, the quality of the
reconstructed images remained poor.

V. CONCLUSION
This paper proposes a Pix2Pix GAN-based FD-OCT system
to enhance image quality, using severely dispersed images
and clear images captured by the FD-OCT system based on a
Michelson interferometer and Pix2Pix GAN for training.

Two data groups were established to compare whether the
number of training images and training sessions affected the
quality of the generated images. The experimental results
showed that the proposed Pix2Pix GAN-based FD-OCT
system successfully generated clear images, and models
with a longer training time generated better image quality.
We increased the number of images used for training
and observed that the image generated by the model
with more image data and longer training times was the
best.

We showed that the proposed model produced clear
images; however, when the amount of image data was
too small, the trained model was ineffective. Our proposed
Pix2Pix GAN-based FD-OCT benefits from a straightfor-
ward design and reasonable computational cost because it

does not require complicated algorithms or architectures.
Our future research will leverage GAN to analyze intricate
FD-OCT depth profile structures. This involves optimizing
the network and upgrading hardware scanning tools to
enable effective training with a limited amount of image
data. Improvements to the pix2pix GAN model include the
adoption of techniques such as attention mechanisms, which
concentrate on specific regions of interest in OCT images
and enhance the model’s translation accuracy and resource
allocation efficiency. In addition, to capture complex patterns
and improve the translation quality, we plan to introduce
residual blocks and explore the use of deeper and wider
networks.

REFERENCES
[1] P. A. Flournoy, R. W. McClure, and G. Wyntjes, ‘‘White-light interfero-

metric thickness gauge,’’ Appl. Opt., vol. 11, no. 9, p. 1907, 1972.
[2] J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski,

‘‘Optical coherence tomography: An emerging technology for biomedical
imaging and optical biopsy,’’ Neoplasia, vol. 2, nos. 1–2, pp. 9–25,
Jan. 2000.

[3] S. Asrani, L. Essaid, B. D. Alder, and C. S. Turla, ‘‘Artifacts in spectral
domain optical coherence tomographymeasurements in glaucoma,’’ JAMA
Ophthalmol., vol. 132, no. 4, pp. 396–402, 2014.

[4] J. Lin, S. Zhong, Q. Zhang, and W. Chen, ‘‘Five-frame variable
phase-shifting method for full-range spectral-domain optical coherence
tomography,’’ Appl. Sci., vol. 8, no. 9, p. 1580, Sep. 2018.

[5] W. Bao, Y. Shen, T. Chen, P. Li, and Z. Ding, ‘‘High-speed high-precision
and ultralong-range complex spectral domain dimensional metrology,’’
Opt. Exp., vol. 23, no. 9, p. 11013, 2015.

[6] H. C. Cheng and M. S. Shiu, ‘‘Experimental demonstration of high-speed
full-range Fourier domain optical coherence tomograpy imaging using
orthogonally polarized light and a phase-shifting algorithm,’’ Appl. Opt.,
vol. 51, pp. 8762–8768, Dec. 2012.

[7] Y. Zhang, T. Liu, M. Singh, E. Çetintaş, Y. Luo, Y. Rivenson, K. V. Larin,
and A. Ozcan, ‘‘Neural network-based image reconstruction in swept-
source optical coherence tomography using undersampled spectral data,’’
Light, Sci. Appl., vol. 10, no. 1, p. 155, Jul. 2021.

[8] R. M. Dhodapkar, E. Li, K. Nwanyanwu, R. Adelman, S. Krishnaswamy,
and J. C.Wang, ‘‘Deep learning for quality assessment of optical coherence
tomography angiography images,’’ Sci. Rep., vol. 12, no. 1, Aug. 2022,
Art. no. 13775.

[9] H. Ahmed, Q. Zhang, R. Donnan, and A. Alomainy, ‘‘Unsupervised
region-based denoising for optical coherence tomography framework,’’ in
Proc. 7th Int. Conf. Comput. Intell. Appl. (ICCIA), Jun. 2022, pp. 267–273.

[10] I. Goodfellow, ‘‘Generative adversarial networks,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 3, 2014, pp. 1–9.

[11] M. Hoffmann, L. Malburg, and R. Bergmann, ‘‘ProGAN: Toward a
framework for process monitoring and flexibility by change via generative
adversarial networks,’’ in Proc. Int. Conf. Bus. Process Manag., 2021,
pp. 43–55.

[12] M. Arjovsky, ‘‘Wasserstein GAN,’’ in Proc. ICML, 2017, pp. 214–223.

VOLUME 12, 2024 30987



E. Wijanto et al.: Research on Dispersion Compensation of FD-OCT System

[13] Y. X. Tan, C. P. Lee,M.Neo, andK.M. Lim, ‘‘Text-to-image synthesis with
self-supervised learning,’’ Pattern Recognit. Lett., vol. 157, pp. 119–126,
May 2022.

[14] S. Shahriar and N. Al Roken, ‘‘How can generative adversarial networks
impact computer generated art? Insights from poetry to melody con-
version,’’ Int. J. Inf. Manage. Data Insights, vol. 2, no. 1, Apr. 2022,
Art. no. 100066.

[15] S. Cao, X. Yao, N. Koirala, B. Brott, S. Litovsky, Y. Ling, and Y. Gan,
‘‘Super-resolution technology to simultaneously improve optical & digital
resolution of optical coherence tomography via deep learning,’’ in Proc.
42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2020,
pp. 1879–1882.

[16] N. A. Kande, R. Dakhane, A. Dukkipati, and P. K. Yalavarthy, ‘‘Siame-
seGAN: A generative model for denoising of spectral domain optical
coherence tomography images,’’ IEEE Trans. Med. Imag., vol. 40, no. 1,
pp. 180–192, Jan. 2021.

[17] Y. A. Bayhaqi, A. Hamidi, F. Canbaz, A. A. Navarini, P. C. Cattin, and
A. Zam, ‘‘Deep-learning-based fast optical coherence tomography (OCT)
image denoising for smart laser osteotomy,’’ IEEE Trans. Med. Imag.,
vol. 41, no. 10, pp. 2615–2628, Oct. 2022.

[18] M. Tajmirriahi, R. Kafieh, Z. Amini, and V. Lakshminarayanan, ‘‘A dual-
discriminator Fourier acquisitive GAN for generating retinal optical
coherence tomography images,’’ IEEE Trans. Instrum. Meas., vol. 71,
pp. 1–8, 2022.

[19] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.

[20] D. Liu, C. Ge, Y. Xin, Q. Li, and R. Tao, ‘‘Dispersion correction for optical
coherence tomography by stepped detection algorithm in fractional Fourier
domain,’’ Opt. Exp., vol. 28, no. 5, pp. 5919–5935, 2020.

[21] G. Ni, ‘‘Detection and compensation of dispersion mismatch for
frequency-domain optical coherence tomography based on A-scan’s
spectrogram,’’ Opt. Exp., vol. 28, no. 13, pp. 19229–19241, 2020.

[22] X. Attendu and R. M. Ruis, ‘‘Simple and robust calibration procedure
for k-linearization and dispersion compensation in optical coherence
tomography,’’ J. Biomed. Opt., vol. 24, no. 5, p. 1, May 2019.

[23] K. Singh, G. Sharma, and G. J. Tearney, ‘‘Estimation and compensation
of dispersion for a high-resolution optical coherence tomography system,’’
J. Opt., vol. 20, no. 2, Feb. 2018, Art. no. 025301.

[24] C.-M. Huang, E. Wijanto, and H.-C. Cheng, ‘‘Applying a Pix2Pix
generative adversarial network to a Fourier-domain optical coherence
tomography system for artifact elimination,’’ IEEE Access, vol. 9,
pp. 103311–103324, 2021.

[25] T. Schlegl, P. Seebock, S. Waldstein, U. Schmidt-Erfurth, and G. Langs,
‘‘Unsupervised anomaly detection with generative adversarial networks to
guidemarker discovery,’’ inProc. Int. Conf. Inf. Process.Med. Imag., 2017,
pp. 146–157.

[26] A. Mino and G. Spanakis, ‘‘LoGAN: Generating logos with a generative
adversarial neural network conditioned on color,’’ in Proc. 17th IEEE
Int. Conf. Mach. Learn. Appl. (ICMLA), Orlando, FL, USA, Dec. 2018,
pp. 965–970.

[27] P. N. Srinivasu, V. E. Balas, and N. M. Norwawi, ‘‘Performance
measurement of various hybridized kernels for noise normalization and
enhancement in high-resolution MR images,’’ Bio-Inspired Neurocomput.,
vol. 2021, pp. 1–24, Jan. 2021.

[28] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. MICCAI, vol. 9351, 2015,
pp. 234–241.

[29] Q. Hao, K. Zhou, J. Yang, Y. Hu, Z. Chai, Y. Ma, G. Liu, Y. Zhao,
S. Gao, and J. Liu, ‘‘High signal-to-noise ratio reconstruction of low bit-
depth optical coherence tomography using deep learning,’’ J. Biomed. Opt.,
vol. 25, no. 12, Nov. 2020, Art. no. 123702.

[30] U. Demir and G. Unal, ‘‘Patch-based image inpainting with generative
adversarial networks,’’ 2018, arXiv:1803.07422.

[31] A. Horé and D. Ziou, ‘‘Image quality metrics: PSNR vs. SSIM,’’ in Proc.
20th Int. Conf. Pattern Recognit., Aug. 2010, pp. 2366–2369.

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
‘‘Image quality assessment: From error visibility to structural
similarity,’’ IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612,
Apr. 2004.

EDDY WIJANTO received the B.S. degree
from the Department of Electrical Engineering,
Universitas Kristen Krida Wacana, Indonesia,
in 2005, the M.S. degree from the Department of
Electrical Engineering, Pelita Harapan University,
Indonesia, in 2009, and the Ph.D. degree from
the Electro-Optical Engineering Department,
National Formosa University, Yunlin County,
Taiwan, in 2021. He is currently an Associate
Professor with the Department of Electrical

Engineering, Universitas Kristen KridaWacana. His major research interests
include the areas of wireless and optical communications.

HSU-CHIH CHENG received the B.S. degree
from the Electronics Department, National Taiwan
University of Science and Technology, in 2000,
and the M.S. and Ph.D. degrees in electrical engi-
neering from National Cheng Kung University,
Tainan, Taiwan, in 2002 and 2006, respectively.
He is currently a Full Professor with the Depart-
ment of Electro-Optical Engineering, National
Formosa University, Yunlin County, Taiwan. His
major research interests include DWDM network-

ing devices, optical system design, and optics fiber sensor.

BO-HONG LIAO received the M.S. degree from
the Institute of Electro-Optical and Materials
Science, National Formosa University, Yunlin
County, Taiwan. His research interests include
the areas of optics fiber sensors and optical
communications.

CHUN-MING HUANG received the B.S. degree
from the Department of Electrical Engineering,
National Cheng Kung University, Tainan, Taiwan,
in 2000, and the M.S. and Ph.D. degrees from
the Communication and Network Group, Institute
of Computer and Communication Engineering, in
2005 and 2009, respectively. From 2010 to 2018,
he was an Associate Scientist with the National
Chung-Shan Institute of Science and Technology,
Longtan, Taiwan. He is currently an Associate

Professor with the Department of Electronic Engineering, National Formosa
University, Yunlin County, Taiwan. His major research interests include the
areas of error control codes and optical communications.

YAO-TANG CHANG received the M.A.Sc. and
Ph.D. degrees from the Department of Electrical
Engineering, National Cheng Kung University,
Taiwan, in 2002 and 2007, respectively. He has
been a Professor with the Department of Infor-
mation Technology, Kao Yuan University, Kaoh-
siung, Taiwan, since 2008. Formerly, he was the
Directorate General of Telecommunications and
National Communications Commission for gov-
ernment. His major research interests include the

cryptography of reconfigurable optical wired or wireless communications
networks.

30988 VOLUME 12, 2024


