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ABSTRACT Falls bring about significant risks to individuals’ well-being and independence, prompting
widespread public health concerns. Swift detection and even predicting the risk of falls are crucial for
implementing effective measures to alleviate the adverse consequences associated with such incidents. This
study presents a new framework for identifying and forecasting fall risks. Our approach utilizes a novel
transformer model trained on 2D poses extracted through an off-the-shelf pose extractor, incorporating
transfer learning techniques. Initially, the transformer is trained on a large dataset containing 2D poses of
general actions. Subsequently, we freeze the majority of its layers and fine-tune only the last few layers
using relatively smaller datasets for fall detection and prediction tasks. Experimental results indicate that
our proposed method outperforms traditional machine learning (e.g., SVM, Decision Tree, etc.) and deep
learning approaches (e.g., LSTM, CNN, ST-GCN, PoseC3D, etc.) in both fall detection and prediction tasks
across various datasets.

INDEX TERMS Computer vision, deep learning, fall detection, fall prediction, healthcare, transfer learning,
transformer.

I. INTRODUCTION
Fall among older adults represents a critical public health
concern, posing a significant threat to their well-being and
independence. According to [1], approximately one-third of
individuals aged 65 and above, and half of those aged 80 and
older, experience at least one fall annually. The consequences
of falling can result in severe physiological and psychological
damage to an elderly person’s overall health. Notably, falling
ranks among the top three most common causes of Traumatic
Brain Injury (TBI) in the United States, as reported by [2].
Tragically, around 10% of all falls in seniors lead to major
injuries, including intracranial injuries (ICIs) and fractures,
as documented in [3]. The gravity of the issue becomes even
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more apparent when considering the World Health Organisa-
tion’s (WHO) report [4], which identifies falling as the second
leading cause of accidental or unintentional injury-related
deaths worldwide. Even when falls don’t result in serious
injuries, fallers often struggle to get up without assistance,
leading to prolonged periods of lying on the floor, known
as ‘‘long lies.’’ These ‘‘long lies’’ can lead to dehydration,
pressure sores, pneumonia, hypothermia, and even death [5].
Fall detection and prediction play a crucial role in mitigating
the negative effects of falls mentioned earlier. Fall detection
aims to promptly identify falls as they occur, ensuring timely
assistance can be provided to prevent prolonged lying on the
floor. On the other hand, fall prediction assesses the likeli-
hood that an individual will experience a fall, allowing for
proactive interventions to be implemented, thus preventing
potential falls and associated injuries.
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In this study, our emphasis is on addressing the research
challenge of employing cutting-edge sensor technologies
and artificial intelligence techniques for the detection and
prediction of falls. This particular research problem has gar-
nered significant attention in recent years. Up until 2024,
researchers have diligently explored and validated a mul-
titude of approaches, utilizing diverse sensor modalities
including cameras andwearable sensors. These investigations
have seamlessly integrated advanced signal processing and
machine learning techniques into the realm of fall detec-
tion and prediction [6], [7]. Among different techniques, the
computer vision-based approach [8] utilizing cameras has
gained significant attention in the fall detection/prediction
community. The key advantage of this method lies in its
non-intrusive nature, as it does not require users to wear
any additional equipment. This makes it a convenient and
user-friendly option for fall detection and prediction.

This study presents a unified framework that effectively
addresses fall detection and prediction tasks using state-of-
the-art computer vision and machine learning techniques.
The proposed approach comprises several key steps. Ini-
tially, we extract body key points from video frames by
employing an ‘‘on-the-shelf’’ key points detector. These
detected key points are then pre-processed and input into
a novel transformer model, which serves as the foundation
for fall detection and prediction. Due to the limited avail-
ability of fall data, which may not be sufficient to train a
complex transformer model, we incorporate transfer learn-
ing [9] into our methodology. We train the transformer model
on the MPOSE dataset [10], a comprehensive collection
of 2D pose sequences involving various actions like walk-
ing, jogging, running, and kicking. This pre-training step
helps the model learn useful representations from abundant
data related to human poses and actions. Following the pre-
training phase, we fine-tune the transformer model for fall
detection and prediction. Most of the network parameters are
frozen, retaining the knowledge gained during pre-training,
while only the last few layers are fine-tuned to adapt the
model specifically to fall-related tasks. By combining trans-
fer learning with advanced computer vision and machine
learning techniques, our proposed framework demonstrates
enhanced performance in both fall detection and predic-
tion tasks, even when working with limited fall-specific
data.

In contrast to traditional computer vision-based techniques
for fall detection and prediction, our proposed approach
offers distinct contributions. Firstly, we present pioneering
work that leverages a novel transformer model. Secondly,
we employ transfer learning to efficiently train our model
with limited data, enhancing the accuracy of fall detection and
prediction. Furthermore, our technique transcends the con-
fines of a singular task, catering to both effective fall detection
and prediction. Extensive evaluation studies demonstrate the
superiority of our proposed technique over other counter-
parts in the realm of dual fall detection and prediction
tasks.

II. LITERATURE REVIEW
Lately, numerous research endeavors have focused on the
realm of computer vision for fall detection and prediction.
The following is a summary of these studies.

A. FALL DETECTION
In the domain of fall detection, researchers have explored
threshold-based methodologies in several studies ([11],
[12], [13], [14]). These approaches involve the extraction
of specific features such as head velocity ([11], [12]), the
height-to-width ratio ([13]), and movement amplitude along
with shape changes ([14]) through image processing tech-
niques. These features are subsequently compared to prede-
fined threshold values to identify falls. However, it’s worth
noting that such threshold-based techniques may struggle
to accurately distinguish between falls occurring in various
directions within the images due to their reliance on a single
threshold value which is not robust enough to distinguish falls
in different directions.

Apart from the threshold-based approach, more sophisti-
cated machine-learning techniques have gained significant
traction in the field of fall detection. In the study [15],
researchers employed a combination of OpenPose for human
key point identification and DeepSORT for tracking. These
key points were then input into various classifiers includ-
ing Gradient-Boosted Trees (GDBT), Decision Trees (DT),
Random Forest (RF), Support Vector Machine (SVM), and
k-Nearest Neighbor (KNN) to detect falls. In [16], a Hidden
Markov Model (HMM) was utilized, leveraging silhouette
data extracted through background subtraction techniques
for fall detection. Remarkably, this approach achieved an
accuracy of 84.72% based on their recorded dataset. Refer-
ence [17] employed a range of machine learning algorithms,
including Naïve Bayes, k-Nearest Neighbor, Neural Net-
works, and Support Vector Machines. These algorithms were
applied to video sequences using features extracted from
human silhouette regions obtained through background sub-
traction algorithms. An evaluation was performed on the
FDD and URFD datasets, with Support Vector Machines
yielding the most robust performance. In [18], Support
Vector Machines were again utilized, this time based on
motion history images and histograms of oriented gradi-
ent features. This approach achieved remarkably high recall
rates and precision rates of 98.1% and 96.8%, respectively,
in a dataset consisting of realistic image sequences of both
simulated falls and daily activities. Reference [19] intro-
duced a Directed Acyclic Graph Support Vector Machine
(DAGSVM) approach for posture classification and fall
detection. Results from self-recorded datasets demonstrated
superior accuracy compared to classical machine learning
model counterparts.

Conventional machine learning-based approaches for
fall detection heavily rely on manually crafted features.
To advance the field and automatically capture crucial aspects
of fall detection, deep learning methods have been intro-
duced. In [20], Convolutional Neural Networks (CNNs) were
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FIGURE 1. The flowchart of the proposed technique.

employed. They processed silhouettes extracted via back-
ground subtraction to classify various postures, including
falling, standing, sitting, and bending. The results demon-
strated that the CNN outperformed SVM models in falling
classification [21] introduced a Three-Dimensional Con-
volutional Neural Network (3)-D CNN) to extract motion
features from temporal sequences. To enhance spatial under-
standing, a Long Short-Term Memory (LSTM)-based spatial
visual attention mechanism was incorporated. This combined

approach effectively captured both temporal and spatial infor-
mation for precise fall detection. In [22], the YOLO (You
Only Look Once) network was harnessed to extract features
using the darknet backbone from video frames. These fea-
tures were then processed by the YOLO network’s heads to
detect fall regions in images. Impressively, this YOLO-based
system achieved over 90% accuracy on the UR Fall dataset
while being deployed on an edge device. Reference [23]
utilized an ST-GCN (Spatiotemporal Graph Convolutional
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Network) deep neural network model to classify fall and non-
fall activities. This model operated on 3D skeleton sequences
representing human actions. Experimental results revealed
that the proposed ST-GCN model surpassed other counter-
parts such as Random Forest, SVM, and CNN in terms of fall
detection accuracy.

B. FALL PREDICTION
In the realm of fall risk prediction using computer vision
techniques, there has been comparatively less research, but
notable strides have been made. In [24], a computer vision-
basedmethodwas employed to predict the Timed-Up-and-Go
(TUG) score, an indicator of fall risk. This was achieved
by utilizing regression models, including linear regression
and SVM regressors, based on 3D poses derived from video
recordings captured by 2D/3D cameras. Experimental results
demonstrated that the SVM regressor yielded more accurate
TUG predictions. Reference [25] highlighted the signifi-
cance of gait variables, such as cadence and step width/time,
extracted from 2D human poses in video frames. These vari-
ables were found to be strongly associated with future falls
through Poisson regression analysis, indicating their potential
for fall risk prediction. In [7], gait parameters, alongside
clinical assessment scores from STRATIFY, were combined
to predict short-term fall risk for individuals with dementia
in a domestic setting. A two-layered MLP network model
was employed, achieving sensitivity and specificity rates
of 72.8% and 73.2%, respectively. Reference [26] applied
Computer Vision and Machine Learning techniques to dif-
ferentiate normal gait patterns from those associated with fall
risks. Four classification methods, including Convolutional
Neural Networks (CNN), Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Long Short-TermMemory
(LSTM) neural networks, were used. Results indicated that
SVM and KNN outperformed CNN and LSTM, delivering
superior performance on the collected data. Reference [27]
utilized a 3D vision sensor to capture 3D skeletons, from
which features were extracted to train Random Forest and
Support Vector Machine models for estimating the Berg
Balance Scale (BBS) and assessing fall risk. A pilot test
demonstrated high rates of fall risk prediction and a notable
correlation with physiotherapists’ BBS scores on individual
motion tasks.

It is essential to recognize that both fall detection and
prediction tasks addressed in this study revolve around the
video sequence classification problem. This involves cat-
egorizing video sequences into fall/non-fall and high/low
fall risk, constituting a typical pattern recognition classifica-
tion challenge. In this context, our work aligns with other
image classification studies, exemplified by [28], as they
share a common focus on classification problems. However,
while image classification, as demonstrated in [28], cen-
ters on categorizing individual images, our research delves
into the classification of video sequences, comprising a
series of images. This disparity necessitates distinct models
and methodologies compared to single-image classification,

FIGURE 2. Illustration of 25 key points on the human body extracted by
openpose.

aiming to fully leverage the temporal dependency informa-
tion inherent in consecutive frames within a video sequence
for precise fall detection and prediction.

In this study, we employ a transformer model comple-
mented by transfer learning to address both fall detection and
fall risk (high/low risk) prediction tasks, using 2D body key
points extracted from the OpenPose detector [29]. In contrast
to utilizing complete video frames and other video features,
our approach leverages 2D skeletons, providing a streamlined
representation of the human body. This reduction in data
dimensionality enhances the computational efficiency of fall
detection and prediction tasks. Additionally, the 2D skeleton
representation mitigates sensitivity to variations in lighting,
background clutter, and clothing. Distinguishing our research
from prior work in the field, our study marks the pioneering
use of a transformer model for fall detection and prediction
tasks. Furthermore, we incorporate transfer learning by ini-
tially training the transformermodel on the extensiveMPOSE
dataset. This approach allows the model to glean valuable
insights from a wealth of motion data pertaining to human
poses and actions, ultimately bolstering its performance in
fall detection and prediction tasks.

III. METHODOLOGY
This study introduces an innovative approach to fall detec-
tion and fall risk prediction, leveraging a transformer model
through the application of transfer learning. The related
flowchart is presented in Figure 1, showing a visual repre-
sentation of the methodology. A comprehensive explanation
of the components depicted in Fig. 1 will be given in the next
subsections.

A. POSE ESTIMATION AND PRE-PROCESSING
We utilize the Openpose algorithm [29] to extract 2D human
poses from the original video sequences. Openpose allows us
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to extract the (x, y) coordinates of 25 key points from the sub-
ject’s body for each individual frame in a scene, as visually
illustrated in Fig. 2. Following the key point extraction by
Openpose, we perform several preprocessing tasks. Initially,
we establish the midpoint of the shoulders (point 1 in Fig. 2)
as the origin and adjust the position of each key point accord-
ingly to obtain relative key point positions. Subsequently,
we standardize the key point positions using the length of the
trunk, which is defined as the distance between points 1 and 8,
as a normalization factor. Upon completing the preprocessing
steps, we transform an individual key point denoted as pi via
the following formula:

p̂i =
pi − p1
L

(1)

where p1 represents the position of the shoulder and L repre-
sents the trunk length.

By employing the aforementioned pre-processing meth-
ods, we can ensure that the extracted 2D poses remain
invariant with respect to scale and position. This enables
the developed technique to effectively detect and predict
fall risks across various positions and distances from the
camera when processing videos. Based on the position of
every pre-processed pose key point denoted as p̂i, we further
calculate its velocity between consecutive frames as vi = p̂i−
p̂i−1 to glean more insights into the dynamics of the human
body. For the i-th frame, we can obtain a concatenated vector
denoted as ci = [p̂i,1; . . . , p̂i,25; . . . , vi,1; . . . vi,25] by com-
bining both position and velocity information of all keypoints,
where p̂i,j and vi,j represent the position and velocity of the
j-th keypoint at this i-th frame. Finally, we compile these
concatenated vectors for all frames within a video sequence,
denoted as [c1, . . . , cN ] (where N is the sequence length) as
the input for the subsequent transformer model.

B. TRANSFORMER FOR FALL DETECTION AND
PREDICTION
The transformer architecture employed in this study
draws inspiration from the methodology outlined in [30].
Unlike [30] for a single image classification, our developed
model is adapted for video processing. It utilizes 2D skeletons
extracted from a video sequence as its input. And a ‘class
token’ [CLS] vector derived from the transformer encapsu-
lating information from all skeletons, is taken as the feature
for fall detection and prediction.

In specific, firstly embedding operation is performed by
mapping every vector in the skeleton sequence to a sequence
of higher dimension D tokens (denoted as xE1 , . . . , xEN ) using
a linear projection map W ∈ RP×D, where P is the vec-
tor dimension. Besides, a trainable vector of dimension D
(denoted as xcls) is prepended to the beginning of the embed-
ded sequence as shown in Fig. 1, which is taken as a class
token [CLS] leveraging the self-attention to aggregate infor-
mation into a compact high-dimensional representation for
fall detection/prediction. As the traditional transformer, the
positional vectors are added to take into account the position

information of vectors in a sequence for our fall detection/
prediction tasks.

The embedded vectors and class token after being added
by positional information, are then fed into a Transformer
encoder. As shown in Fig. 1, the Transformer encoder con-
tains multiple blocks while each block contains multi-head
attention, additional&normalization and feed-forward layers.
The pivotal element within the Transformer encoder is the
multi-head attention layer [31], which leverages multiple
‘heads’ to generate outputs. For the i-th head, queries (Qi),
keys (Ki) and values (V ) are computed as Qi = XWQi , Ki =

XWKi and Vi = XWVi respectively, where X represents the
input of the multi-head attention layer while WQi , WKi and
WVi denote the respective parameter matrices associated with
the i-th head. Based onQi, Ki and Vi, the attention weights Ai
for the i-th head are calculated as:

Ai = softmax(
QiKT

i
√
D
h ) (2)

where Dh is a scale factor and softmax(·) is an activation
function the as defined in [32] and the output of the i-th head
denoted as Hi is calculated as:

Hi = AiVi (3)

which is the weighted summation of Vi based on the attention
weights. All head outputs are calculated in the same way and
finally concatenated and linearly projected as the final output
of the multi-head attention layer as:

MSA (X) = [H1;H2; . . . ;HN ]WMSA (4)

whereMSA (X) represents the multi-head attention layer out-
put based on the input X ,WMSA is a projection matric andN is
the head number in the multi-head attention layer. The output
of a multi-head attention layer will then go through a series
of add&norm operations and a small feed-forward network to
generate the output of a block.

The final output of the whole transformer encoder is
obtained through N blocks of multi-head attention operations
as well as add&norm and feed-forward operations as shown
in Fig. 1. The output of the transformer encoder–XL is repre-
sented as:

XL = F([xcls;Xembedded ] + Xpos) (5)

where F(·) represents the operations associated with the trans-
former encoder. xcls represents the class token, Xembedded
represents embedded vectors and Xpos represents positional
vectors. Finally, only the first column of XL corresponding
to the class token is fed into a feed-forward network head,
for performing the final tasks of classifying falls/non-fall and
high/low fall risks.

C. TRANSFER LEARNING
As falls tend to be fairly uncommon in real scenarios,
fall detection/prediction datasets tend to follow this trend
of not being widely available and those that are available
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FIGURE 3. Representative frames and pose extraction results for CAUCAFall dataset (a) for fall (top line) and non-fall (bottom line) activities, gait
dataset (b) for low-fall risk gait (top line) and high fall risk gait (bottom line).

typically will be smaller compared to those used for gen-
eral action recognition. This makes it challenging to train
complex transformer models as they will likely suffer from
under-fitting. In order to address this issue, we decided to
incorporate a transfer learning strategy into our work.We first
train a transformer model on a large MPOSE dataset as
in [33], comprising 15429 samples of 20 actions performed
by 100 subjects. This pre-training empowers the model to
learn useful feature representations from abundant data for
action classification tasks (e.g., classifying fall or non-fall).
Then we froze some of the layers of the model, such as the
embedding and transformer encoder layers, which contain
the majority of the network parameters, while leaving only
the last two MLP layers trainable. Finally, we modify the
architecture of the network to change the output of 20 actions
to 2 for our specific fall detection (fall/non-fall) or fall risk
prediction (high/low risk). In this way, we can significantly
reduce the number of trainable parameters, allowing the
model to be trained with a smaller amount of fall detection
and fall risk prediction associated datasets.

IV. EXPERIMENTS
A. MPOSE DATASET EVALUATIONS
This section unveils the evaluation results of our devised
methodology for fall detection and prediction. As delineated
in Section III-C, our initial step involves the training of
our transformer model using a relatively expansive MPOSE

TABLE 1. Transformer architectures with different complexities.

TABLE 2. Action recognition comparisons between different architectures
on the MPOSE dataset.

dataset, consisting of 15,429 samples representing 20 distinct
actions (i.e., walking, jogging, handshaking, etc.) executed
by 100 subjects. Each sample comprises 30 frames. We parti-
tioned the dataset into 80% for training and the remaining
20% for testing. Exploring various transformer architec-
tures, namely ‘micro’, ‘small’, ‘base’, and ‘large’, each
progressively increasing in model complexity, as presented
in Table 1. The statistical metrics, including mean and stan-
dard deviation of accuracy and balanced accuracy, acquired
through multiple rounds of evaluation on the MPSOSE
dataset, are summarized in Table 2. Notably, our analysis
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FIGURE 4. The evolutions of the loss function value during training for CAUCAFall dataset (a) and gait dataset (b).

FIGURE 5. Generated attention maps for samples in the CAUCAFall dataset (top row) and gait dataset (bottom row).

reveals that the ‘small’ transformer architecture yields the
highest accuracy, and further augmenting model complexity
does not confer any advantages. So, we have chosen the
‘small’ transformer architecture for fall detection and predic-
tion in our work.

B. DESCRIPTIONS ON FALL DETECTION&PREDICTION
DATASETS
We conducted an extensive performance evaluation of our
developed methods for both fall detection and fall risk pre-
diction tasks using two distinct datasets: the CAUCAFall
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TABLE 3. Comparisons of the proposed methodology with traditional classifiers for the fall detection (the best result is bolded).

TABLE 4. Comparisons of the proposed methodology with deep learning models for the fall detection(the best result is bolded.

dataset [34] and a gait dataset [35]. The CAUCAFall dataset is
created in conditions of an uncontrolled home environment,
with occlusions, changes in lighting (natural, artificial, and
night), variety in the clothing of the participants, movement in
the background, different textures on the floor and room, vari-
ety in the angles of fall, different distances from the camera
to the fall, with participants of different age, weight, height,
and even different dominant leg. It contains 10 subjects sim-
ulating 5 types of falls (forward falls, backward falls, falls to
the left, falls to the right, and falls from sitting) and 5 types of
activities of daily living (ADLs) including walking, hopping,
object retrieval, sitting, and kneeling, which are recorded by
a normal RGB camera with the size of approx. 8GB. The
recorded video data are organized into 10 main directories
corresponding to the subjects, each of which contains 10 fold-
ers with the different activities performed by the participants,
in each folder there is a video of the action in .avi format,
and the images of the actions in .png format, and each of the
frame segmentation labels in .txt format. Videos are recorded
using a standard RGB camera at a frame rate of 23 frames per
second, with a 1080 × 960 pixels resolution. The gait dataset
comprises 96 subjects which involves 50 Knee Osteoarthritis
(KOA), 16 Parkinson’s Disease (PD), and 30 Normal/Healthy
(NM) subjects with different fall risk levels. For each subject,
two gait video sequences (left to right and right to left) are
recorded using a single NIKON DSLR 5300 camera placed
8m away from the walking mat in the hospital area, with a
video resolution of 1920 × 1080 pixels and a frame rate of
23 frames per second. In total, the video recordings of this
dataset have a size of approx. 3GB. More detailed descrip-
tions of these two datasets can be found in [34] and [35].

C. MODEL TRAINING DETAILS
We divided the CAUCAFall and gait datasets into video
clips containing 30 frames. We acquired 716 video clips
depicting falling activities and 793 video clips showcasing
non-fall activities from the CAUCAFall dataset. For the gait
dataset, we collected about 2000 video clips representing high

fall-risk gait patterns and about 1300 video clips representing
low fall-risk gait patterns. Moreover, these obtained video
clips were segregated into training and testing subsets, fol-
lowing a distribution of 70% for training and 30% for testing.
To extract 2D poses from the original video frames, we used
Openpose. Fig. 3 presents some examples of the extracted
2D poses from the original video frames for both datasets.
We extract 2D poses for all the video clips in the train-
ing dataset and construct vector sequences of pre-processed
key points’ positions and velocities as per Section III-A.
The constructed sequences for all video clips in the training
dataset are then used to train the transformer model. For
the model training, as mentioned in Section III-C, we froze
the transformer encoder, after training our transformer model
on the MPOSE dataset, while leaving only the MLP lay-
ers embedding layer and trainable. For training, the binary
cross-entropy loss function is exploited as below:

L (y, p) = −(y · log (p) + (1 − y) · log (1 − p)) (6)

where y is the true class label and p is the predicted probabil-
ity. The AdamW optimizer [32] is used to minimize the loss
function, with a batch size of, weight decay factor of 0.0001,
and an adaptive learning rate strategy with the learning rate
being 0.0001 after 80% of the training steps and calculated as
in [31] before 80% of the training steps. 10% of the training
dataset is taken as the validation dataset and the transformer
model which achieves the best performance on the validation
dataset is saved for testing.

Fig. 4 shows the loss function value with respect to the
training epoch for both the fall detection and gait datasets,
from which we can see that at around 20 epochs the loss
function almost converges to a minimum. Thus 20 epochs are
determined for model training. The training loss values are
mostly smaller than the validation loss values (as the model
is training on the training dataset, not the validation one).

The transformer model, being an attention-based model,
assigns distinct attention weights to elements at various
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TABLE 5. Comparisons of the proposed methodology with traditional classifiers for the fall risk prediction (the best result is bolded).

TABLE 6. Comparisons of the proposed methodology with deep learning models for the fall risk prediction (the best result is bolded).

positions within a sequence, thus different elements con-
tribute differently to the final transformer output. In Figure 5,
we visually depict the generated attention weight maps for
several sequences taken from the two datasets. These visual
representations vividly highlight the variations in attention
weights among elements within a sequence, indicating how
different elements contribute differently to the overall trans-
former output.

D. MODEL EVALUATIONS&COMPARISONS
The trained model is then evaluated on the test datasets.
A variety of metrics are applied to evaluate its performance
on the test dataset, including sensitivity, specificity, and accu-
racy, which are defined as below:

sensitivity =
TP

TP+ FN
(7)

specificity =
TN

TN + FP
(8)

accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

where TP, TN, FP, and FN represent true positive (correctly
classified positive sample), true negative (correctly classi-
fied negative sample), false positive (incorrectly classified
positive sample), and false negative (incorrectly classified
negative sample) respectively.

We compared the performance metrics of our developed
methodwith those of othermachine learningmodels and deep
learning models used in other research works for both fall
detection and risk prediction. The results are summarized in
Tables 3, 4, 5, and 6. Note, that multiple evaluations were per-
formed for each model, and the mean and standard deviation
were reported. From these four tables, we can observe that
our developed approach achieves much better performance
than the traditional machine learning models (SVM, near-
est neighbor, Naive Bayesian, decision tree, and multi-layer
perception (MLP)) with higher sensitivity, specificity, and
accuracy values. Besides, our approach outperforms the other

TABLE 7. Comparisons of proposed methodology with state-of-the-art
ones.

deep learning models (LSTM, temporal convolutional net-
work (TCN), and the Transformer without transfer learning),
with even fewer trainable parameters.

Moreover, we have also compared our proposed
approaches with other state-of-the-art ones originally devel-
oped for action recognitions, including the ST-GCN [36],
2s-AGN [37], and PC3D [38], which are trained based on
CAUCAFall and gait datasets for performing fall detection&
prediction tasks. The comparison results are shown in Table 7,
which shows that the proposed approach also achieves the
highest accuracies on both fall detection and prediction tasks
compared to these three approaches. The advantage of the
proposed transformer-based method over graph model-based
ST-GCN and 2s-AGN approaches and convolutional model-
based PC3D approach can be attributed to the capability of the
transformer for modeling the global information of input data
as mentioned in [31], thus to extract the most representative
features for the whole input skeleton sequence for performing
fall detection and prediction tasks.

V. DISCUSSION
We present a pioneering transformer model for fall detec-
tion and prediction in this study, leveraging transfer learning
to enhance model performance in the presence of limited
data. Through extensive evaluations across multiple datasets,
focusing on fall detection and prediction tasks, our proposed
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method demonstrates superior performance compared to both
classical machine learning models and state-of-the-art action
recognition models. While our proposed method proves
effective, there remains room for improvement and potential
benefits from recent advancements in the machine-learning
community. One avenue for enhancement is the adoption of
bilinear pooling [39] to fuse diverse features extracted from
a video clip, thereby achieving more precise fall detection
and prediction performance. Additionally, we can explore the
application of decentralized federated learning [40] to train
the machine learning model collaboratively using a cluster
of machines. In this approach, each client in the cluster
trains a model based on its local data and then communi-
cates the model parameters with other clients, facilitating
the aggregation of results from each client to obtain a final
global model. This strategy capitalizes on the computational
and storage resources of multiple machines, leading to more
efficient training on large datasets. Importantly, decentralized
federated learning ensures data privacy, as it shares only the
model parameters rather than the raw data.

Concerning the implementation of the developed technique
for real-world application, the related algorithms can either be
deployed on the video analytics unit on the ‘edge’ (the place
where the video data is captured) or a remote cloud server,
to process the collected videos on a specific site (e.g., home,
care home, hospital ward, etc.) for performing fall detec-
tion&prediction tasks. Achieving an optimal balance between
algorithm complexity and computational/storage resources is
crucial for practical real-world applications. For instances
where the intention is to deploy the algorithms on an edge
device with limited computational and storage resources,
strategic considerations are required. In such cases, adopting
a lightweight 2D pose detection model, such as [41], becomes
essential. Additionally, simplifying our transformer model
further becomes a necessity to align with the constraints of
the edge device. This ensures that the overall system remains
efficient and effective even within the limitations of the hard-
ware. On the contrary, if the decision is made to deploy the
algorithms on a robust cloud server with ample computa-
tional and storage capabilities, more complex models can
be embraced. The increased processing power of the cloud
server allows for the utilization of sophisticated algorithms,
enhancing the system’s overall performance and accuracy.

Privacy concerns are paramount in any computer
vision-based healthcare application. Effectively addressing
these concerns necessitates the adoption of encryption tech-
niques. One approach involves employing both software [42]
and hardware [43] based encryption methods, which can be
applied to blur images within the captured videos, thereby
safeguarding privacy. Furthermore, encryption techniques
such as SSL (Secure Sockets Layer) and TLS (Transport
Layer Security) [44] play a pivotal role in enhancing privacy
during the data transmission process to the cloud server.
In scenarios where our developed technique is deployed on a
cloud server for real-world applications, implementing SSL
and TLS encryption ensures a secure and private exchange

of data between the edge device and the cloud server. This
additional layer of encryption fortifies the protection of sensi-
tive healthcare information during transit, addressing privacy
concerns extensively.

VI. CONCLUSION
In this work, we have developed a novel transformer
model approach aided by transfer learning for fall detection/
prediction tasks. In specific, 2D human skeletons from a
video clip are extracted by the on-the-shelf pose extractor,
which is then pre-processed and fed into a transformer model
for fall detection/prediction. To further improve the perfor-
mance, a transfer learning approach is adopted to pre-train
the transformer model on a larger human motion dataset
which step helps the model learn useful representations from
abundant data related to human poses and actions. Following
the pre-training phase, we fine-tune the transformer model
for fall detection and fall risk prediction. The experimental
results show that our approach achieves better performance
than other machine learning or deep learning models in both
fall detection and prediction tasks.

In the current work, we only use the 2D pose features
for the fall detection/prediction tasks. Not only limited to
the pose features, in the future we will investigate more
video features (e.g., optical flow, silhouettes) and investigate
the optimal fusion of multiple video features together with
the transformer model, to further improve the performance
of fall detection/prediction. Moreover, more advanced trans-
former architecture and machine learning techniques (e.g.,
bilinear pooling, distributed machine learning) will also be
investigated.
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