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ABSTRACT Accurate identification of electroencephalogram (EEG) signals forms the basis for the develop-
ment and application of brain–computer interface (BCI) devices. Signal preprocessing is an essential part of
most EEG classification and recognition systems.In this study, we proposed amethod called Super-resolution
level separation (SRLS) to add dimensions of information to the classification model. First, we calculated
the correlation between the EEG signals acquired by each channel and divided these channels into multiple
levels. Next, we used a super-resolution method to calculate common EEGs (C-EEGs) acquired by the
channels. In addition, we designed an EEG–split-informer (ES-informer) model based on an informer model
to enable small-sample users to obtain highly fitting C-EEGs. We then calculated the difference between the
C-EEG and true EEG (T-EEG) to obtain the unique EEGs (U-EEGs) acquired by each channel, thus, adding
dimensions to the data inputted to the classification model. Utilizing the 2008 2a motor imagery (MI) EEG
dataset from the BCI Competition and the P300 paradigm data collected, EEGNet was employed as the
classification model to validate the efficacy of the proposed SRLS method. The results of the experiments
indicated that the SRLSmethod augmented the input dimension of the model and amplified the classification
accuracy by over 7% for MI and 3.6% for P300. These findings demonstrate that SRLS is capable of
enhancing the recognition accuracy of EEG.

INDEX TERMS Brain–computer interface, deep learning, electroencephalogram, EEG–split-informer,
super-resolution.

I. INTRODUCTION
Berger detected the electroencephalogram (EEG) and
described it as a ‘‘window into the brain’’ [1]. EEG sig-
nals can be used to analyze neural activities in the brain
and study the brain from a new perspective. With the
rapid development of science and technology in recent
decades, extensive research has been conducted on brain
activity. Many researchers have studied the brain from the

The associate editor coordinating the review of this manuscript and

approving it for publication was Humaira Nisar .

perspectives of magnetoencephalography (MEG) [2] and
functional magnetic resonance imaging [3]; however, EEG
dominates the field. Developing a wearable, noninvasive
EEG acquisition device is a promising research area. Med-
ically, EEG signals can be used to diagnose epilepsy [4],
alert patients before seizures occur, and analyze neurologic
manifestations in severe COVID-19 cases [5]. In addition,
EEG-based analysis can aid in cross-subject emotion recog-
nition [6]. However, researchers are not satisfied with passive
EEG analysis and are actively seeking ways to control exter-
nal devices directly by the brain. Brain–computer interface

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 31055

https://orcid.org/0000-0002-8651-0903
https://orcid.org/0000-0003-2451-7680
https://orcid.org/0000-0003-2026-5666


H. Sun et al.: SRLS: A Method for Enhancing EEG Classification Accuracy Through SR Level Separation

(BCI) has emerged as a communication system that bypasses
the brain’s normal output pathways of peripheral nerves and
muscles [7] to enable the brain to directly control external
devices.

The first step in establishing a BCI is the selection of a con-
trol scheme. Steady-state visual evoked potentials (SSVEPs)
have been used in many applications. Na et al. designed an
embedded, lightweight SSVEP-BCI electric wheelchair [8],
and Liu et al. designed a SLAM-SSVEP system to enable
users to control a vehicle equipped with lidar by using their
minds [9]. Another method is motor imagery (MI), in which
users imagine limb motions to input data into the BCI.
Thenmozhi et al. improved the classification performance
of MI signals for BCI [10]. Attallah et al. used MI-BCI to
assist people with limb motor disabilities by enabling them
to control assistive devices through their brain signals [11].
AK et al. used GoogLeNet to test whether subjects can
control a robot manipulator by using MI [12]. Event-related
potentials (ERPs) are also key to BCI applications. Zhang
et al. developed a novel 36-class bimodal ERP-BCI system
based on tactile and auditory stimuli [13], and Wu et al.
studied the effect of noise on ERP-BCI in a real environment
to establish a generalized method for BCI [14]. Researchers
have combined multiple control schemes to establish a hybrid
BCI. For example, Choi et al. combined eye-blink with
MI to allow users to complete a gait task by wearing a
lower-limb exoskeleton through the developed real-time BCI
controller [15]. However, for any BCI control scheme, the key
point is how to enhance the accuracy of the acquired EEG sig-
nal. In most cases, this accuracy can be intuitively understood
as the EEG classification accuracy. The examination of EEG
signals is frequently compared to the cocktail party problem,
which involves analyzing indeterminate information in the
brain through restricted channels. For example, techniques
like independent component analysis and principal compo-
nent analysis are utilized to process EEG signals. This aids in
isolating the characteristics of subjects at a specific moment.
Inspired by the concept of feature extraction, we proposed
an EEG Super-resolution level separation (SRLS) model to
separate a single EEG acquisition channel into information
that is common to other channels and information inde-
pendent of other channels. Super-resolution (SR) can be
considered a method of signal amplification, designed to
acquire more comprehensive information from limited input
data. Li et al. [2] designed Wasserstein generative adversarial
networks (WGANs) to obtain virtual acquisition channels by
using the existing EEG channel and improve the classification
accuracy. Corley andHuang [16] upsampled the EEG channel
by using generative adversarial networks (GANs). By using
the deep CNN-based SR method, Kwon et al. demonstrated
that various brain dynamics can be explored using a small
number of sensors [17]. The SR method reduces the number
of EEG channels required when using the BCI and yields a
good result. The common information among different EEG
acquisition channels is used to deduce the EEG signal in the

target channel; however, the independent information of a
single channel cannot be supplemented. As such, we pro-
posed an SRLS method. In this method, first, the correlation
between the EEG acquisition channels is calculated. Next, the
channels are divided into multiple levels. At each level, the
SR method is used to deduce the EEG signal on the target
channel as the common information. The difference between
the channels is treated as independent information. Existing
SRmethods require long-time data and large sample capacity
to obtain a good SR result. For instance, in a study [18],
5144 h of data were used. In the current study, an EEG-Split-
informer (ES-informer) model transformed from an informer
model suitable for time-series forecasting was used to per-
form Super-resolution calculations by using approximately
27 min of data and 288 samples or use a 10-minute P300
dataset, and the common and independent information of
each EEG channel at different levels were obtained. Next, the
two types of information were inputted into the classification
model. In conclusion, the EEGNet model was utilized to
confirm that the SRLS method is capable of enhancing the
input dimension of data and augmenting the classification
accuracy of EEG in both MI and P300 paradigms.

II. RELATED WORKS AND MOTIVATION
A. PURPOSE OF EEG ANALYSIS
The primary objective of an EEG-based BCI system is to ana-
lyze the EEG signals of subjects and to enhance the precision
and range of applications of the system. In contrast to sound
or text, EEG is similar to an abstract notion that is typically
challenging to articulate in an intuitive manner. Therefore,
many classification methods have been proposed. Many
mainstream classificationmethods are based on deep learning
(DL). Classification based on convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) can yield a
considerably high accuracy [19], [20]. With the development
of DL, numerous novel and combined classification networks
have been proposed to improve EEG classification accuracy.
For example, Khademi et al. proposed an MI classification
method based on CNN and long short-term memory (LSTM)
to improve the classification accuracy considerably [21].
Li et al. developed a simplified Bayesian convolutional neural
network (SBCNN) to enable users to complete a game task
through the online P300 BCI [22]. Willett et al. aided users
with disabilities in completing imagery writing [23]. Among
the classification models, EEGNet proposed by Lawhern et
al. has received increased attention from researchers because
of its lightweight and high classification performance [24]
and has been transformed into a classification model for
use in different tasks. For instance, Deng et al. designed a
TSGL-EEGNet [25] for MI classification.

In addition tomodifying themodel structure, EEG process-
ing or feature extraction improves the classification accuracy
of the BCI system because it can highlight the EEG features
of subjects with different behaviors. Although Craik et al.
found that processing EEG into images does not improve
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the classification accuracy in some cases, this goes against
the intuition that the more effort applied to the prepro-
cessing stages, the more accurate the classification will
be [26]. Nevertheless, many classification models require
feature extraction. For instance, the common spatial pattern
(CSP) is an effective feature extraction method for EEG
classification [27] and can effectively distinguish MI to adapt
to the BCI device [28]. Independent component analysis
(ICA) is effective in separating the signal into independent
components (ICs) to enhance classification accuracy [29].
Continuous wavelet transform (CWT) can be used to ana-
lyze EEG signals from the perspective of the time–frequency
domain to improve the MI classification accuracy [30].
In this research, to increase the recognizable information

dimension of EEG, the SRLS method was applied to process
the EEG signals derived from MI and P300. Subsequently,
EEGNet was utilized to examine the influence of SRLS on
classification accuracy. The datasets employed in this study
are characterized as follows.

B. DATASET 1
The BCI Competition IV dataset 2a public EEG dataset [31]
was used to verify the effectiveness of the SRLS method
proposed in this paper. This dataset contains recordings of
4-class MI tasks (left hand, right hand, feet, and tongue)
performed by nine healthy subjects by using 22 noninvasive
EEG acquisition channels at 250 Hz (Fig. 1). Each subject
participated in two sessions, and each session comprised
approximately 27 min of data, with 288 recorded data sam-
ples per session and 72 samples per class. The duration of
each motion class was recorded as one cycle. The time when
the subject heard a prompt tone was recorded as the starting
time t = 0. The motion to be executed by the subject was
displayed on the screen in the form of an arrow at t= 2-3.25 s
and was then changed to a ‘‘+’’ to guide the subject’s point
of view and weaken the influence of the electro-oculogram
(EOG) signal. The subject performed the designated MI task
from t = 3-6 s until the ‘‘+’’ disappeared from the screen,
completing one cycle of recorded motion. The recording flow
is shown in Fig. 2.

FIGURE 1. Distribution of the acquisition channels.

FIGURE 2. The timing of a sample collection, including MI prompt,
execution, rest process.

According to the MI collection methodology, both the
training and testing sets comprised 288 samples each. The
training was concentrated on four types of MI to assess
the applicability of SRLS. In this study, this dataset was
the primary focus for in-depth analysis and comprehensive
comparison to ascertain the effectiveness of SRLS.

C. DATASET 2
Dataset 2 was based on the P300 paradigm. Six subjects
participated in this experiment; all were previously informed
about the experiment’s purpose and method and consented to
partake in it. The subjects focused on the screen as depicted
in Fig. 3a), and the six items displayed would randomly
flicker, as shown in Fig. 3b). The subjects concentrated on
the object on the screen as prompted. When the object flick-
ered, a P300 signal was produced in the subjects, distinctly
different from EEG signals without the P300 component.
The study employed an electrode cap to gather EEG data
from the 10 channels illustrated in Fig. 4, with a sampling
frequency of 1,000 Hz. For each subject, each flicker was
recorded as a sample, with each experiment yielding 900 to
1,000 samples. Half of these samples were selected for the
training set, and the remainder formed the testing set. This
dataset functioned as a validation set to broaden the scope
of SRLS’s applicability and was not subjected to detailed
analysis.

FIGURE 3. a) User gaze image and b) is target flicker.

D. DATA PROCESSING
The EEG signal is nonstable, susceptible to external interfer-
ence, and sensitive to global baseline drift; this can hinder
signal processing and identification. Therefore, the EEG sig-
nal was processed using common average referencing (CAR).
First, the average value of the EEG signals acquired from
all acquisition channels was calculated. Next, the difference
between the average and the original EEG signal values was
computed using (1), where xCARi is the calculated value of the
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FIGURE 4. EEG channels used in the P300 experiment.

EEG signal acquired by channel i, xi(t) is the original value
of the EEG signal acquired by channel i, and C is the total
number of channels used (C = 22 in this study). The EEG
processed using CAR had less internal and external noise and
retained the EEG signal.

xCARi = xi(t) −
1
C

∑C

j=1
xj(t) (1)

According to the Nyquist sampling theorem, the device
used in the experiment was able to acquire EEG signals
below 125 Hz. However, not all channel signals needed to be
analyzed. Previous studies on EEG have shown that the EEG
signal ranges produced byMI are mainly in theµ and β bands
(i.e., 8–30 Hz) [32], [33]. Prior to final processing, a fifth-
order zero-phase Butterworth filter was used for bandpass
filtering of the EEG signals processed by CAR at 8–30 Hz to
retain the information within this frequency band. The data
were then processed using the SRLS method. EEG signals
within 8–30 Hz were retained in the final classification to
highlight the effective signals and reduce overfitting.

E. SRLS METHOD
The EEG signals acquired by each channel of the noninvasive
EEG device are the superposed data of each neuron and other
neurons in the cranium after reflection and refraction. Even
after CAR, each acquisition channel contains the information
of other channels. The independent information specific to
each channel cannot be separated further.

Fig. 5 depicts a cross-sectional diagram of the process for
acquiring EEGs (for reference only). When a person thinks,
specific neurons change their potentials (the red part in Fig. 5)
and produce potential differences that may drive the change
in the potentials of surrounding neurons until being acquired
by some EEG channels. When the potential change is strong,
many channels get affected, and related channels contain
common information (C-EEG), burying the unique EEG
(U-EEG) generated by superficial neurons andweak potential
changes in the brain. Consequently, the U-EEGs cannot be
effectively utilized. The proposed SRLSmethod separates the
U-EEG and C-EEG around each channel, highlighting the
distinctive features of the EEGs and increasing the input data

FIGURE 5. EEG generated in different parts of the brain is superimposed,
affecting the final resolution.

volume of the classification model. As a result, the accuracy
of EEG identification and classification can be enhanced.
The proposed SRLS method comprises two steps: 1) calcu-
lating the correlation coefficient and correlation between the
channels and dividing the channels into several levels, and
2) using an ES-informer to compute the U-EEGs and C-EEGs
acquired by the EEG channels at each level and separating the
predicted EEG (EEGP) and difference EEG (EEGD) from the
original EEG (EEGT ).

The number of C-EEGs among the channels can be deter-
mined based on the correlation between the channels. The
correlation coefficient ρij between two channels can be cal-
culated using the covariance (2). In (2), i and j represent two
channels, L is the data length of the sample, and P̄i and P̄j rep-
resent the average values of the two channels. The calculated
correlation coefficient ρij has positive and negative values: a
positive value indicates that the two channels are positively
correlated, whereas a negative value indicates that the two
channels are negatively correlated. In this study, the absolute
value of the correlation coefficient ρij was used. When ρij
approaches 1, it indicates that many C-EEGs are contained
in the EEGs acquired by the two channels; in contrast, when
ρij approaches 0, it implies that many U-EEGs are contained
in the EEGs acquired by the two channels.

ρij =

∣∣∣∣∣∣
∑L

l=1 (Pil − P̄i)(Pjl − P̄j)√∑L
l=1 (Pil − P̄i)

2
×
∑L

l=1 (Pjl − P̄j)
2

∣∣∣∣∣∣ (2)

ρij =
1
9

∑9

S=1
ρsij (3)

By using (2) and (3), the average correlation coefficients
among the 22 channels for nine subjects in the dataset were
calculated and plotted into a two-dimensional (2D) Fig. 6
to observe the number of C-EEGs among the channels
intuitively.

Taking the left channel EEG-8 (C3) as an example, its ρijs
with other channels were obtained and ranked in descend-
ing order as follows: EEG-7, EEG-14, EEG-2, EEG-17,
EEG-18, EEG-9, EEG-12, EEG-11, EEG-13, EEG-21,
EEG-3, EEG-15, EEG-6, EEG-20, EEG-22, EEG-5, EEG-16,
EEG-4, EEG-1, EEG-19, and EEG-10. In this research,
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FIGURE 6. For EEG correlation among different acquisition channels,
1.0 is completely correlated and 0.0 is completely uncorrelated.

during the execution of the SRLS process on MI, a balance
was struck between the number of channels collected by the
EEG and the input tensor requisites of themodel. This balanc-
ing act was essential to determine the quantity of layers in the
model and the number of channels included within each layer.
In the study, the top 16 channels were selected and divided
into four levels: L0, L1, L2, and L3. Each level contains four
channels. To differentiate between EEG signals processed at
varying levels, the signal resulting from the combination of
channels exhibiting a strong correlation was termed a super-
ficial layer, denoted by a lower numerical value (for instance,
L0). Conversely, the signal characterized by opposite features
was referred to as a deep layer and was assigned a larger layer
number (such as L3). The division method is illustrated in
Fig. 7 a). In the SRLS, the channels at each level were trained
using the same ES-informer to obtain the C-EEGs contained
in each channel. We did not probe L4, which contains five
channels and requires an independent ES-informer different
from the former four levels. Also, because these five channels
have a low correlation with the target channel, the signals
separated out are not significant. As can be seen in Fig. 7 a),
the ρijs of some right channels with channel EEG-8 (C3)
were closer to 1 than those of the left channels, reflecting
the existence of event-related synchronization (ERS) and
event-related desynchronization (ERD). The level division of
the right channels correlated with EEG-12 (C4) was plotted
in the same manner (Fig. 7 b)). As observed by comparison,

FIGURE 7. a) is distribution of ρij between EEG-8 and other channels b)is
distribution of ρij between EEG-12 and other channels.

the level divisions of the two parts of channels are generally
symmetric, comply with the physiological structure features
of the human brain, and thus can support the SRLS method.

These results prove that there were obvious or unobvious
correlations between the EEGs acquired by the channels.
There was some superposed information among the channels.
For instance, the EEGs acquired by channel EEG-8 contained
some information contained in EEG-2, EEG-17, and other
EEG channels. However, the superposed information cannot
be separated using traditional methods such as CAR and
recursion. The ES-informer is suitable for calculating the
EEG information in the target channel based on several input
channels. In the ES-informer, the C-EEGs of the input chan-
nels and the target channel can be integrated, forming EEGPl ,
where l is the level number representing L0, L1, L2, and L3.
The U-EEG of the target channel is difficult to reproduce
but can be calculated using the difference between EEGT
and EEGPl and recorded as EEGDl . That is, the equation
satisfying (4). In this manner, the superficial and deep EEG
data can be separated.

EEGDl = EEGT − EEGPl (4)

Considering that most existing SR methods require a long
acquisition time and a large dataset, we designed an EEG-
Split-informer (ES-informer) model suitable for short-time
and small datasets to supplement the information of the
target channel. This ES-informer model is a variant of the
informer [34] model and originated from the transformer
model with a multilayer encoder and decoder commonly used
in image identification and behavior identification. To make
the transformer model more adaptable to time-series forecast-
ing, the creator of the informer model introduced the concept
of timestamps that considered the influence of hour, day,
week, and holiday on the studied signal. Thus, the informer
model was created. In the informer model, the volume of
trained data can be increased by sliding the window to
avoid the need for large sample capacity and high computer
hardware configuration. Moreover, a self-attention distilling
operation was proposed to reduce the number of parameters
required by the model, effectively lowering the application
threshold of the informer so that PC users can use the
informer to perform time-series forecasting tasks. Although
the EEG signals may be affected by the subjects’ ages, BCI
service time, and other macroscopic factors, their specific
signals vary from person to person and exhibit high random-
ness and burstiness. Therefore, for a short-time dataset, the
demand for different time stamps is not significant. To per-
form SR processing of EEG signals by using the informer,
the original informer model was modified to create an
ES-informer model.

The input channel of the ES-informer model comprises
n channels Ci∈ {C1, ..,Cn (n ≤ 21; n = 4 in this study).
Different levels of output SR channels C ′

pl were compared
with the target channel Cp serving as the tag value, where
Cp /∈ C1, ..,Cn (1 is the level number, and EEGPi is
the information in C ′

pl). In addition, the input data were
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disordered during the training of the informer to prevent treat-
ing the sequence of the time series as the time information in
a single sample. To calibrate the time information of the data,
sinusoidal position encoding methods such as the pointwise
self-attention mechanism and the time stamps were used in
the model, as expressed in (5).

PE(pos,2j = sin

 pos

(2Lx)
2j

dmodel


PEpos,2j = sin

 pos

(2Lx)
2j

dmodel

 (5)

In (5), the encoded time value PE at a specific time depends
on the oddity of a signal position, pos (the index position of
data in the time series) on the time series at this time and
is encoded sinusoidally within the range of 0–1. The value
of pos can range throughout the time series and can be the
index of partial time. Lx is the length of the time series, dmodel
is the dimensionality of the input and output vectors of the
model, and j ∈ {1, 2, . . . , [dmodel/2]}. The content in the
bracket distinguishes the positions and cycles of a data point.
This encoding method can prevent vanishing or exploding
gradient problems and reduce overfitting and noise. In the
ES-informer model, the pos is related only to an instanta-
neous moment and is irrelevant to the position of a sample
in all the samples. Therefore, the timestamps of the input
information were set as partial time indices, and their relative
position information posi belonged to {0, 1, 2, . . . ,L − 1}.
The pos′i of the target Super-resolution channel was equal
to
{
ts, ts + 1, ts + L ′

− 1
}
, where ts is the initial code of the

output tag and L′ is the length of the output time series and
satisfies the following condition (6):{

ts ≥ 0
ts + L ′

− 1 ≤ L − 1
(6)

The EEG obtained by the ES-informer model through the
super sampling channel C ′

pl is not a predicted data, and its
timestamps are included in the timestamps of the input data.
This method considers the effect of the pre-order informa-
tion on the post-order information, weakens the influence of
path and time on the EEG propagation in the cranium, and
increases the amount of common information in the super
sampling channel C ′

pl .
For a sample at time t , the input data was X t = {x t1, . . . ,

x tLx |x
t
i ∈ Rdx , where dx is the number n of EEG signal input

channels (n = 4). The data outputted by the ES-informer
model satisfied Y t = {yt1, . . . , y

t
Lx |y

t
i ∈ Rdy}, where dy

is the output channel C ′
pl,Y t is the EEG information value

of channel dy at time t. The relationship between the input
channel and the SR channel is shown in Fig. 8.
Similar to the informer, the ES-informer model contains a

two-layer encoder and a one-layer decoder, with a structure
as shown in Fig. 9.

The three tensors, namely Query (Q), Key (K ), and
Value (V ), shown in the multihead probSparse self-attention

FIGURE 8. The EEGP is obtained using the EEGT of multiple channels.

FIGURE 9. Schematic diagram of the ES-informant structure.

block in Fig. 9, were calculated using three linear layers,
Q ∈ RLQ×d , K ∈ RLk×d , and V ∈ RVQ×d , respectively, where
d is the dimensionality of self-attention. The self-attention
in the informer was determined using (7). The probability
of useful information in X t showed that the ES-informer
model effectively enhanced the parameter use efficiency and
reduced the service demand for hardware.

A(qi,K ,V ) =

∑LV

j

k(qi, kj)Vj∑LK
l k(qi, kl)

(7)

where p(kj|qi) = k(qi, kj)/
∑LK

l k(qi, kl), and the asymmetric
exponential kernel qikTj /

√
d was used for k(qi, kj). Because

the self-attention probabilities are not identical, only par-
tial Qs and Ks are significantly correlated. If attention is
paid to some important Qs, the remaining Qs are substi-
tuted with their hypodispersion; this reduces the complexity
of the model. The importance of Q was measured using
Kullback–Leibler divergence (8).

KL(q ∥ p) = ln
∑LK

l=1
exp

(
qikTl
√
d

)

−
1
Lk

∑LK

l=1

qikTi
√
d

− lnLk (8)

Finally, a softmax function was used to obtain the most
important Q (9):

A(Q,K ,V ) = softmax(
QKT
√
2
)V (9)

Although the above method obtains important information
in X t and reduces the complexity of the model, the length
of the time series outputted by each layer of the encoder
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remains unchanged.With the superposition of encoder layers,
memory usage increases significantly, which is not conducive
to the massive calculation of data. To address this issue, the
self-attention distilling operation is conducted between two
encoder layers. In this operation, the maximum-pooling layer
is used to exclude minor features and focus on major features.
This operation reduces the memory usage (10).

Xj+1 = MaxPool(ELU (Conv1d([Xj]AB))) (10)

where [·]AB includes the key operations of multihead Prob-
Sparse self-attention and attention block, Conv1d(·) is the
1D convolution on the time series, ELU(·) is the activation
function, and MaxPool(·) is the maximum-pooling layer with
a step length of 2. With the increase in the number of encoder
layers after the self-attention distilling operation, the cumu-
lative time-series length at each layer was half of that in
the upper layer; this restricted the data volume of the model
parameters and reduced the demand for video memory of the
GPU.

In the application of the ES-informer for signal process-
ing, the division of training and testing sets adhered to the
guidelines established in the BCI Competition IV dataset 2a
experiment. The parameters utilized during the training phase
are presented in Table 1.

TABLE 1. Parameters used by ES-informer.

The ES-informer model was used to acquire the EEG
information included in each SR channel C ′

pl of the channels
Cp at different levels. Based on (2), the correlation ρij between
the EEGPls at L0, L1, L2, and L3 was plotted as shown in
Fig. 10.
EEGPl is the C-EEG at the aforementioned LC, and EEGDl

is the U-EEG at LC, where LC ∈ {L0,L1,L2,L3} ,C is the
level of the currently obtained EEG. As can be seen in Fig. 10,
the ρij between the SR channels C ′

pl in the superficial layer
was slightly higher than that between Cps, whereas that in the
deep layer was lower than that between Cps. To intuitively
prove this result, channels with identical rank orders were
superposed and the average value was determined. Next, the
ρij between the channels at different LCs was plotted again.
Furthermore, the ρij between U-EEGs of the channels at each
LCs was calculated in the same manner, as demonstrated
in Fig. 11.

As can be seen in Fig. 11, the ρij between the channels
with EEGPl obtained at the superficial layer LC was strong,
whereas that between the corresponding EEGDls of the chan-
nels was weak. To show the variation in the waveforms of
EEGT , EEGPl , and EEGDl at different levels, the channel
EEG-8 of subject 4 was taken as an example to plot the
waveforms of EEGT , EEGP0, EEGD0, EEGP3, and EEGD3
(Fig. 12).

FIGURE 10. The ρij of the channels at L0, L1, L2, L3 levels in descending
order.

FIGURE 11. Average ρij in descending order.

As can be seen in Fig. 12, the EEGP0 and EEGT at L0 were
similar, the EEGD0 at L0 tended to be stable, and that at deep
level LC was the opposite, further proving that the number of
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FIGURE 12. The calculation principle of EEGDl.

C-EEGs among the Cps at the superficial layer is inversely
proportional to the number of U-EEGs. A single BCI acqui-
sition channel affected by the change in the potentials of
superficial neurons or weak neurons contains many U-EEGs,
whereas multiple acquisition channels with EEGs affected by
the change in the potentials of deep neurons or strong neurons
contain many C-EEGs. By using the ES-informer and other
SR methods, EEG signals at different LCs were separated,
resulting in amultifold increase in the number of input signals
that can be used in the classification model. Each level of
EEG is called SRLS-EEG, which can be divided into 9 kinds
of input signals: EEGT , EEGP0, EEGD0, EEGP1, EEGD1,
EEGP2, EEGD2, EEGP3, and EEGD3.

F. VERIFYING THE EFFECTIVENESS OF THE SRLS METHOD
To substantiate the hypothesis that SRLS enhances EEG
classification accuracy, the efficacy of SRLS was evaluated
through comparison using EEGNet. Various levels of EEGT ,
EEGPl , and EEGDl were combined to create SRLS-EEG,
which was then input into EEGNet. This process enabled the
acquisition of four-class results for MI and binary classifica-
tion outcomes for P300, thereby facilitating an analysis of the
impact of SRLS on classification results.

The EEGNet model is a compact convolutional neu-
ral network for EEG-based BCIs and has exhibited high
performance in many EEG-related fields. By using Depth-
wiseConv2D and SeparableConv2D, the EEGNet model
classifies EEG signals with an approximate logic of a com-
mon spatial pattern (CSP). On this basis, many researchers
developed EEG classification models, such as the TSGL-
EEGNet [25], EEG-TCNet [35]. In this study, EEGT , EEGPl ,
and EEGDl were inputted into the most basic EEGNet model

according to the specific or total number of channels used.
Except for the different number of input channels used in
training the models, all the hyperparameters, as well as the
quantity and size of convolution kernels, were the same in all
the models. Thus, the four classification results of the types of
data obtained could be compared to study the effect of EEG
level separation.
To verify the effect of the proposed SRLS method on

the classification results, the EEGNet classification methods
was used. To alleviate unnecessary effects of the classifi-
cation models with different structures on the classification
accuracy, the models were set with the same hyperparam-
eters as well as the same quantity and size of convolution
kernels but different numbers of input channels depending
on the EEG combination. The input combination methods
in EEGNet classification methods are shown in Fig. 13. All
channels were selected. Only the single-level data, such as
EEGT or EEGPl , did not require a change in the number
of channels. If different levels of data were combined, such
as EEGP1 + EEGD1, the samples in the EEGNet model
were spliced in 2nd dimensions. The channel multiples for
the input of EEGNet were calculated as the product of the
actual input channels, which were 22 and 10 in this study,
and the number of levels. Finally, the combined sample data
were inputted into the classification model to obtain the
classification accuracies in different combinations.

FIGURE 13. EEGNet model schematic (four categories of MI).

III. RESULT
SRLS-EEG, as a method for EEG processing, is designed
to broaden the analytical approaches for EEG and more
effectively analyze brain activity in subjects. To clarify the
influence of the SRLSmethod on EEG signals, EEGNet were
employed as the classification model in this study. The origi-
nal EEG, i.e.,EEGT , was used as a reference for classification
results, marked as 100%, and subsequently comparedwith the
accuracies achieved by other methods according to (11).

α =
accS
accT

× 100% (11)

where accS is the classification accuracy achieved using
EEG at different levels as input for EEGNet in SRLS-
EEG; accT is the accuracy from EEGT ; and α signifies
a comparison of classification outcomes, i.e., the relative
accuracy. To differentiate between models, the classification
network utilizing SRLS-EEG is henceforth referred to as
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SRLS-EEGNet, while the model with an input of EEGT
was still called EEGNet. First, EEGT , EEGPl , and EEGDl
were employed as input data to analyze the information in
EEG at various levels, with the classification results depicted
in Fig. 14.

FIGURE 14. Direct comparison of EEGT , EEGPl , and EEGDl .

In Fig. 14, the blue horizontal line represents the bench-
mark for EEGT , indicating the scenario where the original
classification accuracy is mapped to 100%. Statistical results
indicated that SRLS-EEG significantly impacted classifi-
cation outcomes. For most subjects, using a single-level
SRLS-EEG appeared detrimental to accurate MI identifi-
cation, possibly due to the dispersion of principal EEG
information, making effective data extraction challenging
from a single-level SRLS-EEG. In contrast, for a minority
of participants, recognition accuracy notably improved, likely
owing to the distinct separation of signals in the correspond-
ing MI actions. EEGPl and EEGDl at the same level were
integrated as input to form EEGPDl . In other words, the
original 22 input channels were reconfigured to 44 channels
and introduced into EEGNet. These statistical results are
presented in Fig. 15.

FIGURE 15. Direct comparison of EEGPDl .

The statistical findings revealed that for most subjects,
the classification accuracy of SRLS-EEGNet matched or
exceeded that of EEGNet. Additionally, compared to using
a single channel, this configuration had a more balanced
effect on classification performance. However, for a minority
of subjects, the influence of SRLS-EEG remained nega-
tive. Therefore, EEGPDl and EEGT were merged again to
form EEGTPDl , further diversifying the model’s input types.

The statistical outcomes obtained with this configuration are
summarized in Fig. 16.

FIGURE 16. Comparison of EEGTPDl by levels.

The SRLS-EEG combination of EEGTPDl demonstrated
greater stability, and for the majority of subjects, an enhance-
ment in recognition accuracy was observed. Nonetheless, for
some subjects or at certain levels, the recognition accuracy
using SRLS-EEG as the input was still lower compared to
standard EEG. Consequently, different levels of EEGPl and
EEGDl were further combined to form EEGPall and EEGDall .
On this basis, EEGT was also added to generate EEGTPall
and EEGTDall . Finally, all SRLS-EEG signals were combined
with EEGT to form a comprehensive input of 9 levels and
198 channels EEGTPDall , which were then introduced into
EEGNet, yielding the results shown in Fig. 17.

FIGURE 17. Comparison of EEGPall , EEGDall , and other classification
types.

The aforementioned statistics demonstrated that the SRLS
approach improved EEG classification accuracy for most
subjects. Although the specific combination and efficacy var-
ied individually, the overall accuracy exceeded that of EEG
signals unprocessed by SRLS, validating the effectiveness
of SRLS. To compare the impact of different SRLS-EEG
combinations on classification accuracy, the average relative
accuracy differences obtained by all subjects in different
combinations are compiled into Table 2.

Subsequently, SRLS-EEG was compared with the original
EEGNet, EEG-TCNet, and Shallow ConvNet [36] classi-
fication models, with the comparative results displayed in
Table 3.

SRLS-EEGNet, utilizing EEGNet as the base classi-
fication model, exhibited higher accuracy than EEGNet,
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TABLE 2. Performance comparison of different levels of SRLS-EEG.

TABLE 3. Comparison of MI recognition results from different
classification models.

with an average recognition accuracy improvement of 8%.
SRLS-EEGNet also outperformed EEG-TCNet and Shallow
ConvNet, models with more advanced structures, thereby
affirming the effectiveness of the SRLS method. The clas-
sification performance on dataset 2 is displayed in Table 4.

TABLE 4. Comparison of P300 recognition results.

From the table, it is evident that for the P300 paradigm,
SRLS still enhanced the signal recognition accuracy of EEG,
with an improvement in performance ranging from 2% to 6%.
This advancement could assist researchers in EEG analy-
sis and further corroborates the effectiveness of the SRLS
approach.

IV. DISCUSSION AND CONCLUSION
To conclude, by using the proposed SRLS method, EEGPl
and EEGDl at different levels can be separated from the
original EEGT according to the correlation ρij between the
channels and combined as required. The results showed that
the proposed method improved the classification accuracies
of different types of EEG classification models for most
subjects. However, increasing the input data volume in the
classification model by Super-resolution greatly increases
the need for computing power resources and reduces the
speed. Therefore, the proposed method is more suitable for

devices with high computing power and low requirement for
timeliness or in case the classification accuracy cannot be
improved by classification models anymore. If a classifica-
tion model is designed only for a certain subject, the SRLS
method can aid in improving the performance of the model.
Moreover, in SRLS, the SR is not restricted to ES-informer.
Other models with a good SR effect ought to have a similar
effect, which will be verified in future studies.
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