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ABSTRACT Recent advancements in battery technology have made them more economically viable than
ever before, making them suitable for various grid-scale applications. Due to their rapid response, batteries
are attractive for providing ancillary services (AS), such as frequency regulation and reserve services, to the
bulk power grid. On the other hand, an electric vehicle (EV) is viewed as amoving battery; consequently, EVs
are also suitable for those services. This research proposes a linear planning model for an Electric Vehicle
Aggregator (EVA) within a distribution network (DN) to offer Ancillary Services (AS) to the bulk power
grid. The model takes into account contract design by identifying optimal incentives or charging tariffs that
Electric Vehicle (EV) owners would be willing to pay the EVA for charging their vehicles. Additionally,
the model takes into account the size of the electric vehicle (EV) fleet as a crucial planning factor for EV
aggregation that depends on the energy pricing set by the EVA. The proposedmodel is developed tomaximize
the overall profit of bidding capacities in the energy and AS markets while supporting the operation of an
unbalanced DN by maintaining the DN limits. Simulation results and sensitivity analyses on the model
have been carried out to support the investment model and investigate the change in the optimal solution
across different case studies. Simulations show that the optimal charging tariff (β) is (0.02 $/kWh)when
considering scenarios where Distribution Network (DN) limits, such as thermal and voltage constraints, are
ignored for all EV participation versus β relations. When including the DN, the optimal payoffs vary based
on the relationship between the charging tariff and the number of participating EVs.

INDEX TERMS EV aggregators,V2G, G2V, planning model, unbalanced distribution network, ancillary
services, electricity market.

NOMENCLATURE
INDICES
A,B,C Index of phases.
e Index of EV.
k Index of bus.
t Index of hour.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jahangir Hossain .

d Index of day.
w Index of week.
y Index of year.

PARAMETERS AND CONSTANTS
BAB The admittance matrix imaginary part that links

between phase A and phase B.
BatC Cost of battery replacement($/kW ).
BiC Cost of retrofitting for bidirectional V2G ($/kW ).
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ChC Cost of charger ($/kW ).
ComC EV’s communications cost ($).
E Energy needed for scheduled trip at t =

τ p(kWh).
GAB The admittance matrix real part that links

between phase A and phase B.
JABPθ Amatrix that links real power from phaseAwith

voltage angle from phase B.
JABQV Amatrix that links reactive power from phase A

ith voltage magnitude from phase B.
NY ,NW Years and weeks number.
NT The number of available EVs in the area.
NEV Number of EV usage profiles.
NP Total number of scheduled trips per day.
r Discount rate.
SC EV’s smart meter cost ($).
T Total hours in a day (hours).
αD,U .R Estimated regulation down, regulation up, and

responsive reserve commands (as % of bid
capacities).

σD,U ,R regulation down, regulation up and responsive
reserve forecasted prices ($/kWh).

σE Forecasted energy price ($/kWh).
π The departure probability of a random EV.
πA Accumulated departure probability of EV.
ωt The expected available EVs percentage to

perform V2G at time t.
δ Compensation factor for unplanned departures.
η efficiency of charging and discharging.
ϕ, φ The permissible Minimum and maximum SOC

limits (as % of the energy capacity (MC)).
τP Trip time for p-th scheduled trip.
ν EV availability; 1 if EV is available, 0 other-

wise.

DECISION AND AUXILIARY VARIABLES
ADD,APU Power capacity available for regulation down,
APR regulation up, and reserves (kW).
DC Discharging cost ($/kWh).
E| · | Expected value.
FP− Conservative estimation of final power draw.
g EV depreciation cost paid by EVA to EV

owners.
InvC Investment cost ($).
MP,MC Maximum power (kW) and energy ratings

(kWh).
OpP Annual operation profits ($).
OpI ,OpC Expected daily operational income and cost

to EVA.
PAkj Power transferred in phase A between k and

j.
PAk ,Q

A
k The injected real and reactive power vectors

in phase A and bus k .
POP Preferred operating point (kW).

RD,U ,R EVA’s capacity bid of regulation down, regula-
tion up and responsive reserve (kW).

SOC Estimated energy in the battery (kWh).
TP Project’s total payoff ($).
V A
k , θAk Voltage magnitude and angle for bus K .

β Energy tariff paid by the EV’s owners ($/kWh).
γ EV aggregation percentage of participation.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
The transportation sector is a major consumer of energy from
fossil fuels, as evidenced in the US, where it accounts for
approximately 27% of total energy consumption [1], and in
Saudi Arabia, where it constitutes around 26.87% [2]. Hence,
replacing conventional vehicles that consume fossil fuels with
electric vehicles (EVs) contributes to reducing greenhouse
gas emissions dramatically. Although EVs positively impact
the environment by reducing greenhouse gas emissions, the
rapid increase in the number of EVs used can boost energy
demand on the grid. Moreover, this may introduce new
challenges to the grid and necessitate increasing fossil fuel
generators’ capacity.

With the depletion of natural resources and increasing
global warming, distributed renewable energy resources
(RESs) such as wind turbines (WT) and photovoltaic (PV) are
preferred over fossil fuel generators to minimize greenhouse
gas emissions. However, high penetration of RESs will
introduce safety and technical challenges to the grid since
RESs are stochastic and weather-dependent [3]. One effective
solution to address the challenges caused by RESs is to install
a stationary battery energy storage system (BESS), which can
be charged or discharged to balance out any surplus or deficit
in the energy generated by RESs. This approach helps ensure
a stable and reliable energy supply, while simultaneously
reducing the environmental impact of energy production [4].
Despite the decreasing cost of stationary BESS, it is still too
expensive formost grid-tied applications [5]. EV batteries can
be used for vehicle-to-grid (V2G) services, where they extract
or inject power into the grid while parked, similar to BESS.

V2G represents the system that facilitates the exchange
of ancillary services (AS) through bidirectional energy flow
between the grid and plugged-in EVs [6]. Two methods of
V2G operations are presented in [7]. The first method is
unidirectional V2G, which considers EVs as controlled loads
to provide AS to the grid and to charge them during off-peak
hours to reduce peak-hour stress. The second method is the
bidirectional V2G, which allows EVs to both charge and
discharge their batteries to support the grid.

Although EV owners may obtain some benefit by pro-
viding services to the grid individually, the use of EVs for
V2G regulation becomes practical only when a considerable
number of EVs aremanaged jointly, and the resulting services
are controlled by an EV aggregator (EVA) [8]. The EVA acts
as an intermediary between EV owners and the independent
system operator (ISO), organizing distributed small-scale
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generation and storage resources to offer large-scale services
to the grid, such as regulation and capacity bidding.

EVA submits bids for energy to the day-ahead (DA) energy
market to purchase energy at market prices and then sells this
energy to EV owners at a fixed tariff. The EVA is also able to
participate in the ASmarket by providing regulation up/down
and reserve capacity through the charging/discharging of
EVs. If the AS market accepts the bids for either regulation
up/down, the EVA will adjust the charging/discharging of
EVs accordingly, based on market signals. However, EVA is
expected to compensate EV owners for these services.

The main objective of the EVA is to maximize its overall
profits while ensuring the satisfaction of EV owners and
maintaining distribution network (DN) limits at acceptable
levels. This study aims to optimize the EVA’s profitability
through strategic bidding capacity and participation in the
AS markets, providing regulation up/down and reserves for
the grid. The number of EVs participating in the AS market
will be a decision variable used to determine the most
advantageous incentives or charging tariffs that EV owners
will pay the EVA for charging their EVs.

B. LITERATURE REVIEW
Control strategies are necessary for managing the charging/
discharging powers of EVs to provide AS. Current V2G reg-
ulatory strategies include the grid measurement approach [9]
and the optimization-based approach [10]. Both assumed
that EVs follow schedules set by the ISO or EVA for
grid optimization. However, these approaches may not be
practical for real-world operations since EVs are owned by
various individuals that present challenges for the ISO to
manage signals collectively. Furthermore, these methods may
inconvenience EV owners, who would lack control over
the timing and amount of their bids. Several studies have
explored the most effective operational bidding strategies
for EVAs in energy markets. EV batteries, with their rapid
response capabilities, have the potential to significantly
support the bulk power grid by providing AS [11]. According
to [12] and [13], EVs can also contribute to primary frequency
regulation in both large-scale systems and microgrids.

The authors of [14] investigated the concept of EV
participation in AS using a robust optimization framework.
In [15], the objective of the EVA was to minimize the total
charging cost by shifting EV charging to times of lower
prices, while also maximizing revenue from participating
in AS. Additionally, this strategy can provide AS and offer
flexibility to help alleviate congestion during peak hours.
However, the studies presented in [11], [13], [14], and [15]
assumed that the operation was limited to unidirectional
power flow from the grid to the EVs.

EV owners can offer frequency regulation capacities to
the power grid, as suggested in [16]. The EVA submits the
available regulation capacity to the market at each time step,
taking into account the convenience of EV owners. However,
it does not account for the optimal scheduling of charging/

discharging to alleviate congested loads. Reference [17]
explored a detailed model of interactions between competing
EVs and the EVA, with the EVA determining the energy trad-
ing price and the EVs formulating their charging/discharging
strategies. Additionally, the EVA collaborates with EVs to
enhance their collective social welfare. The limitation of this
model is that it considers regulation up and down but over-
looks reserve capacity. In [18], an aggregator is described that
gathers power usage plans from home management systems
for AS market participation, considering energy consump-
tion, vehicle usage, and generation. Stochastic optimization is
used in [15] to integrate EVs into the regulation market and
analyze the economic benefits of bidding in the DA energy
market. However, the studies in [15] and [18] did not address
the impact of battery degradation on associated EVs. It should
be noted that references [15], [16], [17], and [18] focus solely
on operational models rather than strategic planning.

In [19], [20], and [21], a comprehensive optimization
model for V2G was studied. In [19], the EVA optimized EV
operations for AS market participation, taking into account a
fleet of 10,000 EVs. Reference [20] provided a comparison of
unidirectional and bidirectional V2G approaches for offering
frequency regulation and reserve services. The aggregators’
role, as described in [19] and [20], involved coordinating
with the ISO to purchase energy for charging EVs and to
place bids in the AS market. In [21], the study was extended
to include bidirectional V2G while factoring in the cost
of battery degradation. Additionally, a dispatch algorithm
was developed to minimize daily operational costs within a
centralized system comprising EVs, BESS, and RESs.

The inclusion of degradation costs in the EVA model for
V2G operational bidding strategies was addressed in [22],
[23], and [24]. The authors of [22] developed a mixed-integer
linear programming approach for aggregated EVs in the
AS market to minimize frequency deviation and enhance
revenue. The research presented in [23] introduced a strategy
for the EVA to perform energy arbitrage by aggregating
EVs and providing charging services, aiming to maximize
future market profits while considering uncertainties in EV
departure times and movement. In [24], the feasibility of
EVA participation in energy and AS markets for profit max-
imization was investigated using the Generalized Reduced
Gradient method to address the non-linear programming
challenges, with the New York competitive market as a case
study. However, these studies primarily explored operational
considerations without addressing the strategic planning
aspect for EVA.

In terms of planning, much of the EV-related research,
such as in [25], [26], and [27], focuses on charging stations.
The authors of [25] introduced a multi-objective evolutionary
algorithm to strategically locate charging stations within a
radial DN for a specified number of EVs. In [26], a second-
order conic optimization model was developed to minimize
power losses by considering RESs (PV and WT), BESS, and
EV charging stations. The authors of [28] aimed to optimize
the installation of RESs and EV demand for each aggregator,
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with an emphasis on loss reduction, while implementing
generation curtailment and EV controllability to maintain the
DN constraints. However, these studies did not incorporate
cost impacts into their objective functions. The authors
of [27] addressed the life cycle of BESS when integrated
with charging stations. The studies [25], [26], [27], and [28]
utilized nonlinear models that pose challenges in large-scale
power systems, and they assumed a fixed number of EVs
without considering dynamic sizing or incentive tariffs for EV
owners. The research in [29] and [30] explored a centralized
BESS’s bidding approach in coordination with EVs for
AS market participation. They focused on optimal BESS
sizing to regulate EV participation error within acceptable
market limits and aimed to minimize response discrepancies.
Nonetheless, they did not account for the degradation costs
of EV batteries or the BESS, nor did they factor in the DN in
their models.

C. CONTRIBUTIONS
Based on the extensive literature review, it is evident that
most studies have focused on the optimal operation of EVs by
scheduling the charging and discharging to maximize profits.
Additionally, research has concentrated on siting charging
stations within nonlinear DN models, which presents chal-
lenges for large-scale planning. Consequently, there is a
need for a comprehensive and scalable EVA planning model
tailored to AS provision in market environments. To address
this, the paper proposes a detailed planning model for the
EVA, characterized by the following attributes:

• A linear planning EVA model is proposed for AS
market participation and grid service provision. This
model determines the optimal fleet size of EVs that
balances the potential income against the associated
investment costs. It does so by optimizing the number
of EVs to ensure maximum profitability for the EVA,
considering the trade-off between higher revenue with
larger fleets and the investment costs for infrastruc-
ture (SC), communication (ComC), and bidirectional
chargers (BiC).

• The proposed model evaluates the investment feasibility
of establishing an EVA within an unbalanced DN,
focusing on contract design by determining the most
attractive incentives or charging tariffs that EV owners
will pay the EVA for the service of charging their EVs.

• To ensure scalability, the proposed EVA planning model
is formulated as a fully linear model and incorporates
linearized constraints for the DN, such as voltage levels
and line capacity limits. It is important to note that none
of the existing EV planningmodels in the literature, such
as those reported in [25], [26], [27], and [29], have taken
into account these linearized DN constraints.

• The proposed model accounts for technical and market
constraints. Furthermore, it identifies the optimal oper-
ational decisions for EVs, including bidding capacities
and operating points, using the model.

D. PAPER ORGANIZATION
The rest of the paper is organized as follows: the details of
the proposed planning model for EVA planning aggregation
and DN planning model are provided in Section II-A and
Section II-B, respectively. The optimization model and
methodology for EV planning are discussed in Section III.
The case study that assesses the proposed model in the energy
market is provided in Section IV, whereas the obtained results
are provided in Section V. Finally, a few concluding remarks
are given in Section VI.

II. PROPOSED PLANNING MODEL FOR EV AGGREGATION
This section demonstrates how the EVA optimizes its
participation in the AS market by bidding for regulation
up/down and reserving capacity. The EVA planning model is
detailed in Section II-A. Subsequently, the linear EVA model
will be integrated with the unbalanced DN linear model
(presented in Section II-B) to examine the impact of DN
constraints on the optimal results

A. EV AGGREGATOR (EVA) PLANNING MODEL
In this work, the EVA consolidates individual EVs to
participate in the AS market. The EVA buys the energy
from the Day-Ahead (DA) energy market at the market price
(σEtdw) to provide charging services to EVs’ owners at a
fixed tariff (β). In the AS market, the EVA offers bids for
regulation up (APUtdw), regulation down (APDtdw), and reserve
services (APRtdw). These services are priced according to
the regulation up price (σU ), regulation down price (σD),
and reserve capacity price (σR), as illustrated in Figure 1.
Regulation up and down services involve real-time, different
from reserves, and adjust the charging rates to align with
real-time grid requirements, maintaining the balance between

FIGURE 1. EV aggregator planning model in a pool-based electricity
market for energy and AS.
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supply and demand. Reserves, on the other hand, stand as
a contingency against unexpected grid events. It should be
noted that the hourly market price for each service varies.
Most markets, including the Electric Reliability Council of
Texas (ERCOT) [31] and the California Independent System
Operator (CAISO) [32], distinguish between regulation
services, such as regulation up and regulation down, and
reserve capacity. This differentiation is attributed to their
different operational characteristics and requirements.

The EVA requests EVs’ owners to provide AS by adjusting
the charging rate around a preferred operating point (POP).
The POP’s adaptability for each service type is depicted
in Figure 2, illustrating the dynamic nature of the model
in optimizing these services. To clarify the concept of the
POP, consider that the EVA bids a regulation up capacity
for a particular hour t. In this scenario, the POP is adjusted
downward in response to the AS market signal, with the
maximum allowable adjustment corresponding to the bid
capacity. It means that the EV’s owner reduces its charging
rate, which means providing regulation up to the network.
Conversely, in the scenario of regulation down, the EVA
requests the EV owners to increase the charging rate, which
increases the load consumption and thus provides regulation
down to the network. For reserve capacity and real-time
operations, the EV owners have agreed to reduce their load
consumption in the event of a contingency and upon request
from the EVA.

It is important to note that extracting energy from
EVs can reduce their battery lifespan. Consequently, the
EVA compensates EV owners at a constant rate, which is
determined based on the battery costs during the period under
study [33].

FIGURE 2. Regulation up/down and reserve capacities around the
charger operating point (POP).

It shall be noted that each participating EV has a travel
profile that includes many pre-planned trips. It is anticipated
that unexpected departures may occur randomly throughout
the day, making the EV unavailable for V2G during certain

periods. This variability is managed by calculating the
percentage (ωt ) of the EV’s remaining capacity available for
V2G. The variable νit , which is binary, is used to denote
whether an EV is available at a particular time of day.

B. DISTRIBUTION NETWORK MODEL
The planning problem is considered a challenging task,
requiring an extensive amount of time to solve. Utilizing a
full Alternating Current (AC) power flowmodel would render
the problem nearly insurmountable, thereby necessitating the
use of a linear model for the DN. The proposed model
in [34] is employed to linearize the unbalanced DN model
and to conduct a three-phase load flow analysis. This linear
model is utilized because it offers a compact framework
suitable for an unbalanced DN and integrates easily with the
linear model of the EVA. Furthermore, it provides voltage
magnitudes and phase angles with high accuracy, as validated
in this work. This model is underpinned by the following two
equations:

PAk = V A
k

N∑
j

A−C∑
B

V B
j (G

AB
kj Cos(θ

AB
kj + BABkj Sinθ

AB
kj ) (1)

QAk = V A
k

N∑
j

A−C∑
B

V B
j (G

AB
kj Sin(θ

AB
kj − BABkj Cosθ

AB
kj ) (2)

The two equations in (1) and (2) represent the injected real
and reactive power at bus k, respectively. It is clear that both
equations are nonlinear, and to linearize them, the following
assumptions are made:

1) The voltage angle between two nodes is sufficiently
small due to the short distance. As a result, the value
of θAkj shall be close to zero, so Sinθ

A
kj and Cosθ

A
kj can be

approximated to zero and one, respectively.
2) In normal conditions, the voltage magnitudes are close

to one, and any change in voltages will be around one.
Hence, it can be assumed that Vk = (1 + 1Vk ) and
Vj = (1 + 1Vj) where 1Vk and 1Vj are the change in
the voltage from the nominal value.

Hence the multiplication of two voltages is linearized as
follows:

Vk (Vk − Vj) = (1 + 1Vk )(1 + 1Vk − 1 − 1Vj)

= (1 + 1Vk )(1Vk − 1Vj)1Vk
+ 1V 2

k − 1Vj − 1Vk1Vj (3)

From (3), the second step 1V 2
k and 1Vk1Vj can be

neglected without causing high errors as they are a second
order of a small magnitude that is smaller than Vk and Vj.

Vk (Vk − Vj) ≈ (1Vk − 1Vj) ≈ (Vk − Vj) (4)

Taking these assumptions into account, equations (1)
and (2) are reorganized in a matrix structure after being
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linearized as follows:



PA

PB

PC

QA

QB

QC

=



JAAPV JABPV JACPV JAAPθ JABPθ JACPθ

JBAPV JBBPV JBCPV JBAPθ JBBPθ JBCPθ

JCAPV JCBPV JCCPV JCAPθ JCBPθ JCCPθ

JAAQV JABQV JACQV JAAQθ JABQθ JACQθ

JBAQV JBBQV JBCQV JBAQθ JBBQθ JBCQθ

JCAQV JCBQV JCCQV JCAQθ JCBQθ JCCQθ





V A

V B

VC

θA

θB

θC


(5)

Equation (5) represents again the real and reactive power
injected in each phase and bus. The J-matrix is an N×N
size, where N is the number of buses multiplied by 3
(the number of phases in each bus), and it exclusively
depends on the system’s impedance. Hence, it should be
calculated once, assuming no system reconfiguration occurs.
Solving equation (5) will determine all injected real and
reactive powers for all buses and all phases. The following
relationships illustrate three items from this matrix:

JAAQV = −BAA (6)

JCAPT = −((−
√
3/2) ∗ GCA + (−1/2) ∗ BCA) (7)

JCBQV = ( (−
√
3/2) ∗ GCB + (1/2) ∗ BCB ) (8)

The next step involves determining the power transferred
between each pair of connected buses k and j. To calculate
these power values, the nonlinear power flow formula for
phase A, as shown in (9), is utilized. By applying the
previous two assumptions, this formula is transformed into
a linear form for the power flow in each branch, as indicated
in (10) [35]. In this context, rAkj and x

A
kj represent the resistance

and reactance of branch kj, respectively. This formula is con-
sistently applied across all phases in the system. It is impor-
tant to note that the linearization of the nonlinear DNmodel is
based on the assumption that losses are negligible, assuming
that the power flow from one bus to another remains constant.
The practice of overlooking losses in the linear model of the
DN is commonly adopted in DN planning, as evidenced in
several studies, for example, [36], [37], and [38].

PAkj =
rAkjV

A2
k − rAkjV

A
k V

A
j Cosθ

A
kj + xAkjV

A
k V

A
j Sinθ

A
kj

rA
2

kj + xA
2

kj

(9)

PAkj ≃
rAkjx

A
kj

rA
2

kj + xA
2

kj

V A
k − V A

j

xAkj
+

xA
2

kj

rA
2

kj + xA
2

kj

θAk − θAj

xAkj
(10)

III. PROBLEM FORMULATION
The proposed planning optimization model aims to maximize
the total payoffs of the EVA by participating in energy and
AS markets during the studied period. The proposed model
considers the general case where the DN is unbalanced.
This section details the optimization’s objective function and
constraints.

A. OBJECTIVE FUNCTION FORMULATION
The planning objective function is formulated and developed
as follows:

TP =

NY∑
y=1

(1 + r)−y.OpPy − InvC (11)

InvC =

NEV∑
i=1

(SC + ComC + BiC .MPi) (12)

OpPy =

NW∑
W=1

7∑
d=1

(OpIdw − OpCdw) (13)

OpIdw =

T∑
t=1

ωtdw.(σDtdwR
D
tdw + σUtdwR

U
tdw + σRtdwR

R
tdw)

+ β

T∑
t=1

ωtdw

NEV∑
e=1

E[FPetdw] (14)

OpCdw=

T∑
t=1

ωtdw

NEV∑
e=1

σEtdwE[FPetdw]+
T∑
t=1

NEV∑
e=1

getdw (15)

RDtdw =

NEV∑
e=1

APDetdw (16)

RUtdw =

NEV∑
e=1

APUetdw (17)

RRtdw =

NEV∑
e=1

APRetdw (18)

The objective function aims to maximize the total profits
(TP), considering the discount rate (r), as outlined in (11).
This function comprises two components: The first is the
operational profits (OpPy) accumulated over the year, and the
second is the investment cost (InvC), which is relevant only
in the first year.

The InvC and OpPy are computed according to (12)
and (13), respectively. The InvC includes infrastructure cost
(SC) and communication cost (ComC), as illustrated in (12).
The MP in (12) denotes the EV battery’s maximum power
capacity, varying based on the EV model; for instance, the
Nissan Leaf features a 2 kW inverter. The OpPy, as specified
in (13), is calculated by deducting the daily costs (OpCdw)
from the daily incomes (OpIdw), whereas OpIdw and OpCdw
are calculated in (14) and (15), respectively. E[FPetdw] can
be either positive or negative. In case of a negative value, it is
interpreted as selling energy to the market, so it contributes
to a negative cost as stated in (15). Conversely, in case the
value is positive, it is considered as buying from the energy
market. The subscripts t , d , and w represent hour, day, and
week, respectively. The OpIdw is derived from participation
in the AS market, through bidding on regulation up (RUtdw),
regulation down (RDtdw) and reserve capacity (RRtdw) with AS
prices σDtdw, σUtdw and σRtdw for regulation up, regulation down
and reserve capacity, respectively. It also includes revenue
from selling energy to EV owners at a fixed tariff (β),
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multiplied by the expected power draw (E[FPetdw]) of all
EVs. TheOpCdw is calculated based on the cost of purchasing
energy from the grid at the market price (σEtdw) and the
degradation cost (getdw) associated with the reduced lifespan
of EV batteries during the discharging process. The total
bidding capacity at each time interval is the cumulative
capacity of all EVs, applicable to RDtdw,RUtdw and RRtdw,
as demonstrated in (16), (17), and (18). Here, APUetdw, AP

D
etdw,

and APRetdw represent the capacities for regulation up, down,
and reserve, respectively.

E[FPetdw] = (POPetdw+ + αDetdwAP
D
etdw

− αUetdwAP
U
etdw − αRetdwAP

R
etdw)νetdw (19)

ωtdw = 1 − (1/NEV )
NEV∑
e=1

πA
etdw (20)

πA
etdw =

t∑
h=τ

p−1
e

πA
ehdw, τ pe ≤ t < τ p−1

e (21)

where τ 0e = 1, p = 1, 2, . . . .,NP

SOCetdw = SOCe,t−1dw + E[FPetdw]δedwηe − Eetdw (22)

getdw = max(
−DCeE[FP

−

etdw]δedw
ηe

, 0) (23)

E[FP−

etdw] = (POPetdw − αUetdwAP
U
etdw − αRetdwAP

R
etdw)vet

(24)

DCe = 0.042
(
BatC
312

)
+

β(1 − η2e )
ηe

(25)

δetdw = (1 − πetdw)−1 (26)

The E[FPetdw] is calculated as per (19). It functions based
on the POPetdw and is influenced by the expected bidding
capacities APUetdw, AP

D
etdw and reserve APRetdw, which are

decision variables. The signals αUetdw, αDetdw, αRetdw represent
regulation up, regulation down, and reserve, respectively,
and are received from the ISO to determine the proportion
of bidding capacities provided by the EVA. The sign of
E[FPetdw] indicates whether the EV is injecting or consuming
power: a negative value means power injection into the DN,
while a positive value indicates power draw from the DN.

Every participating EV follows a simulated daily commute
profile, including two random weekend journey times and
regular weekday morning and evening trips, with departures
expected around the same time each day. The variable vet
takes values 0 or 1, depending on the trip profile of each EV.
For instance, if vet is 0, meaning the EV is not connected to
the charger, the EVA cannot utilize this EV for providing AS.
As a result, E[FPetdw] will be 0, indicating no power draw or
injection at that specific hour t . Each EV has a probability of
an unexpected departure, making it unavailable for a certain
number of hours. Therefore, the percentage availability of
EVs to provide AS is represented by ωt and it is calculated
as shown in (20). This depends on the departure probability
(πA

et ) at time t , calculated in (21). Both OpIdw and OpCdw are

dependent on the probability of unexpected departure (πA
et )

and the availability (ωt ) of each EV. After each trip, πA
et

resets to zero due to the certainty of EV availability at this
time. The total numbers of scheduled trips during the day
is represented by NP. If there are two trips, the first trip is
at τ

p−1
e and the second trip is at τ

p
e . πA

et is calculated in the
period when τ

p−1
e < t < τ

p
e , where t < τ

p−1
e and t > τ

p
e

as in relation (21). The state of charge (SOCt ) is defined
in (22), where Eet is the energy consumed during the trip and
SOCe,t−1 is the previous state of the battery. As illustrated
in (22), E[FPetdw] is multiplied by two parameters. The first
parameter is the efficiency (ηe) of charging/discharging EV
battery, which depends on the bi-directional inverter. The
second parameter is the compensation factor (δet ), which
equals 1 when EV is available and less than 1 when there
is a possibility for unexpected departure based on (26).

The degradation cost (getdw) due to EV battery discharging
is calculated as per equations (23), (24), and (25) and is
represented as a positive cost. The formula for getdw is the

maximum of 0 and
−DCeE[FP

−

etdw]δet
ηe

.When the EV is charging,
E[FP−

etdw] is positive, resulting in getdw being zero, indicating
no battery lifespan reduction. Conversely, during discharging,
E[FP−

etdw] is negative, leading to a positive degradation cost
calculated due to the battery lifespan reduction. The term
(DC) represents the cost of deregulation per kWh where the
term BatC/312 is used to normalize the deregulation cost
by 312$/kWh in [39]. The second term is the cost of the
lost energy due to cycling, as developed in [40]. As shown
in (24), the degradation cost is affected by the regulation up
(APUtdw) and the reserve (AP

R
tdw). The compensation factors for

unexpected departures are calculated as in (26).

B. CONSTRAINTS

ϕeMCe ≤ SOCet ≤ MCe, ∀t ≤ T − 1 (27)

ϕeMCe ≤ SOCet ≤ MCe (28)

(POPetdw + APDetdw)δetηe ≤ MCe − SOCet (29)

(POPetdw − APUetdw − APRetdw)δetηe + SOCet ≥ Eet (30)

(POPetdw + APDetdw)δet ≤ MPevet (31)

POPetdw − APUetdw − APRetdw ≥ −vetMPe (32)

APDetdw,APUetdw,APRetdw ≥ 0 (33)

POPetdw ≥ −vetMPe (34)∣∣SOCetdw − SOCe,t−1,d,w
∣∣ ≤ vetMPe/ηe (35)

Inequality constraint (27) ensures that the SOCet of the
EV battery operates within the energy capacity (MCe) and
remains above a certain limit to protect the battery from deep
discharging. Relation (28) is implemented to guarantee that
the SOCt of the EV is within an acceptable range at the
start of each day, enabling the EV owner to embark on daily
trips. Constraints (29) and (30) link the energy limit of the
battery for each EV with the decision variables of the AS bid
capacities and the POP. These constraints are essential for
ensuring that the EV’s battery has sufficient energy available
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in real time, in case its full capacity is needed. Relation (30)
limits regulation up and reserve capacities, while relation (29)
limits the regulation down capacity. Constraints (31), (32),
(34), and (35) address the capacity of the power inverter,
whereMPe correlates this capacity with the decision variable.
Specifically, relation (35) ensures that performing regulation
up or down at anymoment does not exceed the power capacity
of the inverter. This optimization problem encompasses six
decision variables: β,POPtdw,APUtdw,APDtdw and APRtdw.

C. INTEGRATING DISTRIBUTION NETWORK MODEL WITH
EV PLANNING MODEL
To integrate the EVS model with the unbalanced DN model,
the total number of EVs to be analyzed is distributed across
the DN. Consequently, each bus in the system accommodates
a certain number of EVs. When power is drawn from the grid
to charge EVs at bus k , this power is considered as a load.
Conversely, when power is injected into the grid from the EV
batteries, it is considered as a negative load.

Powerktdw =

{
POPktdw + APDktdw (a)
POPktdw − APU k

tdw + APRktdw (b)
(36)∣∣∣LFα

kj

∣∣∣ ≤ LFmaxkj (37)

Vmin ≤ V α
k ≤ Vmax (38)

θmin ≤ θα
k ≤ θmax (39)

In this study, EVs are assumed to consume or inject real
power only. As depicted in Figure 2, there are two extreme
scenarios for the power injected or consumed by EVs. The
first scenario occurs when the EVS is requested to provide
full regulation down capacity

(
APDktdw

)
and no regulation

up or reserve
(
APU k

tdw,APRktdw
)
. In this case, the EV will

consume high power from the DN depending on the POP,
as described in (36-a). The second scenario arises when the
EVA is requested to provide full regulation up and reserve(
APU k

tdw,APRktdw
)
and no regulation down

(
APDktdw

)
. Here,

the EV will inject a significant amount of power into the
DN, as indicated in (36-b). In both scenarios (36 a and b),
DN limitations should not be exceeded. When the variable(
Powerktdw

)
is negative, it is considered as a negative load.

Relation (37) limits the maximum power transfer between
buses k and j. The inequalities (38) and (39) limit the
voltage magnitude and angle to values deemed acceptable by
the ISO.

D. COMPLETE EVA PLANNING MODEL
The full optimization model of EVA (11)-(35) integrated with
the distribution model (5), (36)-(39) is solved to maximized
the aggregator’s profits. This planning problem has two sets
of decision variables. The first set is the most important,
including the number of EVs in the fleet participating in
AS (γ ) and the energy tariff paid by the EV owners to the
EVA (β). The second set is the operational and network
decision variables POP, APD, APU , APR, LF and V .

IV. CASE STUDY
This case study aims to evaluate the profitability of EVA
investment in providing AS, as well as the implications of
incorporating an unbalanced DN into the final decisions.
The project is assumed to have a lifespan of 12 years with
a 5% discount rate. The selected period of 12 years aligns
with the average lifetime of light-duty vehicles in the USA.
Although the current lifespan of Li-ion batteries is somewhat
shorter, it is expected to reach this duration with the aid of an
efficient management system [41]. The costs for maintenance
and installation are incorporated into the energy and power
costs, set at 190$/kW and 200$/kW for the power and
energy capacities, respectively [41]. The efficiency of the
bi-directional inverter is assumed to be 90% for both charging
and discharging processes.

This study is assumed to be in Houston, Texas, with an
estimated 70,000 EVs in the mix (50% Nissan Leaf, 20%
Mitsubishi i-MiEVs, and 30% Tesla Model S). These EVs
are assumed to follow one of the 100 trip profiles derived
from actual EV usage in Houston. The simulated data for
AS (regulation up/down and reserves), energy prices, and the
AS deployment signals are sourced from the ERCOT market
data [31]. Average price trends for a typical day are depicted
in Figure 3.

FIGURE 3. Average prices during the day.

To test the proposed model, the IEEE 13 bus unbalanced
DN is utilized. For simplicity, all transformers and voltage
regulators have been omitted. Additionally, EVs are assumed
to inject or draw real power only, allowing for the omission
of reactive power due to its relatively small amount compared
to real power. Figure 4 illustrates the system and indicates
the peak load for each phase (A, B, C) at each bus in kW.
As depicted in Figure 4, some phases are available only
in certain buses, reflecting the unbalanced nature of the
DN. References [42] and [43] provide comprehensive details
about the DN. To enhance the model’s realism, minor
modifications are made by generating random load profiles
from two categories of loads (household and commercial).
This is achieved by adding random errors to two base profiles,
which are then distributed among the various buses [44] in
the DN, ensuring that each phase at a bus has a various
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FIGURE 4. One-line diagram of the IEEE 13 unbalanced radial bus system
with the peak load of each bus in kW.

FIGURE 5. Normalized load profiles for one day.

load profile. Figure 5 displays two normalized load profiles
for a typical day. All lines in the system are designed with
a line thermal capacity of 700 kVA, except for the main line
connecting bus 632with 671, which has a higher thermal limit
of 1400 kVA.

The primary outcomes of this planning optimization are
the energy tariff charged to the customer (β) ($/kWh), and
the total profits (TP) over the period under study. The
percentage of EV participation in AS is contingent on β,
which varies from a minimum of βmin = 0 to a maximum
of βmax = 0.12$/kwh. No EVs will participate at β = 0.12;
for intermediate values, linear relationships with varying

TABLE 1. Parameters and constants.

FIGURE 6. The relation between β and the EVs participantγ = 0.2, 0.4,
0.6, 0.8, and 1.

slopes are assumed, as illustrated in Figure 6. As indicated
in equation (14), β interacts with other decision variables
(POP,APD,APU ,APR), rendering the problem nonlinear.
An iterative approach is employed to address this complexity,
incrementing β by 0.01 within the range of 0 to $/kWh.
Figure 7 presents a flow chart detailing the optimization
process.

V. RESULTS
A. RESULTS WITHOUT CONSIDERING DN
In this sub-section, the result of the EVA planning is
obtained by solving equations (11)-(35) and disregarding the
unbalanced DN model.

This section will provide results for two cases as follows:
1) The EVs are scheduled for two one-hour trips each day:

one in the morning and one in the evening. Outside of
these two hours, the EVs are assumed to be available
and connected to a charger for the rest of the day.
This trip schedule aligns with the proposals in several
literature review papers, such as [20], [45], and [46].
The investment cost calculations assume that each EV
is equipped with a home charger. The EV is expected
to leave and return home at each trip hour.

2) The EV is not available between the two trips, and
the investment cost remains consistent with the first
case. This approach is more realistic of a typical daily
routine, where the EV is used for commuting to work
in the morning and returning in the evening. Since the
investment cost is only allocated for installing a home
charger, the EV is unavailable during the workday.

In the first case, Figure 8 illustrates the optimal profits for
line 3, with a 60%(γ = 0.6)) participation rate, when β

is incremented by 0.01 within the range of 0 to 0.1 $/kWh.
The highest payoffs are observed when β is set to 0, which
corresponds to a 60% participation of the total 70,000 EVs.
This indicates that the profits derived from AS participation
outweigh those from charging the EVs, prompting the EVA
to maximize EV participation by setting β to 0. This outcome
is anticipated, given the relatively low consumption of EVs
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FIGURE 7. Optimization process.

in this scenario, leading to limited profits from charging.
As a result, utilizing the EV’s battery, which is available
for 22 hours a day for AS, proves to be more profitable.
Table 2 presents the optimal profits for the five lines (γ =

0.2, 0.4, 0.6, 0.8, 1), all occurring when β equals 0. The
results for the other four lines mirror the trend shown in
Figure 8.
For the second case, when EVs here are unavailable

between the two trips, Figure 9 shows the optimal EVA pay-
offs. The optimal profits happen when β equals 0.02$/kWh.
EVs are unavailable between trips, reducing the profits from
AS participation and forcing the EVA to increase β to get
profits from charging the EVs. Table 3 shows the optimal
profits for the other lines at β equals 0.02$/kWh.

Figure 10 compares the first and second cases. In addition
to the shift of the optimal β to 0.02$/kWh, it is clear that the
total profits are reduced by about 50% when the EVs are not
available between the trips.

B. RESULTS WITH CONSIDERING DN
In this section, the results of integrating the EV model with
an unbalanced DN (specifically, the IEEE 13 bus system)

FIGURE 8. EVA Profits versus β for line 3 with a participation of 60%
(γ = 0.6) case one.

TABLE 2. EVA optimal decision for the first case.

FIGURE 9. EVA Profits versus β for line 3 with a participation of 60%
(γ = 0.6) case two.

are presented. As discussed in the case study, there are
70,000 EVs available. However, due to the DN’s limited
size, accommodating this large number proved infeasible.
To address this challenge, the optimal investment cost for
BESS of approximately 5.47 million dollars, as presented
in [47], is adopted as the investment cost for the EVA. This
investment cost allows for the estimation of the total number
of EVs in the network using equation (12), resulting in a
calculated figure of 3,500 EVs. The results are then scaled
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TABLE 3. EVA optimal decision for the second case.

FIGURE 10. EVA Profits versus β for line 3 with a participation of 60%
(γ = 0.6) case one and two.

FIGURE 11. EVs distribution in the DN.

up by a factor of 20 to represent the total number of EVs.
This number is presumed to be evenly distributed across the
different buses in the system, as illustrated in Figure 11. Only
the second scenario, where EVs are unavailable during the
period between the two trips, is considered, as this approach
is deemed more realistic based on previous descriptions.

Figure 12 shows the optimal profits along with the
investment cost for line 3 (participation of 60% (γ = 0.6)).
As seen, the optimal profits of 122 million occurred when β

FIGURE 12. EVA profits along with investment cost versus β for line 3
with a participation of 60% (γ = 0.6) in DN.

TABLE 4. EVA optimal decision for including DN.

is 0.05 $/kWh and required an investment cost of 42 million.
That corresponds to 35% (24500 EVs) participants. The
aggregator here tried to attract a smaller number of EVs
due to the network voltage and line constraints to bid higher
capacities to AS market without exceeding those limits.

Table 4 shows that the optimal decision depends mainly
on the relation between β and the number of EVs partic-
ipating. When the slope of the relationship increases, the
optimal β also increases. From that, we can conclude that
the availability of more EVs in the system restricts the EVA
from bidding capacities to AS market due to the thermal and
voltage limits, which cause the increase in the energy tariff β.
Thus, the EVA will try to get more profits from charging EVs
than participating in AS market by attracting fewer EVs by
increasing β to attract fewer EVs.

In the previous cases, the EVs are assumed to be distributed
equally in the DN, as shown in Figure 11. The distribution
of EVs will be changed so that EVs are in 633, 646, and
671, as shown in Figure 13. Those buses are chosen because,
in the BESS optimization, most of the capacities are located
there [47].

Table 5 summarizes the results of all lines. The optimal
aggregator payoff for all lines is slightly less than in the
previous case, where EVs are distributed across the buses
equally. To illustrate, the additional loads of EVs placed
on one bus could highly cause overloading of those buses
and exceed the thermal limits of the line. Interestingly, the
optimal β is the same for all lines, as in Table 5.
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FIGURE 13. EVs distribution in the DN (633, 646 and 671).

TABLE 5. EVA optimal decision for including DN when EVs in 633,
646 and 671.

FIGURE 14. EVA profits for the two cases versus β for line 2 with a
participation of 40% (γ = 0.4) in DN.

C. EFFECT OF UNCERTAINTIES IN PRICES
In this section, we explore the impact of a 10% uncertainty in
energy and ancillary services (AS) prices (σD,U ,R, σE ). This
section is done based on γ = 0.4 with the same parameters
and assumption used in Table 5. We delve into two distinct
cases to comprehensively analyze their implications:

1) In the worst-case scenario, AS prices deviate negatively
by 10% from expectations, while energy prices register
an increase of 10%.

2) In the best-case scenario, AS prices deviate positively
by 10% from expectations, while energy prices register
a decrease of 10%.

The results of both cases are shown in Figure 14. In the
worst-case scenario, the optimal payoffs drop by 11.6% from
91.6 million (Table 5) to 80.96 million. On the other hand,
in the best-case scenario, the optimal payoffs increase by
13.36% from 91.6 million (Table 5) to 103.84 million. for
both cases, the optimal charging tariff β remains the same at
0.04 ($/kWh).

VI. CONCLUSION
This work investigates the investment potential of utilizing
EV batteries in a fleet coordinated by an EVA for bidding
regulation and reserve capacities in the AS market. A linear
planning model for the EVA was developed and integrated
with an unbalanced DN to optimize long-term profits and
determine the optimal bidding and charging tariffs during the
studied period.

The employed model revealed various profit margins
when including versus disregarding the DN. Additionally, the
placement of EVs within the DN significantly influences the
optimal payoff. The key findings are summarized as follows:

1) When the DN is disregarded, optimal payoffs are
achieved when the charging tariff (β) is set to
0 ($/kWh), assuming EV availability throughout the
day except for two trip hours. Due to higher profits from
AS participation, which surpass profits from charging
EVs and the absence of DN limitations, the EVA aims
to attract the maximum number of EVs to increase AS
bids to the market. However, when EVs are unavailable
between trips, reduced AS participation profits compel
the EVA to raise β to 0.02 ($/kWh) to gain revenue
from charging EVs and attract fewer EVs.

2) Including the DN, optimal payoffs are achieved at
varying values depending on the correlation between
the charging tariff and the number of participating
EVs, such as 0.05 ($/kWh) for line 3 as shown in
Figure 6. The presence of additional EVs in the DN
limits the EVA’s capacity to bid in the AS market due
to thermal and voltage constraints, leading to increased
energy tariffs. Consequently, the EVA focuses on
maximizing profits from charging EVs over AS market
participation, attracting fewer EVs to remainwithinDN
constraints.

3) The optimal charging tariff (β) remains consistent
whether EVs are selectively distributed among specific
buses (targeting critical buses) or evenly distributed
across the DN.
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