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ABSTRACT Ensembling is a powerful technique to obtain the most accurate results. In some cases, the
large number of learners in ensemble learning mostly increases both computational load during the test phase
and error rate. To solve this problem, in this paper we propose an Ensemble of Reduced Deep Regression
(ERDeR) model, which is a combination of Deep Regressions (DRs), shrinkage methods, and ensemble
approaches. The framework of the proposed model contains three phases. The first phase includes base
regressions in which parallel DRs are used as learners. The role of these DRs is to extract features of input
data and make prediction. In the second phase, to automatically reduce and select the most suitable DRs,
shrinkage methods such as Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net
(EN) are employed. These models are compared with the non-shrinkage model. The last phase is ensemble
phase, which consists of three different ensemble methods namely Multi-Layer Perceptron (MLP), Weighted
Average (WA), and Simple Average (SA). These ensemble methods are used to aggregate the remaining
learners from previous steps. Finally, the proposed model is applied to Monte Carlo simulation data and
three real datasets including Boston House Price, Real Estate Valuation and Gold Price per Ounce. The
results show that after applying the shrinkage methods the error rate is significantly reduced and the model
accuracy is increased. Accordingly, the results of combining shrinkage methods and ensemble approaches
not only decreased the computational load during test phase, but also increased the model accuracy.

INDEX TERMS Deep learning, convolutional neural network, shrinkage methods, ensemble learning,
LASSO, elastic net.

I. INTRODUCTION fields such as pattern recognition, image processing, speech

Machine learning-based techniques have been applied in sev-
eral situations, including economic areas [1] object detection,
forecasting stock prices, and medical profession [2]. They
can be divided into single, ensemble, and hybrid learning
techniques. Deep learning (DL) is a particular branch of
ML that has achieved outstanding achievements in various
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generation, signal processing, and forecasting. A compari-
son between traditional machine learning and deep learning
algorithms shows that deep learning algorithms have many
advantages. One of these advantages is the use of different
layers and neural networks to make a deep network with
accurate analysis.

Convolutional Neural Network (CNN) is a special type
of Artificial Neural Network (ANN) that makes a powerful
deep learning network by increasing the number of layers and
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nodes. CNN models learn to automatically extract features
using filters and convolutional layers. These models have
different structures, including 1D, 2D, and 3D-CNN, which
can be used for time series, image processing, and video
recognition, respectively. In addition, 2D-CNN with a large
number of convolutions and hidden layers as well as millions
of parameters can learn complex patterns; however, it may
not be suitable for 1D signals. Therefore, the 1D-CNN has
recently been developed as an alternative method and a mod-
ified version of 2D-CNN, which has many applications due
to its low computational complication and relatively shallow
architecture [3].

Overfitting is a tremendous challenge for researchers in
the field of ML and DL. If the complexity of deep learn-
ing and machine learning models is not properly designed,
they can be vulnerable to overfitting. In ML algorithms
such as Random Forest (RF), increasing the number of trees
causes overfitting, which creates problems in training phase
as well as testing phase. This issue was investigated by
Farhadi et al. [4], [5]. In addition, in DL algorithms such as
CNN, which have a layered structure, the depth of network
increases by adding layer. Although excessive depth may
increase the accuracy, it can increase complexity and com-
putational load as well as overfitting in the model. To avoid
overfitting, there are different statistical approaches such as
regularization and shrinkage methods; these approaches can
reduce overfitting and at the same time improve model perfor-
mance and accuracy. In the present paper, we use shrinkage
methods to reduce the number of learners. For example,
LASSO and EN can be utilized as regularization methods
to reduce the number of nodes and relationships between
extracted features in fully connected layers and convolutional
layers in CNN, respectively. This problem was discussed in
paper [6]. Using regularization methods can reduce overfit-
ting and enhance the model’s accuracy as well. Accordingly,
the main purpose of the present paper is to limit the complex-
ity of network by applying shrinkage methods to reduce the
computational load and avoid overfitting.

Nowadays, reducing computational load has also become
a major challenge for improving ML algorithms because the
large number of learners in ensemble-based algorithms can
cause overfitting. Reducing the number of learners can be
beneficial to control overfitting. Some tools such as shrinkage
methods can be used to reduce overfitting in ML, DL algo-
rithms and hybrid methods [7]. In order to overcome the
overfitting and computational load as well as to improve
the prediction accuracy, the concept of ensemble learning
has been recently introduced by researchers to solve both
classification and regression problems [8], [9].

An ensemble prediction model consists of a set of individ-
ually trained base models, e.g., neural networks and decision
trees, whose outputs are combined to make a prediction [8],
[10], [11], [12]. By taking advantage of model complementar-
ity, ensemble prediction model can provide more stable and
accurate predictions than the conventional single prediction
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model [13]. Because of its appealing prediction performance,
ensemble prediction approach has received greater attention
and become a sought-after research topic in many fields, par-
ticularly in data classification [14], disease diagnosis such as
diabetes [15], [16], [17], [18], [19], pattern recognition [20],
[21], [22], image processing [23], [24], [25], [26], [27],
speech generation [28], [29], [30], [31], and signal process-
ing [32], [33].

In recent years, beyond image and signal processing,
scientists have applied deep learning algorithms in other
fields such as housing price prediction [34], disease recogni-
tion [35], [36], fault diagnosis [37], and prediction of traffic
flow [38], [39]. Deep learning algorithms [40] such as CNN,
Recurrent Neural Network (RNN), and Long Short Term
Memory (LSTM) or a hybrid of these algorithms, e.g. CNN-
RNN [41], [42], and CNN-LSTM [39], [43], [44], [45] are
widely used. In order to predict the traffic speed in a specific
area of Hong Kong, Cao et al. [39] modeled applications of
deep learning based on a hybrid of CNN and Long-Short-
term Memory (LSTM) called CNN-LSTM. In addition, that
hybrid model was compared with SVR, LASSO, RF, MLP,
and LSTM. As aresult, in this proposed hybrid model outper-
formed the other algorithms. Canizo et al. [41] used DL-based
methods to detect supervised multi-time series anomaly in
multi-sensor systems, in which the CNN and RNN were
combined in different ways and created a hybrid model called
CNN-RNN.

The combination of several learners’ outputs makes
ensemble models that generate a single output. These models
are designed in such a way that their basic learners have the
same structure [46], [47], [48], [49]. Furthermore, another
important issue addressed in the ensemble models is how
to integrate the models to determine final decision. These
models are built using different types of ML algorithms that
can perform differently in various conditions. Some of these
algorithms are RF and Bagging, in which decision trees are
their basic learners. The other algorithm is the ensemble of
Support Vector Machine (SVM) [50], ensemble of Neural
Network [51], and ensemble of k-Nearest Neighbor (KNN)
[52] from which SVM, ANN and KNN are employed as a
learner, respectively. In [53], a multi-level feature selection
algorithm based on LASSO coefficient threshold (Coe-Thr-
Lasso) was proposed. In the proposed algorithm, Lasso-based
feature selection was used to remove features with redun-
dancy and weak correlation. After reducing the features
with weak correlation, three machine learning algorithms,
including Logistic Regression (LR), RF, and SVM were
combined with the proposed algorithm. The results showed
that the proposed Coe-Thr-Lasso algorithm outperformed
three ML algorithms namely LR, RF, and SVM. In [54],
a new enhanced feature selection method was proposed to
improve the training model and classification performance
of the model. This improvement was achieved based on
the concept of regularization in which the selection of the
best features was considered before training the model under
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any propagation environment. The adoption of regularization
leaded to a high Total Explained Variance (TEV) during the
process of kernel Principal Component Analysis (k-PCA).
The selected features were the input of ML algorithms such
as KNN and SVM. In other words, the enhanced feature
selection method was combined with ML algorithms. The
proposed model reduced the dimension of features and, gen-
erally, enhanced the ML classification performance [55].
In [56], a novel ensemble of 3D-DenseNet was proposed to
boost the performance of dementia detection model. It was
constructed by varying hyper-parameters and architecture
around the optimal values for base 3D-DenseNets. In this
model, first, dense connections were introduced to maxi-
mize the information flow, where each layer connects with
all subsequent layers directly. Then probability-based fusion
method was employed to combine 3D-DenseNets with dif-
ferent architectures. One of the most advantages of ensemble
methods employed in this proposed model is the reduction of
the misclassification risk of a single classifier.

In [57], a method called the Random Ensemble Deep
Spatial (REDS) approach was proposed to predict spatial
data. This procedure used random Fourier features as inputs
to an extreme learning machine (a deep neural model with
random weights), and with calibrated ensembles of outputs
from this model based on different random weights, it pro-
vided a simple uncertainty quantification. The REDS method
was demonstrated on simulated data and on a classic large
satellite data set. The purpose of the study [58] is to com-
bine multiple single machine learning models with integrated
learning algorithms and propose an SMC retrieval method
based on multiple differentiated models under a stacking inte-
grated learning architecture. First, 19 factors, including: radar
backscattering coefficient, vegetation index, and drought
index, that affect SMC were extracted from SENTINEL-
1, LANDSAT, and terrain factors. Those with the highest
importance scores were selected as retrieval factors using
the Boruta algorithm combined with four single machine
learning methods—classified regression tree, random forest,
gradient boosting decision tree (GBDT), and extreme random
tree. In addition, the two stacking ensemble models using
least absolute shrinkage and selection operator (LASSO) and
the generalized boosted regression model (GBM) were tested
and applied to build the most reliable and accurate estimation
model. In [59], two single-based and stacked ensemble-based
machine learning models were employed to speed up the
parameter estimations of wireless sensor network with highly
accurate outcomes. Adaboost was superior over other models
(Elastic Net, SVR) in single-based models. Stacked ensemble
models achieved best results for the WSN parameter predic-
tion compared to single-based models.

Recent advances in deep learning show that using ensem-
bles of CNNs can improve the performance of predic-
tion [60], [61], [62]. Although the ensemble of CNNs can
have better performance than single models, this research
path remains significantly unknown in the literature [63].
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The main reason is that the ensemble of CNNs needs more
time for training and diverse combination for prediction.
For example, in the post-selection boosting random forest
(PBRF) [64] algorithm, decision tree is used as a learner,
while in the present study, we use Deep CNN. Additionally,
after applying the LASSO method on the decision trees in
PBREF, Simple Average (SA) was used to aggregate the trees.
In [5], to improve the accuracy of RF, the combination of clus-
tering algorithm (K-means) and shrinkage methods (LASSO,
Elastic Net, and Group Lasso) were used. This proposed
framework, called ECAPRAF, is a machine learning ensem-
ble model that automatically reduces the number of trees
in RF by shrinkage methods; while in our proposed model
several different ensemble methods with various structures
were used. Table 1 summarizes the various ML and DL
approaches for ensemble learning approaches [65].

In this article, a hybrid model called Ensemble of Reduced
Deep Regression (ERDeR) is presented in which a combi-
nation of DRs, ensemble approaches, and shrinkage methods
are used to increase accuracy and improve the performance
of the model. The DRs, which are composed of Deep CNN
architecture, are operated as base learners that have the same
structure.

Additionally, in our proposed model, three different
ensemble approaches and two shrinkage methods are used to
ensemble and reduce DRs, respectively. They are compared
with the non-shrinkage model. The architecture consists of
three main phases, along with the fusion phase. The first
phase includes base regressions which is made of several
parallel DRs as a learner. The number of DRs is set to 30,
40, and 50.

These are responsible for the feature extraction and pre-
diction of the input dataset. Each of the DRs is formed of
convolution, pooling, and fully-connected layers, which are
used to extract features, reduce the dimension of input data,
and predict, respectively. The next phase is fusion, which
involves concatenating all trained DRs in the base regression
phase and ensembling the remaining DRs of the shrinkage
phase. Since no special operations are performed in the fusion
phase, it is not considered as the main phase.

In this model, among the constructive phases, two phases
are especially important. The first phase is the shrinkage
phase. In this phase, LASSO and Elastic Net (EN) methods
are used to reduce the number of DRs in the model. They are
compared with the non-shrinkage model in which removing
the DRs are not accomplished.

In addition, these methods improve the model by selecting
appropriate DRs. In LASSO method, the sum of absolute
values of regression coefficients is used as a penalty function.
In the case of EN, the linear combination of the sum of
squared regression coefficients and the sum of absolute values
of the regression coefficients are used. The EN has a much
better performance than LASSO.

It should be noted that DRs are automatically removed
without any initial selection. This is associated with reducing
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TABLE 1. The related work of the machine and deep learning approaches
for ensemble learning and Deep regressions.

Ref.  Approach Objective Cha}i;r;%zié)hf the
[66] Ensemble An ensemble-based An automated screening
s of CNN classification model framework was proposed
[67] was developed using for the detection of
three Convolutional cervical cancer.
Neural Network Although simple fusion
(CNN) architectures, schemes like majority
namely Inception v3, voting, weighted
Xception and averaging, etc., have
DenseNet-169 pre- been used in literature,
trained on ImageNet they do not consider the
dataset for Pap stained  confidence in the
single cell and whole- predictions of a classifier
slide image while computing the
classification. predictions.

[68] Deep To estimate target To balance training data,
Regression  positions, regression a novel shrinkage loss
with trackers directly learn was proposed to penalize
Shrinkage a mapping from the importance of easy
Loss regularly dense training data.

samples of target Additionally, the
objects to soft labels, residual connections
which are usually were applied to fuse
generated by a multiple convolutional
Gaussian function. layers as well as their
output response maps.

[69] Robust Reducing the influence A regression model with
Optimizati  of outliers in the model ~ ConvNets was proposed
on for fitting process by that achieved robustness
Deep proposing a loss to such outliers by
Regression  function that is robust minimizing Tukey’s

to outliers. biweight function, an M-
estimator robust to
outliers, as the loss
function for the
ConvNet.

[70]  Vanilla Comprehensive A systematic evaluation
Deep analysis of deep and statistical analysis of
Regression  regression techniques vanilla deep regression,

i.e. convolutional neural
networks with a linear
regression top layer.

[71] XGBoost Establishing a variety Employing deep belief
and deep of machine learning network (DBN), and
learning techniques, such as extreme gradient

white-box machine boosting (XGBoost) in

learning, deep order to construct
learning, and ensemble  genetic programming
learning to determine (GP), group method of
the solubility of HpS in a5 handling (GMDH).
ionic liquids (ILs).

[72] CNN, Applying a variety of applying a max voting
VGGl6, image processing ensemble technique in
and techniques including combination with
VGGI19 the data augmentation adaptive weighted

technique to increase
the number of data and
solve the overfitting
problem of the model,
and proposing
ensemble learning
model of custom CNN,
Transfer Learning, and
CNN-Machine
Learning (ML)
classifier techniques

average ensemble
models to reduce the
dispersion of predictions

errors, increasing accuracy and improving model perfor-
mance. Another important phase is an ensemble which
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consists of various ensemble approaches used to aggregate
the previous steps. The ensemble approaches include MLP,
WA, and SA. Each of the mentioned ensemble methods
performs aggregation by applying shrinkage methods and
without them. We call the non-shrinkage models MLP-NON,
WA-NON, and SA-NON. One of these methods is Multi-
Layer Perceptron which is made of several fully-connected
layers and activation functions. This method applies a non-
linear transformation on output. Another method is Weighted
Average which applies a linear transformation on output.
This method is made up of the combination of single fully-
connected layer and activation functions. In principle, this
combination creates a type of weighted averaging that has
better performance than other ensemble methods, such as
MLP and WA. Another method, which is the simplest method
compared to the other two methods, is the SA. That only
performs SA. Finally, the results of all three models are
compared with shrinkage models and non-shrinkage model.
The number of different DRs is considered as well.

The main objective of our proposed model is to design
a combination of DRs, shrinkage methods, and different
ensemble approaches to increase the model’s accuracy and
reduce computational load in the test phase and overfitting
as well as remove ineffective learners by shrinkage methods.
So, the main strength of the present study is the use of a
combination of DRs, ensemble approaches, and shrinkage
methods for learning, aggregating, and reducing learners,
respectively. The ERDeR model aggregates the DRs by MLP,
WA, and SA ensemble approaches after applying shrinkage
methods. They are compared with non-shrinkage models in
which no DRs are removed. Moreover, to improve the pro-
posed model, the shrinkage methods such as LASSO and EN
are applied to reduce the number of DRs. After shrinking,
the remaining DRs are aggregated using ensemble methods
described earlier.

The main contributions of our study are as follows:

o Using DRs with ID-CNN structure as a learner to show
that deep learners can be used instead of decision trees or
other algorithms to improve the performance of model.

« Using shrinkage methods to reduce the number of learn-
ers and computational load in the test phase as well as
improve the performance of the ERDeR model.

« Using different structures of ensemble learning model
to aggregate the remaining learners with and without
applying shrinkage methods.

o Our method performs well against state-of-the-art struc-
ture of deep regressions and ensemble models. We suc-
ceed to reduce the number of deep regressions by shrink-
age methods and improve the model’s performance.

The rest of the paper is organized as follows: Section II
presents an explanation of the related methods briefly.
Section III provides a flowchart and summary of the pro-
posed method. In section IV, the performance of the proposed
model is evaluated and analyzed by a simulation study and
three real datasets. Finally, Section V includes the conclusion
and future works.
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FIGURE 1. 1D Convolutional neural network structure.

Il. METHODOLOGY

A. ONE-DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORK

CNN is the most well-known method in deep learning. It is a
feed-forward and multi-stage neural network with two types
of layers consisting of Convolution and fully-connected lay-
ers similar to MLP neural network. The 1D convolutions
and sub-sampling both occur in convolutional layers and
fully-connected part which perform the classification and
prediction operation. In this study, Deep Convolution Neural
Network is used for regression, which is shown in Figure 1.
In the convolution and pooling layers, different kernel sizes
are used to extract the features of the input dataset. The
feature map of the previous layer is the input for the next con-
volutional layer along with the kernel. Finally, the nonlinear
activation function forms the output feature map.

The CNNs are mainly trained in a supervised way by
the back propagation (BP) algorithm [73]. It can be said that
the network parameters are updated using this algorithm. The
update is done by calculating the weighted gradient of the
whole loss function layers. This update will be continued until
a certain stopping criterion is obtained. In the BP algorithm,
several gradient descent optimization methods can be used
including Stochastic gradient descent [74], AdaGrad [75],
RMsprop, and Adam [76]. In this paper, the Adam gradient
descent is used. The purpose is to minimize the loss function
by reducing the share of network parameters [77].

1) CONVOLUTION LAYER

The 1D-CNNs perform convolutional operations on input
to obtain one-dimensional features in which various filters
extract different features. In other words, the convolutional
layers convolve the input and learn to extract features
based on the convolution operator that will be used by the
fully-connected layer for classification or regression. Each
convolutional layer includes filters that identify the features
and extract them from input data. One filter corresponds to
one feature map in the next layer. The output of the convolu-
tional layers is the input of the next layer [78]. The calculation
process in the one-dimensional convolutional layer is as

follows:
l -1 ! I
Xj _f(gi6 in *wij—i—bj) (1)
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FIGURE 2. 1D Max pooling.

where M; refers to a set of input feature maps, [ represents the
[-th layer, Xil ~! indicates the i-th input of the feature map of
(I—1)-th layer, wfj shows the number of kernel convolutions
that is ij-th feature map, X! indicates the j-th feature map of
[-th layer, f (.) is a non-linear activation function in which the
* operator is used to perform the convolutional operations,
b is the kernel bias corresponding to the kernel.

2) POOLING LAYER

After the convolutional operation in the convolution lay-
ers, the dimension of feature maps is increased. Therefore,
to reduce the dimension of the feature map as well as control
overfitting, pooling layer is intended as a reducer to decrease
the parameters of the whole network. Although several pool-
ing methods such as max-pooling (calculating the maximum
value for each patch of the feature map) and average-pooling
(calculating the average value for each patch on the feature
map) can be used in CNN, the most commonly used pooling
layer is max-pooling which performs the maximum operation
over the input features. Figure 2 indicates how to calculate
the 1D max-pooling layer. In this study, max-pooling is used
to decrease the computational load. Pooling layers are calcu-
lated as follows:

X! =f (ﬁ; down (le—l) n b]’.) )

where ﬂjl and b]l. represent the multiplicative bias and additive

bias of the /™ layer, respectively. Also, down (.) represents
the subsampling or pooling function.

3) FULLY CONNECTED LAYER

The last part of CNN is called fully-connected (FC) layers,
which is a particular and main part of CNN. For doing classi-
fication or regression, the output of the previous layers which
makes the input of fully-connected part is converted into 1D
feature vectors. This part is constructed from various hidden
layers, neurons, and activation functions. Additionally, the
loss function can include mean-squared error (MSE), cross
entropy, and logarithmic [79]. In this study, MSE of the cost
function is used.

B. ENSEMBLE LEARNING

Ensemble strategy is a term used to describe the methods
in which multiple base learners are combined to make a
joint decision and provide higher accuracy and better results
than a single learner [80]. These learners can be any type of
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classification algorithm. For example, in the RF which is one
of the most famous tree-based XGboost ensemble learning
algorithms, the decision tree is used as a learner. In this
study, CNN is applied as a base learner. For the final pre-
diction, there are several ensemble learning approaches such
as majority voting, average voting, and stacking for classifi-
cation tasks [81]. In addition, the simple averaging [82] and
weighted averaging [83] strategies are applied for regression
tasks. In this research, we use MLP, SA, and WA. SA is one
of the simplest and most effective implementation methods
used in neural networks. Itis calculated in a way that posterior
values are produced by averaging the predicted values of all
base learners. This is accomplished by compensating for the
error of a single learner by other learners to lead to stronger
classification performance. Another method is weighted aver-
aging which can be obtained by minimizing a loss function.
It means that the classifiers which have better performance
are assigned larger weights by minimizing the loss function.
The final ensemble prediction is obtained by averaging from
the optimal weights of classifiers [84]. In other words, it is
possible to calculate the optimal weights of the network by
using several fully-connected layers and then ensemble them
to achieve an optimal ensemble classifier [51].

C. LASSO

One of the most popular shrinkage methods, introduced by
Tibshirani [85], is LASSO regression. This method creates a
suitable model by selecting effective variables and removing
ineffective ones. In this research, this method is used to reduce
the number of parallel DRs (learners) by applying a constraint
on the absolute value of regression coefficients [86]. This
causes the regression coefficients to tend toward zero or
become exactly zero. The applied constraint depends on a
tuning parameter A whose value is obtained based on cross-
validation. As the value of parameters increases, a large
number of coefficients become zero. In some cases, this
removes the effective variables from the model leading to
overfitting and error increase. Choosing an appropriate A can
improve the model performance.

Suppose (X, Y) is a dataset so that X = (xi, ... ,x,,)/ is the
prediction variable and Y is the response variable. To estimate
LASSO, the ¢;-norm is used based on the penalized least
squares, which is defined as follows:

Ao argmin | 1
rase = Hﬁuy—xm@] stlBly <t (3

where ¢ and § are the tuning parameter and regression coef-
ficient, respectively. This equation can be converted to the
penalized least square function whose Lagrangian form will
be as follows:

j 1
ACRSE R [ﬁ Iy —Xﬁ||§+)»||/3||1] @

where (Bl = j—1 || and ”Y_'BTX”; =

Z?:l (Y - X ,3),)2 are £1-norm under 8 and loss function,
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respectively. A is the tuning parameter, which controls the
extent to which the coefficients are penalized towards zero
(A > 0). When A is zero, the values of estimated coefficients
are identical to the standard regression coefficients. In addi-
tion, A is obtained based on 10-fold cross validation.

D. ELASTIC NET

Although the LASSO can simultaneously shrink and select
the features, it has some limitations and is not always suit-
able [87]. Therefore, Zou and Hastie [88] developed the EN
EN in 2005, which is an excellent regression method combin-
ing the advantages of LASSO and Ridge. This method can
improve the constraints as a two-step method, so that in the
first step, it performs Ridge-type contraction (£2-norm) and
then LASSO-type thresholding (¢1-norm). In principle, it is a
convex linear combination of Ridge and LASSO methods in
a way that if « = 1 and @ = 0, it is converted to Ridge and
LASSO regression, respectively. As a result, this method has
both the Ridge and LASSO regression properties.

Suppose (X, Y) is a dataset so that X = (x1, . ,xp)/ is the
prediction variable and Y is the response variable. To estimate
the EN, the combination of £, and £;-norm are used based on
the penalized least squares to solve the optimization problem,
which is defined as follows:

argmin

pelastic BeR? [||Y —Xﬂ||2} st (1—a) Bl
+alpl <1 ®)

where (1 — ) ||,8||§ ~+ o || Bl is called EN penalty so that o

is equal to Alkfxz . For all constant and non-negative values of

A1 and Ao, the Lagrangian form is defined as follows:

L (A1, A2, B)

n [ 1
- ag‘iﬁin [ﬁ 1Y = XB1% + 22 IBI3 + 21 ||,3||1} )

where ||B]l;, = ;’:1 |Bj| and 11813 = leﬂjz show the
£1 and {3-norm, respectively. Also, A1 and A, are tuning
parameters.

IIl. STRUCTURE OF PROPOSED MODEL

A. THE CONSTRUCTION OF ENSEMBLE OF
CONVOLUTIONAL NEURAL NETWORKS

The purpose of ERDeR model, which is made of the combina-
tion of deep regression, ensemble approaches and shrinkage
methods, is to predict and improve the performance of the
designed model. This ensemble model consists of three
phases including base regression, shrinkage, and ensemble.
All DRs receive a dataset as an input and give the correspond-
ing prediction. All DRs have the same structure. They are
made of deep CNN which extract features and predict. Each
network has several convolutional layers made up of different
numbers of filters. The tanh activation function is applied
to the results of convolutional operation. Each convolutional
network has several pooling layers with a fixed pooling
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FIGURE 3. The structure of proposed ERDeR model.

size. After convolving and pooling in each DR, two fully-
connected layers with various numbers of units are used,
each of which is responsible for prediction. By applying the
ReLU activation function on the hidden layer and the Linear
activation function on the output layer, the prediction value
of each network is calculated.

B. THE AGGREGATION STRATEGY

The next step is a strategy to ensemble the results of DRs
and reduce their number, which includes two phases. Three
options are used to ensemble including Multi-Layer Percep-
tron, WA and SA. They will be explained in the next sections
in details. Another option used to reduce the number of
DRs is shrinkage methods such as LASSO and EN. These
methods in combination with each other produce new models
that are compared with the non-shrinkage model where the
shrinkage method is not applied on DRs. In addition to the
stated phases, the proposed model also includes a fusion
phase that performs concatenation on DRs. Due to the low
importance of this phase, we leave out its details. The whole
structure of the ERDeR model is shown in Figure 3. The
details of the inner layers will be explained in the next
subsections.

C. MODEL 1: MLP ENSEMBLE
The MLP ensemble model makes up of parallel DRs. These
base regressions are made of convolutional layers with differ-
ent hyperparameters. The details of the parameter setting are
given in Table (2).

As can be seen in Figure 4, in the fusion phase, concatena-
tion is used to merge DRs. In other words, in fusion phase, the
extracted deep features of input data are concatenated. After
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TABLE 2. The parameter settings of MLP Ensemble model.

. Activation
Layer Configuration function
. Filters = 64, Loss function =

Convolution 1 L

kernel size =2 tanh mse
Max-pooling 1 Kernel size =2 Optimizer =
Convolution 2 I - 64; adam .

kernel size =3 tanh Batch size = 64
Max-pooling 2 Kernel size =2 Epoch =20
Fully connected Units = 32 Relu
Fully connected Units = 1 Linear
Concatenated
layer
Fully connected Units = 32 tanh
Fully connected Units = 32 tanh
Fully connected Units = 1 Linear

concatenating, several fully-connected layers are employed
to predict the input data, which forms the most important part
of our proposed model. The layers include two hidden layers
with tanh activation function and an output layer with linear
activation function used as an ensemble predictor which are
responsible for ensembling. In principle, the fully-connected
layers form the MLP method that performs non-linear trans-
formations. Finally, at the end of the network, prediction is
done. The shrinkage phase, which is the most important part
of our model, includes two regression methods: LASSO and
EN.

These methods are used to reduce the number of DRs
and select the most suitable DR to improve the model per-
formance. The combination of the mentioned methods is
compared with the non-shrinkage method. Figure 4 shows the
structure of the MLP Ensemble model.
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TABLE 3. The parameter settings of the weighted average ensemble
model.

Shrinkage

. Activation
Layer Configuration function

Convolution 1 Filters = 64; Loss function =

kernel size =2 tanh mse
Max-pooling 1 Kernel size =2 Optimizer =
Convolution 2 Filters - 64; adam .

kernel size =3 tanh Batch size = 64
Max-pooling 2 Kernel size =2 Epoch =20
Fully connected Units =32 Relu
Fully connected Units = 1 Linear
Concatenated layer
Fully connected Units = 1 Linear

D. MODEL 2: WEIGHTED AVERAGE ENSEMBLE

Similar to the MLP ensemble model, described in subsection
C (Model 1), this model also includes three phases: base
regression, shrinkage, and ensemble. The base regression
phase includes several parallel DRs. In the shrinkage phase,
two methods, i.e. LASSO and EN, are used, which are respon-
sible for selecting DRs. The trained DRs are ensembled by
applying the shrinkage methods and without them. In this
model, the ensemble method is WA, which is generated by
combining the single fully-connected layer and linear acti-
vation function. In other words, the WA ensemble method
performs a linear transformation. Finally, prediction is done
at the end of the network. Figure 5 and Table 3 show the
structure of the WA ensemble model and its parameter setting,
respectively.

E. MODEL 3: SIMPLE AVERAGE ENSEMBLE

Similar to the two previous models, described in Subsections
C (Model 1) and D (Model 2), the SA ensemble model is
also constructed of similar phases. The difference between
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TABLE 4. The parameter settings of the simple average ensemble model.

Activation
Layer CONFIGURATION function
. Filters = 64; Loss function =
Convolution 1 .
kernel size =2 tanh mse
Max-pooling 1 Kernel size =2 Optimizer =
Filters = 64; adam
Convolution 2 Kernel size > 3 b Batch size = 64
. : tan Epoch =20
Max-pooling 2 Kernel size =2
Fully connected Units = 32 Relu
Fully connected Units = 1 Linear

Average Layer

this model with other models is just the ensemble phase. For
ensembling, the Simple Average method is used instead of
MLP and WA. It should be noted that all models have shrink-
age phases. In this phase, the number of DRs are reduced by
LASSO and EN methods so that the selected effective DRs,
which improve and increase the model accuracy, is remained
in the model. Finally, these made models are compared with
non-shrinkage model.

F. IMPLEMENTATION PLATFORM AND LIBRARIES

This experiment was performed on a system with an Intel!
core? i7-6700K CPU @ 4.00 GHz accelerated by NVIDIA
GeForce TITANX Graphics and 64 Gb memory. In the imple-
mentation process, a tremendous amount of parameters is
created for which an ordinary CPU takes considerable exe-
cution time. To overcome this problem, a GPU accelerator
is used to build the model to save a large amount of time.
The in-depth learning approach, represented in our paper,

1Registered trademark.
2Trademarked.
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FIGURE 5. The structure of weighted average ensemble model.

is built using R programming language. The libraries used
in our model are Keras, lattice, caret, and glmnet. The glmnet
package is used for LASSO and EN and Keras package is
used for CNN.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this section, we will present the performance of the ERDeR
model through a Monte Carlo simulation study and three
real datasets including Boston House Price, Real Estate Val-
uation, and Gold Price Per Ounce. Then, their prediction
performance is will be compared based on the number of
DRs, shrinkage methods, and different ensemble approaches.
The results will be presented in subsections B and C of this
section. The ensemble approaches, which are divided into
three approaches namely MLP, WA, and SA along with the
shrinkage methods such as LASSO and EN, are compared
with them. After combining, they produce new hybrid models
that are compared with non-shrinkage models.

A. SIMULATION STUDY DESIGN

A Monte Carlo simulation study is conducted to assess the
performance of the proposed model in R. This is done by
applying shrinkage and non-shrinkage methods to improve
the performance of ERDeR, which consists of three phases.
The phases include base regression to train DRs as base
learners, shrinkage to select the most suitable DRs and reduce
the number of them, and ensemble methods to aggregate.
Therefore, the proposed model is evaluated based on different
criteria of MSE, RMSE, MAE, and R? as well as the number
of selected DRs, type of shrinkage methods, and ensemble
approaches.
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In this study, we assume that the initial dataset is generated
randomly from the standard normal distribution N (0, 1) for
the variables of x1, x2, x3, x4, x5, X6, X7, which includes N =
500 observations with p = 7 predictions in the linear model.
The following linear regression model are used to make the
response variable:

y1 =3 —5.5x1 +7.3x2 +9x3 + 10.3x4 — Txs
+ 1.5x¢ + 0.9x7
y=y+e (7

where ¢ is the normal distribution N(0,02) and o2 is equal to
% of the standard deviation of y;.
First, the standardization strategy is used for data prepro-
cessing. The equation is as follows:
x — mean (x)

Xstand = W (8)

where x represents the sample and mean(.) and sd(.) indicate
the mean and standard deviation of x, respectively.

The simulation dataset is divided into training and test set.
80% of the data is assigned to the training set and the rest
is dedicated to the test set. To train the network, we use deep
CNN as base learners. The learners include 30, 40, and 50 par-
allel DRs that receive the input and provide the corresponding
prediction. In the shrinkage and ensemble phases, the number
of DRs are reduced and the remaining DRs are aggregated,
respectively.

In the base regression phase, each of the DRs contains two
convolution and max pooling layers. To do the convolution
operation, the dataset is entered to the network of 30, 40,
and 50 parallel DRs. In the convolution layer, 1D-CNN with
two convolutions and max-pooling layers is used. The first
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and second convolution layers are set to 2 and 3 kernel sizes
with 64 filters, 2 pooling sizes, and tanh activation function,
respectively. Finally, two fully-connected layers with 32 units
and ReLU activation function for the hidden layer and one
unit and linear activation function for output layer are used.
These features compute the prediction value of networks.

After training the DRs, in the fusion phase, concatena-
tion is used to merge parallel DRs. In the ensemble phase,
three methods including MLP, WA, and SA are applied to
the ensemble. In the MLP method, three fully-connected
layers are used for prediction and in its structure, two fully-
connected layers with tanh activation function, 32 units in
hidden layer and linear function and one unit are used in
the output layer. Another method is WA in which a fully-
connected layer with unit =1 and linear activation function is
used to perform weighted averaging. Finally, the third method
to the ensemble is SA, which employs simple averaging. The
described methods are combined with shrinkage methods,
which will be explained in continuation, and produce new
models. They are compared with non-shrinkage models in
which no shrinkage method is used. In the last phase of
the proposed model, the LASSO and EN regressions are
applied to shrink the DRs. These methods were described
in Section II. Finally, some DRs are automatically selected
without prior selection. Some others are removed and the
remaining ones are aggregated.

The most important part of this research is the use of
shrinkage methods. Applying these methods cause to reduce
the number of DRs and improve the performance of the
model. A linear regression model is defined on the output of
parallel DRs, which is as follows:

Y =CB+¢e¢e~N(0,0.5) )

where Y is the average of DRs based on MLP, WA, and SA
ensemble methods. C and 8 are the output of parallel DRs
and linear regression coefficients, respectively. The 8 value
for 50 DRs is equal to:

B=(,2,3,4,567,...,1,273,45.6,70,...,0)
—_———

s=21 p—s=2

In the last phase of the proposed model, the LASSO and EN
regressions are applied to shrink the DRs. These methods
were described in Section II. Finally, some DRs are auto-
matically selected without prior selection. Some others are
removed and the remaining ones are aggregated.

One of the most important parts of DL algorithms is hyper-
parameters. Among these hyperparameters, it can be referred
to epoch and batch size. Each epoch is defined as the number
of iterations of the learning algorithm. The number of epochs
can have different values. A large number of epochs lead
to the increase in training time. Therefore, 20 epochs are
assumed in the proposed model. Each batch size refers to
the number of training samples utilized in one iteration. The
batch size is 64. Other details of parameter settings about the
proposed models are given in Tables 2, 3, and 4, respectively.
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B. SIMULATION RESULTS

To evaluate the performance of MLP-NON, MLP-EN, and
MLP-LASSO, based on the MLP ensemble method, WA-
NON, WA-EN, and WA-LASSO based on the WA ensemble
method, and SA-NON, SA-EN, and SA-LASSO based on
SA ensemble method, we employ the simulation dataset to
show how the proposed models perform and then compare
them. The results of these models are calculated with 100 iter-
ations. The comparison criteria include Mean Square Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Coefficient of determination (R2). They are
defined as follows:

A2
Rzzl_zg\lzl (Yi_,Yi) (10)
>N i — )
N (o o2
msg = 2=t O = 3i)° (]yv’ 5i) (11)
N o2
RMSE = | 2= i = 31)° (ly\; 5) (12)
N ¢ — A.
MAE — 2=t i il l\y/l Si (13)

where ¥;, y;, and N are the predicted values, true values of ith
sample, and sample size, respectively.

In this case study, the MLP, WA, and SA methods in combi-
nation with shrinkage methods and non-shrinkage models are
compared. Additionally, this comparison is done to demon-
strate the appropriate performance of the shrinking methods
and ensemble approaches in combination with deep CNNs
that are used as a DR. As described in Section IV, 30, 40,
and 50 parallel DRs are used to compare the combination of
ensemble and shrinkage methods. The obtained results of the
ERDeR framework based on the simulation dataset are shown
in Tables 5-7. According to Tables 5 and 6, the MLP-EN and
WA-EN achieve the best MSE, RMSE, MAE and R? values in
all states of DRs. It can be said that increasing the number of
DRs does not change the results but EN in combination with
MLP and WA have better performance in all the three states.
In other words, the obtained results confirm that MLP-EN
and WA-EN gain the highest prediction; while in the MLP-
LASSO and WA-LASSO models, the accuracy is slightly
less than MLP-NON and WA-NON. Based on these results,
if WA is used instead of MLP, WA can slightly achieve better
performance. In other words, using one fully-connected layer
for ensembling can have better performance than several
fully-connected layers.

The WA ensemble method, which is combined with 50 par-
allel DRs and one fully-connected layer, makes a structure
with less error, higher accuracy, and more suitable model than
30 and 40 parallel DRs. But the MLP method with 30 DRs
and three fully-connected layers slightly increase the error
of the ERDeR model, so the increase in the number of
DRs increases its error as well. The variety of ensemble
methods lead to various network architecture, as a result of
which the performance of the network is changed. In the
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FIGURE 6. The structure of simple average ensemble model.
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FIGURE 7. Bar-plot of comparison between three ensemble approaches and their combination with shrinkage methods on simulation
dataset. Comparison of ERDeR is carried out with applying shrinkage methods and without them. (a) The RMSE value of MLP-EN and
MLP-LASSO on different numbers of DRs. The MLP-EN is the lowest value and has better performance among three models. (b) The RMSE
value of WA-EN and WA-LASSO on different numbers of DRs. The WA-EN is the lowest value and has better performance among three
models. (c) The RMSE value of SA-EN and SA-LASSO on different numbers of DRs. The SA-NON is the lowest value and has better
performance among three models.

three fully-connected layers that generat the MLP ensemble
model.

architecture with one fully-connected layer that leads to mak-
ing the WA ensemble model, the error rate is slightly less than
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TABLE 5. A comparison of ERDeR model results based on combining shrinkage methods and MLP Ensemble approach on simulation dataset.

Number of DRs Algorithm MSE RMSE MAE R?

30 MLP-NON 0.050259387 0.22336114 0.175526158 0.949651178
MLP-LASSO 0.041108258 0.202368041 0.159807345 0.958568035
MLP-EN 0.041036576 0.202194566 0.159683363 0.958639609

40 MLP-NON 0.05031539 0.223641598 0.176224859 0.949526212
MLP-LASSO 0.041135899 0.202403601 0.159885932 0.958547165
MLP-EN 0.04095105 0.201966407 0.159531466 0.958740538

50 MLP-NON 0.050856618 0.224905062 0.177061515 0.949084531
MLP-LASSO 0.041285366 0.202808281 0.160165092 0.958446886
MLP-EN 0.041008977 0.202115575 0.159679494 0.958728197

TABLE 6. A comparison of ERDeR model results based on combining shrinkage methods and weighted average ensemble approach on simulation dataset.

Number of DRs Algorithm MSE RMSE MAE R?

30 WA-NON 0.04815965 0.218638441 0.173372732 0.951461182
WA-LASSO 0.041249178 0.202704165 0.160174631 0.958441641
WA-EN 0.041093694 0.202327214 0.15986679 0.958592188

40 WA-NON 0.048102497 0.218593014 0.17278633 0.951510762
WA-LASSO 0.041269092 0.202747166 0.160276812 0.958428161
WA-EN 0.041088609 0.202305653 0.159843002 0.95860871

50 MLP-NON 0.046458204 0.215012118 0.170661394 0.953122389
WA-LASSO 0.041244889 0.2027071 0.160090258 0.958435067
WA-EN 0.040998121 0.202105574 0.159474756 0.958672282

TABLE 7. A comparison of ERDeR model results based on combining shrinkage methods and simple average ensemble approach on simulation dataset.

Number of DRs Algorithm MSE RMSE MAE R?

30 SA-NON 0.040404693 0.20057658 0.159499111 0.959234104
SA-LASSO 0.041291604 0.202842477 0.160099839 0.958383451
SA-EN 0.04126596 0.202766929 0.160019105 0.958405659

40 SA-NON 0.040521146 0.200872354 0.159812285 0.959149098
SA-LASSO 0.041061547 0.202260215 0.159721183 0.958613742
SA-EN 0.04093824 0.201956779 0.159519039 0.958743105

50 SA-NON 0.040357059 0.200409111 0.15971765 0.959349694
SA-LASSO 0.041200306 0.202585816 0.16000727 0.958462831
SA-EN 0.041064241 0.202256231 0.159760234 0.958605504

Table 7 shows the obtained results based on combining
shrinkage methods and SA ensemble approach. In this model,
the SA-NON model outperforms the other two models, i.e.
SA-LASSO and SA-EN. The main reason for this issue is the
use of fully-connected layers in MLP and WA models where
weights are applied to the generated outputs by the CNN.
These weights construct non-linear combinations of features
and consequently generate non-linear probabilities of predic-
tions. As can be seen in Table 7, the MSE of 50 parallel DRs
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in SA-NON, SA-LASSO, and SA-EN models are 0.04035,
0.04120, and 0.04106, respectively. In 30 and 40 parallel
DRs, this order is also established which shows that the error
of SA-NON is less than the two other combined methods
in all cases and it has better performance. This means that
increasing the number of DRs does not make change in the
performance of SA-NON model.

The bar plots of the obtained results for different models
in terms of RMSE criterion are given in Figure 7. As can be
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TABLE 8. A comparison of ERDeR model results based on combining shrinkage methods and MLP ensemble approach on boston house price dataset.

Number of DRs Algorithm MSE RMSE MAE R-square Is\gil:;?:(; Ings
30 MLP-NON 0.206191703 0.449184323 0.312329668 0.797629619 30
MLP-LASSO  0.19242716 0.434704393 0.278005945 0.815384704 29
MLP-EN 0.192325017 0.433968769 0.274100341 0.81573632 28
40 MLP-NON 0.175274715 0.418658232 0.310127388 0.829124582 40
MLP-LASSO  0.14924516 0.386322612 0.273950814 0.854500809 24
MLP-EN 0.147829925 0.384486574 0.273101489 0.855880523 23
50 MLP-NON 0.187153381 0.432612276 0.30700688 0.817544063 50
MLP-LASSO  0.154828172 0.393482112 0.279302147 0.849057928 18
MLP-EN 0.150500927 0.387944489 0.275021291 0.853276562 21

seen, applying shrinkage methods on MLP and WA ensemble
methods outperform the SA; while among the used shrinkage
methods, the EN performs better than LASSO. Further details
in Figure 7b indicate that the RMSE of 30 parallel DRs is
0.20232 in the WA-EN model and 0.2027 in the WA-LASSO
model. Moreover, in 40 and 50 parallel DRs, the RMSE is
equal to 0.20231 and 0.2021 in the WA-EN and 0.20274 and
0.20271 in the WA-LASSO. Therefore, it can be concluded
that the WA-EN model has less error and better performance.
In the SA, the RMSE of 30 parallel DRs is equal to 0.2005 in
the SA-NON model and 0.2028 and 0.2027 in the SA-LASSO
and SA-EN, respectively.

In addition, the RMSE of 40 and 50 parallel DRs is
equal to 0.2008 and 0.2004 in SA-NON model, is equal
to 0.20226 and 0.2025 in SA-LASSO, and 0.2019 and
0.20225 in SA-EN model, respectively. Consequently, it can
be inferred that the SA-NON model has better performance.
This shows that the ERDeR prediction model partly depends
on the type of ensemble methods. Besides, the performance
of shrinking methods depends on the type of methods, i.e.
LASSO and EN. Overall, the MLP and WA approaches in
combination with shrinkage methods and comparison with
non-shrinkage models show that automatically removing the
number of DRs increases the ERDeR accuracy.

C. REAL DATA ANALYSIS

In this section, the performance of the ERDeR model
by combining different shrinkage methods, and ensemble
approaches are described on three real datasets. The obtained
results will be given in three parts.

1) CASE STUDY 1: EXPERIMENT RESULTS ON BOSTON
HOUSE PRICE DATASET

The Boston House Price dataset is used to study the per-
formance of the proposed models. This dataset contains
506 observations and 13 variables whose response vari-
able is the median of the owner-occupied house price. The
data were first published by Harrison and Rubinfeld [89],
which is publicly available through the MASS package in R
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(https://cran.r-project.org/package=MASS). Like simulation
section, first, the data are standardized using Equation (8).
Then, they are divided into training and test sets. 80% and
20% of the intended dataset are considered as training and
test sets, respectively. The training and test sets are selected
randomly by the network. The training set is used as a subset
of the initial observations to train the prediction models,
while the test set is used to validate and evaluate the model
accuracy.

Tables 8 and 9 indicate the great performance of com-
bining shrinking methods with MLP and WA ensemble
methods. 1D-CNN is used as a deep regression. To reduce
the number of DRs, the LASSO and EN are applied. These
methods eliminate ineffective DRs of the model by apply-
ing a penalty on the sum of squared errors and create the
most suitable model by reducing their number. This new
created model will be accompanied by increasing accuracy
and improvement. Therefore, combining these methods with
ensemble approaches, i.e. MLP and WA, can increase accu-
racy and improve the performance of the proposed new
model. Based on the presented results in Tables 8 and 9, it can
be seen that the best prediction is related to the MLP-EN and
WA-EN models with the least error in terms of MSE, RMSE,
MAE, and R?. The MLP method with three fully-connected
layers in combination with EN has the highest R?> and the
lowest MSE, RMSE, and MAE values than MLP-NON and
MLP-LASSO, respectively.

Moreover, it selects 28, 23, and 21 parallel DRs from 30,
40, and 50 parallel DRs, respectively. The MSE of MLP-
EN is equal to 0.1923, 0.1478, and 0.1505 in 30, 40, and
50 parallel DRs, respectively. Changing the ensemble method
and using WA can have better performance than MLP, which
can be seen in its result in Table 9. In this method, the WA-EN
model with one fully-connected layer by selecting 22, 20, and
36 parallel DRs from 30, 40, and 50 parallel DRs have better
performance, respectively. By contrast, using SA changes the
performance of the model. Unlike the two other ensemble
approaches, this one does not provide excellent performance
in combination with shrinkage methods, which can be due to
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TABLE 9. A comparison of ERDeR results based on combining shrinkage methods and weighted average ensemble approach on boston house price

dataset.
Number of DRs  Algorithm MSE RMSE MAE Rosquare T umberof
selected DRs

30 WA-NON 0.204500662  0.452217494  0.315589184  0.80063219 30
WA-LASSO  0.144961032  0.380737485 0271730155  0.858677408 19
WA-EN 0.144849561  0.380591068  0.270848643  0.858786082 22

40 WA-NON 0.180745329  0.42514154 0.30654984 0.823791277 40
WA-LASSO  0.148489580  0.385343468  0.273187236  0.855237416 25
WA-EN 0.14615374 0.382300589  0.272034687  0.857514637 20

50 WA-NON 0.156496559  0.395596459  0.286224576  0.847431417 50
WA-LASSO  0.142300737  0.377227699  0.265357866  0.861270931 44
WA-EN 0.141523027 0376195463  0.264175885  0.862029122 36

TABLE 10. A comparison of ERDeR model results based on combining shrinkage methods and simple average ensemble approach on boston house price

dataset.
Number of DRs Algorithm MSE RMSE MAE R-square Number of
selected DRs

30 SA-NON 0.194442009 0.436599393 0.811008646 0.30506282 30
SA-LASSO 0.211768019 0.455147645 0.79790545 0.29022654 13
SA-EN 0.20436775 0.447697229 0.804267656 0.28304546 15

40 SA-NON 0.193373262 0.436241572 0.298995112 0.81344332 40
SA-LASSO 0.209475032 0.452974488 0.292691277 0.799193005 24
SA-EN 0.204256071 0.44746371 0.288173846 0.803991602 27

50 SA-NON 0.120580893 0.347247596 0.25704749 0.88244562 50
SA-LASSO 0.156619514 0.395751833 0.277322774 0.847311548 16
SA-EN 0.140559026 0.374912025 0.264751908 0.862968926 45

the fully-connected layers and the non-linear possibilities in
the MLP.

According to the obtained results from this method, which
can be seen in Table 10, the MSE of SA-NON is equal
to 0.1944, 0.1933, and 0.1205 for 30, 40, and 50 parallel
DRs, respectively. Therefore, it has better performance than
SA-LASSO and SA-EN. Figure 8 illustrates the bar-plot of
applied different methods on the Boston house price dataset.
These diagrams represent the performance of the ERDeR
model based on the number of DRs, shrinkage methods and
ensemble approaches. As can be seen in Figures 8a and 8b,
combining shrinkage methods with MLP and WA ensemble
approaches significantly outperform significantly the SA.
Based on these plots, it can be stated that if the WA and MLP
are exploited as ensemble methods, the shrinkage methods
such as WA-LASSO, WA-EN, MLP-EN, and MLP-LASSO
will have better performance than WA-NON and MLP-NON.
Figure 8c demonstrates the SA results indicating the better
performance of SA-NON. Further details of the SA indicate
that the RMSE of 30 parallel DRs is equal to 0.4365 in the
SA-NON and is 0.4476 in the SA-LASSO model. In addition,
the RMSE of 40 and 50 parallel DRs which is 0.4362 and
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0.3472 in SA-NON has the best performance. Also, the
RMSE of 40 and 50 parallel DRs which is equal 0.4529 and
0.3957 in the SA-LASSO has the worst performance. There-
fore, it can be concluded that the SA-NON model has less
error and outperforms SA-LASSO and SA-EN.

2) CASE STUDY 2: EXPERIMENT RESULTS ON REAL ESTATE
VALUATION DATASET

To study the performance of the ERDeR model, the Real
Estate Valuation dataset is used. This dataset is from the UCI
machine learning repository and the original owner of this
dataset is Yeh and Hsu [32]. It consists of seven features from
which five features are selected including house age, distance
to the nearest MRT station, number of convenience stores in
the living circle on foot, latitude, longitude, the transaction
date, and house price of the select unit area as the independent
variable and house price of the unit area as the dependent
variable. Similar to the Boston House Price dataset, the data
are standardized using Equation (8). Then, it is separated into
training and test set. The sample size in the training set and
test sets is 332 (80%) and 82 (20%), respectively.
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FIGURE 8. Bar-plot of comparison between three ensemble approaches and their combination with shrinkage methods on Boston House
Price dataset. Comparison of ERDeR is carried out with applying shrinkage methods and without them. (a) The RMSE value of MLP-EN and
MLP-LASSO on different numbers of DRs. The MLP-EN is the lowest value and has better performance among three models. (b) The RMSE

value of WA-EN and WA-LASSO on different numbers of DRs. The WA-EN is the lowest value and has better performance among three
models. (c) The RMSE value of SA-EN and SA-LASSO on different numbers of DRs. The SA-NON is the lowest value and has better
performance among three models.

TABLE 11. A comparison of ERDeR model results based on combining shrinkage methods and MLP ensemble approach on real estate valuation dataset.

Number of DRs Algorithm MSE RMSE MAE R-square seli?é?iblgli{(;f
30 MLP-NON 0.25600681 0.505971155 0.389597182 0.68212326 30
MLP-LASSO  0.227897377 0.477385984 0.366499146 0.717025983 7
MLP-EN 0.221347568 0.470475896 0.3601908 0.725158704 16
40 MLP-NON 0.243995874 0.493959385 0.374465205 0.697036915 40
MLP-LASSO  0.227405388 0.476870411 0.366103961 0.717636873 38
MLP-EN 0.226575307 0.475999272 0.364886608 0.718667562 35
50 MLP-NON 0.28405678 0.532969774 0.420159325 0.64729437 50
MLP-LASSO  0.222163633 0.471342374 0.361468041 0.724145418 37
MLP-EN 0.221604801 0.470749192 0.36078939 0.724839305 38

Experiments indicate that the type of shrinkage meth-

MLP, WA, and shrinkage methods, i.e. LASSO and EN.

ods and ensemble approaches has a significant impact on
model performance. Tables 11-13 show the obtained results
from the Real Estate Valuation dataset by different ensem-
ble approaches. Tables 11 and 12 show the performance of
the model in combination with ensemble approaches, i.e.
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To reduce the number of parallel DRs and improve the model
performance, the shrinkage methods are applied on base
learners. Additionally, as one of the ensemble methods, the
WA method has the best performance. Table 13 illustrates
the performance of the proposed model based on the SA
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TABLE 12. A comparison of ERDeR model results based on combining shrinkage methods and weighted average ensemble approach on real estate

valuation dataset.

Number of DRs  Algorithm MSE RMSE MAE R-square Segé‘t‘:é’g};’sf
30 WA-NON 0238199371  0.488056729  0.389458639  0.704234277 30
WA-LASSO 0227759365 0477241412 0367712926 0.717197349 20
WA-EN 0227441072 0.476907824 036747779  0.717592565 22
40 WA-NON 0272672251  0.522180286  0.411375842  0.661430232 40
WA-LASSO 0227160502  0.476613578 0367391213 0.717940941 36
WA-EN 0226911813 0.476352614  0.366598856  0.718249732 33
50 WA-NON 0355110584  0.595911557  0.447863961  0.559068782 50
WA-LASSO 0224067617 0473357811  0.362465113  0.721781293 25
WA-EN 0223559101  0.472820368  0.3620478 0722412704 31

TABLE 13. A comparison of ERDeR model results based on combining shrinkage methods and simple average ensemble approach on real estate

valuation dataset.

Number of DRs Algorithm MSE RMSE MAE R-square selNe g::;?)rRosf
30 SA-NON 0.215209816 0.46390712 0.361251636 0.732779786 30
SA-LASSO 0.230706041 0.480318687 0.369924721 0.713538541 6
SA-EN 0.221082605 0.47019422 0.358483541 0.725487702 10
40 SA-NON 0.222320706 0.471509 0.367011627 0.723950386 40
SA-LASSO 0.269481798 0.519116 0.367011627 0.665391732 6
SA-EN 0.241391441 0.491316 0.367011627 0.700270769 8
50 SA-NON 0.214130355 0.462742213 0.359331356 0.734120123 50
SA-LASSO 0.223748377 0.473020483 0.366689425 0.722177684 7
SA-EN 0.22213731 0.471314449 0.367311521 0.724178104 9

ensemble method. The performance of this model does not
improve by applying the shrinkage methods while the non-
shrinkage method shows better performance. As mentioned
in the previous sections, selecting the suitable ensemble
method can be an important factor in improving the model.

Various ensemble methods such as MLP, WA, and SA are
used to optimize and improve the model. Their performance
is displayed in Figures 9a, 9b, and 9c. Like the previous
dataset, LASSO and EN shrinkage methods in combination
with WA and MLP ensemble methods show the best perfor-
mance due to reducing and selecting appropriate the number
of DRs; while the SA method has an unsuitable performance.
As seen in Figure 9c, despite the use of shrinkage methods,
the SA cannot improve the model by reducing the number of
DRs. However, other ensemble methods have better perfor-
mance. After applying shrinkage methods, the WA approach
makes a better model than MLP. It means that MLP-EN and
WA-EN models have the best performance in comparison
with SA-EN.

3) CASE STUDY 3: EXPERIMENT RESULTS ON GOLD PRICE
PER OUNCE DATASET

In the third experiment, the Gold Price Per Ounce
dataset is used to describe the performance of the
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proposed models. This data is publicly available on GitHub
(https://github.com/cominsys/Data_GPPO_01), which con-
sists of four features including high price, low price, open
price, close price, and 717 observations. The dataset is time
series data to convert it into a supervised learning problem,
the sliding window [90] method is used. This technique takes
as the following steps:

1) Determine the window size by length k.
2) Slid the window and shift forward one unit.
3) Continue the sliding until all windows are calculated.

In this research, we set the window size of length 10.
Eventually, 40 independent variables and 707 observations
were produced. Similar to the two previous datasets, the
preprocessing was accomplished to standardize data. Then,
it is separated into training and test set. The sample size in
the training set and test set is 567 (80%) and 140 (20%),
respectively.

In this proposed model, the effectiveness of shrinkage
methods such as LASSO and EN in combination with ensem-
ble approaches such as MLP, WA, and SA is considered.
The least value is related to WA-EN and MLP-EN models,
while MLP-NON and WA-NON are the highest error values.
By contrast, the least error value belongs to SA-NON in
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FIGURE 9. Bar-plot of comparison between three ensemble approaches and their combination with shrinkage methods on Real

Estate Valuation dataset. Comparison of ERDeR is carried out with applying shrinkage methods and without them. (a) The RMSE value of
MLP-EN and MLP-LASSO on different numbers of DRs. The MLP-EN is the lowest value and has better performance among three models.
(b) The RMSE value of WA-EN and WA-LASSO on different numbers of DRs. The WA-EN is the lowest value and has better performance
among three models. (c) The RMSE value of SA-EN and SA-LASSO on different numbers of DRs. The SA-NON is the lowest value and has

better performance among three models.

the SA. As a result, the effectiveness of shrinkage methods
in combination with MLP and WA models is higher than
other models. Additionally, we compare different shrink-
age methods including LASSO, EN, and compare them
with the non-shrinkage models based on different DRs.
The results show that amongst the shrinkage methods, the
EN has the best performance. More details are given in
Tables 14-16.

The accuracy of MLP and WA approaches in combination
with shrinkage methods and without them are illustrated in
Figures 10a and 10b.

The results of the MLP method show that the RMSE
after applying shrinkage methods on 30, 40, and 50 parallel
DRs reach from 0.013, 0.012, and 0.0082 in MLP-NON
to 0.00818, 0.00815, and 0.0078 in MLP-EN, respectively.
In the WA method, this reduction is maintained. In the SA,
applying the shrinkage methods not only do not improve the
model, but also increase the RMSE from 0.0078, 0.0077,
and 0.0072 in SA-NON to 0.0082, 0.0093, and 0.0098 in
SA-LASSO.
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D. COMPARISON WITH PAST STUDIES

In ensemble models, the performance of the model mainly
depends on learners. Learners can be various algorithms, for
example, in RF, Bagging, Boosting, and XGboost, the Deci-
sion Tree is used as learner [87]. In this paper, we proposed a
new deep neural network that is used CNN algorithm as learn-
ers to increase the prediction accuracy by extracting more
relationships of features. Currently, DL methods, particularly
CNN architectures, have shown remarkable success in predic-
tion. One of the notable advantages of CNNSs is their ability
to provide greater precision and improve system performance
due to unique features, such as local connectivity and shared
weights. Therefore, we decided to use CNN as a learner
in our proposed model. Another factor that can address the
model’s complexity and computational load problem is using
shrinkage methods to reduce the number of learners in ensem-
ble models. These methods solve the overfitting problem by
removing ineffective learners from the model. The number
of learners and their type can affect prediction. Therefore,
we attempted to improve prediction by replacing CNN in
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FIGURE 10. Bar-plot of comparison between three ensemble approaches and their combination with shrinkage methods on Gold Price per
Ounce dataset. Comparison of ERDeR is carried out with applying shrinkage methods and without them. (a) The RMSE value of MLP-EN and
MLP-LASSO in different numbers of DRs. The MLP-EN is the lowest value and has better performance among three models. (b) The RMSE
value of WA-EN and WA-LASSO on different numbers of DRs. The WA-EN is the lowest value and has better performance among three
models. (c) The RMSE value of SA-EN and SA-LASSO on different numbers of DRs. The SA-NON is the lowest value and has better

performance among three models.

TABLE 14. A comparison of ERDeR model results based on combining shrinkage methods and MLP ensemble approach on gold price per ounce dataset.

Number of DRs ~ Algorithm MSE RMSE MAE R-square IS\L‘I‘;"::; ]‘;fRS
30 MLP-NON 0.013830504  0.117603165  0.091286965  0.985760886 30
MLP-LASSO  0.01153871 0.107418388  0.080940004  0.988120389 8
MLP-EN 0.008182572  0.090457569  0.059736575  0.991575682 19
40 MLP-NON 0.012057067  0.109804676  0.085135734  0.987586718 40
MLP-LASSO  0.008527644  0.092345246  0.059922566  0.991220414 5
MLP-EN 0.008149485  0.090274499  0.05918757  0.991609746 16
50 MLP-NON 0.008229563  0.09071694  0.068934936 0991527302 50
MLP-LASSO  0.00795781 0.089206556  0.058475952  0.991807084 4
MLP-EN 0.007880508 | 0.088772227  0.059232404  0.991886669 10

the designed ERDeR model with DT in RF. This results in
a model with higher precision compared to previous models.

Tables 17 and 18 explore a comparative study between
the present study and other past proposed models. As can
be seen, our proposed model (ERDeR) works well compared
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to the previous works in this field. In original RF algorithm,
as can be seen in Tables 17 and 18, the MSE value of RF
is larger than the other combined proposed models. One of
the reasons for this issue might be the type of learners. The
other reason can be the numbers of learners. To reduce the
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TABLE 15. A comparison of ERDeR model results based on combining shrinkage methods and weighted average ensemble approach on gold price per

once dataset.

Number of DRs  Algorithm MSE RMSE MAE R-square Isi‘l‘;‘i’:; ]‘;fRS
30 WA-NON 0.01045541 0.102251702  0.071304456  0.989235694 30
WA-LASSO  0.008927278  0.094484274  0.062830103  0.990808974 6
WA-EN 0.008419567  0.091758197  0.060326489  0.991331685 16
40 WA-NON 0.010474959  0.102347247  0.072718156  0.989215568 40
WA-LASSO  0.00832558 0.091244615  0.060316604  0.991428449 7
WA-EN 0.008031426  0.089618221  0.058955719  0.991731293 18
50 WA-NON 0.008212243  0.090621426  0.060231794  0.991545134 50
WA-LASSO  0.00789225 0.088838337  0.061440422  0.991874581 3
WA-EN 0.006560135  0.08099466  0.055034876  0.993246052 16

TABLE 16. A comparison of ERDeR model results based on combining shrinkage methods and simple average ensemble approach on gold price per once

dataset.
Number of DRs Algorithm MSE RMSE MAE R-square Number of
selected DRs

30 SA-NON 0.007802201 0.088330067 0.058829962 0.99196729 30
SA-LASSO 0.008212839 0.090624717 0.060400602 0.99154452 7
SA-EN 0.00815973 0.090331225 0.059955219 0.991599198 25

40 SA-NON 0.007702207 0.087762221 0.05789033 0.992070238 40
SA-LASSO 0.009363088 0.096763049 0.067155376 0.990360288 7
SA-EN 0.008014491 0.089523687 0.059257962 0.991748729 29

50 SA-NON 0.007214017 0.084935368 0.056682651 0.992572852 50
SA-LASSO 0.009846857 0.099231329 0.072738532 0.989862227 6
SA-EN 0.008624971 0.092870722 0.064010874 0.98938449 29

error, Wang and Wang [64] used a LASSO regression for
tree selection of RF to automatically reduce the number of
trees and control overfitting. Boston Housing Price dataset
and Real Estate Valuation were used for training and testing,
achieving RMSE of 3.13296 in Boston Housing Price dataset
and 10.2755 in Real Estate Valuation.

The authors of [4] introduced a novel hybrid model called
RARTEN that combined EN and RF. The results revealed
a prediction with MSE of 9.7350 and MAE of 2.0906 on
Boston Housing Price dataset. Experimental results and other
penalized methods such as LASSO, Group Lasso, Adap-
tive Lasso demonstrated that RARTEN exhibits acceptable
performance.

The results of a work called ECAPRAF [5] based on
the combination of K-means clustering, RF, and penal-
ized methods on Boston Housing Price dataset and Real
Estate Valuation has 3.2218 and 5.5078 error value, respec-
tively. The use of K-means to identify homogeneous subset
of data resulted in a substantial improvement in the obtained
results.

In this study, by changing learners from decision tree
to deep regressions and replacing 1D-CNN instead of RF,
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TABLE 17. Comparison of existing works with our proposed model on
boston housing price dataset.

Algorithm MSE RMSE MAE

Random Forest 11.857950 3.4435374 2.1515895
PBRF [64] 9.8154816  3.1329669 2.1222036
RARTEN [4] 9.7350255 3.1201002 2.0906544
ECAPRAF-EN [5] 10.380147  3.2218236 2.1408014
ERDeR-MLP-EN (Ours)  0.1505009  0.3879444 0.2750212
ERDeR-WA-EN (Ours) 0.1415230  0.3761954 0.2641758
ERDeR-SA-EN (Ours) 0.1205808  0.3472475 0.257047

a novel deep network was proposed. Additionally, different
structures of ensemble leaning methods like MLP and WA
were used instead of SA. By analyzing various metrics, it was
concluded that the proposed work shows better results than
other works in the literature. We used the same data for train-
ing and testing and achieved MSE, RMSE and MAE values
of 0.1505, 0.3879, 0.2750 for ERDeR-MLP-EN, respec-
tively. Comparing ERDeR-MLP-EN, ERDeR-WA-EN, and

33379



IEEE Access

Z. Farhadi et al.: ERDeR: The Combination of Statistical Shrinkage Methods and Ensemble Approaches

TABLE 18. Comparison of existing works with our proposed model on
real estate valuation.

Algorithm MSE RMSE MAE

Random Forest 108.0136379  10.39296098  5.251413432

PBRF [64] 105.5873882  10.2755724  5.250650213
RARTEN [4] 105303779  10.26176296  5.281261517
ECAPRAF-EN [5] 30.33592275  5.507805621  4.207588771
ERDeR-MLP-EN (Ours)  0.221604801  0.470749192  0.724839305
ERDeR-WA-EN (Ours) 0.227441072  0.476907824  0.36747779
ERDeR-SA-EN (Ours) 0.214130355  0.462742213  0.359331356

ERDeR-SA-EN show that ERDeR-SA-EN with SA outper-
forms other two ensemble methods.

V. CONCLUSION AND FUTURE WORKS

In this study, a new hybrid model called ERDeR was
presented, which contains three phases including base regres-
sion, shrinkage, and ensemble phases. In the base regression
phase, the DRs were used as learners. In principle, in this
paper, the learners were made of deep CNN whose number
was equal to 30,40, and 50 parallel DRs. The next phase
of the proposed model was shrinkage phase. In this phase,
LASSO and EN methods were used to reduce the number of
DRs and eliminate ineffective ones. It can be said that these
methods operated as a pruner. Regarding the performance
of two shrinkage methods in combination with ensemble
methods, we can refer to the better performance of EN than
LASSO. In addition, three non-shrinkage models were com-
pared with new hybrid methods. The final phase of the model
was the ensemble phase in which DRs were concatenated in
the fusion phase and then aggregated using ensemble meth-
ods such as MLP, WA, and SA. Each method had different
structures for the ensemble. In MLP, three fully-connected
layers and the tanh activation function were used to non-linear
transformation of the output. In the WA, one fully-connected
layer and linear activation function were used for the linear
transformation of the output. And in the SA method, no fully-
connected layer was used and only SA was performed.

The obtained results showed that not only the type of
shrinkage and ensemble methods were effective in decreasing
the computational load in the test phase but also they achieved
great performance. Among the shrinkage methods, EN pro-
vided better performance than LASSO. Concerning ensemble
approaches, it can be referred to the better performance of
MLP and WA. The WA approach due to having one fully-
connected layer and performing a linear transformation on
output, can be a more suitable method than other ensemble
methods. In combining ensemble and shrinkage phases, WA-
EN and MLP-EN models had better performance and high
accuracy; while non-shrinkage methods did not have great
performance. In the SA method, the performance of SA-NON
was better than SA-EN and SA-LASSO. Therefore, SA which
had a different structure cannot be a suitable method to
improve the performance of the ERDeR model. The reason
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for this could be the structural weakness of SA in which
simple averaging is used for the ensemble. Considering the
measure of changes in different methods on simulation data,
the reduction value of MLP and WA methods in combination
with LASSO and EN, i.e. MLP-EN, MLP-LASSO, WA-
EN, and WA-LASSO, was approximately equal to 18% and
14%, respectively. While the SA method was accompanied
by almost 2% increase. This means that applying shrinkage
methods and reducing DRs in MLP and WA approaches
caused a decrease; while SA caused an increase. Regarding
the obtained results from the three real datasets, like the
simulation data, the WA and MLP approach in combination
with the LASSO and EN methods provided better results
than non-shrinkage models. By contrast, SA did not have
a suitable performance. Overall, it can be concluded that
the performance of shrinkage methods in combination with
different ensemble approaches and different learners is better
than non-shrinkage models.

As a future work, we will use deep forest algorithm instead
of 1D-CNNs as a learner instead of DRs in this study and
RF in [4] and [5]. In addition, different structure of ensemble
methods might be used instead of MLP, WA, and SA.
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