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ABSTRACT Perception plays a vital role in autonomous driving as it serves as a prerequisite for downstream
planning and decision tasks. Existing research has mainly focused on developing vehicle-side perception
models using a single type of sensors. However, relying solely on one type of on-board sensors to perceive
the surrounding environment leads to perceptual deficiencies owing to inherent characteristics and sensor
sparsity. To address this bottleneck, we propose ViT-FuseNet, a novel vehicle-infrastructure cooperative
perception framework that utilizes a Vision Transformer to fuse feature maps extracted from LiDAR and
camera data. The key component is a multimodal fusion module designed based on a cross-attention
mechanism. ViT-FuseNet has two distinct advantages: i) it incorporates roadside LiDAR point clouds as
additional inputs to enhance the 3D object detection capability of the vehicle; and ii) for the effective fusion
of data from two different modal sensors, we employ a cross-attention mechanism for feature fusion, rather
than directly merging camera features with point clouds at the raw data level. Extensive experiments are
conducted using the DAIR-V2XDataset to demonstrate the effectiveness of the proposed method. Compared
with advanced cooperative perception methods, our method achieves a 6.17% improvement in 3D-mAP
(IoU=0.5) and an 8.72% improvement in 3D-mAP (IoU=0.7).Moreover, the framework achieves the highest
3D-mAP (IoU=0.5) in all three object categories of benchmarks for single-vehicle perception.

INDEX TERMS Vehicle-infrastructure cooperative perception, multimodal fusion, object detection, vision
transformer, cross-attention.

I. INTRODUCTION
Accurate perception of the surrounding environment plays a
crucial role in ensuring the safety, efficiency, and robustness
of autonomous driving. Downstream tasks, such as planning,
decision making and control, rely heavily on upstream
perception capability [1]. With the latest advancements in
deep learning, the performance of perception algorithms
in autonomous driving, such as object detection and
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tracking, semantic segmentation, and depth estimation, has
significantly improved compared with traditional methods
applied in the past few years [2]. However, the majority
of existing investigations on perception techniques have
primarily concentrated on using sensors equipped on a single
vehicle. Despite continuous improvements, these methods
may not be able to provide sufficiently good performance that
satisfies the stringent requirements of autonomous driving
applications, owing to factors such as limited sensing range
and long-distance occlusion. Increasing the quality and
number of onboard sensing and computation equipment may
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serve as a solution. But this leads to an additional economical
burden and cannot fully solve the problem. Therefore,
single-vehicle intelligent perception methods continue to
encounter formidable challenges. Therefore, new approaches
are desired.

Recently, owing to the rapid development of vehicle-
to-everything (V2X) technologies [3], the concept of
vehicle-infrastructure cooperative perception, which allows
additional information from sensor devices equipped on road-
side infrastructure to strengthen single-vehicle perception
capability, has attracted widespread research attention in
both academia and industry [4]. Infrastructure sensors, such
as cameras and LiDARs, are typically mounted at higher
positions than those on vehicles, and thus have wider fields
of view. They can provide intelligent vehicles with additional
sensing resources to enable significant improvements in sens-
ing range and accuracy. Vehicle-infrastructure cooperation
holds the potential to revolutionize the entire autonomous
driving industry. However, thus far, the research is still in
its early stages. For example, unlike the numerous publicly
available datasets for single-vehicle perception, there is
a lack of high-quality real-world datasets, which are key
to training and validating deep learning-based perception
algorithms. Most datasets used for vehicle-infrastructure
cooperative perception are generated using simulation tools.
Recently, the DAIR-V2X dataset [5] collected from practical
traffic scenarios was published to support investigations
of vehicle-infrastructure cooperative 3D object detection
(VIC3D).

More importantly, existing works mainly focus on single-
modal perception, that is, conducting sensing tasks based on
either camera images or LiDAR point clouds. LiDAR can
generate high-resolution point cloud data with high ranging
accuracy, which means that it can provide accurate and
detailed target position, shape and contour information. This
method is useful for object detection, obstacle avoidance,
and navigation. However, it lacks rich color and texture
information, and is easily affected by atmospheric interfer-
ence. Conversely, images possess fuzzy depth measurements
but offer detailed texture and color information. Exploiting
a single type of sensor equipped on the vehicle and
infrastructure is relatively straightforward, but it cannot take
full advantage of the available multimodal sensing data.
Nevertheless, multimodal sensing data fusion is challenging,
because the physical world is represented in different ways
that are difficult to integrate.

To address this issue, we propose a new framework
called ViT-FuseNet, for vehicle-infrastructure cooperative
perception using multimodal sensing data. The framework
takes the vehicle-side point cloud and image, as well as the
roadside point cloud, as inputs to carry out the 3D object
detection task. To this end, the point cloud captured by the
vehicle LiDAR is first overlaid with that captured by the
roadside LiDAR to improve the perception range and quality
of the point cloud. Subsequently, the backbone extracts

features from the integrated point cloud and vehicle images.
Then, themultimodal fusionmodule fuses the featuremaps of
the two different modes to generate multimodal feature maps,
which can provide rich semantic and spatial information in
one feature map. These feature maps are used to obtain the
final detection output. The key component of ViT-FuseNet,
that is, the multimodal fusion module, is established based
on the cross-attention mechanism, which utilizes the vision
Transformer (ViT) to unify the features of two different
modalities into the same representation space, enabling effec-
tive cross-modal feature fusion. Moreover, compared with
traditional convolutional networks, the attention mechanism
can find the relationship between different modalities based
on global features in the early stages, thereby enhancing the
representation effectiveness of fusion features [6].

Extensive experiments were conducted on the DAIR-V2X
dataset [5] to evaluate the performance of ViT-FuseNet
by comparing it with the benchmarks of the dataset and
several advanced cooperative perception methods, including
V2VNet [7] and DiscoNet [8]. The results show improve-
ments of 17.16% and 23.71% in 3D-mAP (Intersection-over-
Union (IoU)=0.5) over the early- and late-fusion LiDAR
detection benchmarks, respectively. With sufficiently good
V2X transmission and well-synchronized vehicle-side and
infrastructure-side point clouds, ViT-FuseNet achieves an
improvement of 6.17% in 3D-mAP (IoU=0.5) compared
with the advanced cooperative perception methods. The
proposed framework also outperforms the baselines for
single-vehicle detection. Additional experiments were con-
ducted on the multimodal fusion module to reveal the critical
role of position embedding in learning global information
when using a ViT for multimodal fusion. Multimodal fusion
with cross-attention is also found to capture more spatial
information and exhibit better performance in detecting small
objects. Thus, the advantages of the proposed framework are
clearly demonstrated.

Our main contributions are summarized as follows:
• We propose a vehicle-infrastructure cooperative percep-

tion framework for the VIC3D problem, called ViT-
FuseNet. It accommodates inputs from heterogeneous
sensor devices and facilitates end-to-end detection in
vehicle-infrastructure cooperative scenarios to enhance
the accuracy of 3D object detection.

• We introduce a novel vision Transformer module that
employs a cross-attention mechanism for multimodal
feature fusion. This module can effectively combine
data from different modal sensors while capturing the
interactions of features in both adjacent and global
spatial domains. This ensures that the fused features
provide rich and valuable information for cooperative
perception tasks.

• We evaluate the proposed ViT-FuseNet framework on
the real-world DAIR-V2X dataset. Superior perfor-
mance was achieved compared with several state-of-the-
art object detection methods.
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II. RELATED WORK
Three-dimensional (3D) object detection is an important
branch of computer vision. It utilizes sensors, such as
cameras and LiDAR installed on vehicles, along with corre-
sponding perception algorithms, to detect traffic participants.
However, with the high cost of single-vehicle perception,
attention has gradually shifted towards vehicle-infrastructure
cooperative perception technology. It uses both roadside
infrastructure and on-board perception devices to perform
object detection tasks, expanding the field of view while
sharing the cost burden. It also introduces new challenges,
such as the fusion of heterogeneous perception devices. The
ViT technology provides a new approach for multimodal
perception. It employs the attention mechanism to capture
the correlation information between the adjacent and global
features.

A. 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
Object detection plays a crucial role in autonomous driving
perception. Its accuracy limits the quality of downstream
tasks such as planning and decision-making. Based on
the sensor types, 3D object detection can be classified
into three categories: camera-based methods, LiDAR-based
methods, and multi-sensor-based methods. An example of
the camera-based method is ImVoxelNet [9], which is a
novel convolutional method based on posed monocular or
multi-view RGB images. Another example is the BEV-
former [10], which projects 2D images onto the bird’s-eye
view (BEV) to perform multi-camera-based 3D detection.
LiDAR-based methods are the most widely used approach
for autonomous driving. PointNet [11] and PointNet++ [12]
are pioneering studies that directly apply neural networks to
point clouds. Two other 3D detection methods emerged later,
i.e., the voxel-based and pillar-based methods. VoxelNet [13]
discretizes the point cloud into a 3D grid, and then a 3D
convolutional detection network is applied. SECOND [14]
investigated an improved sparse convolution and a new form
of the angle-loss regression method, which significantly
increases the speed of both training and inference. Because
processing 3D voxels is often computationally expensive,
pillar-based methods, such as PointPillars [15], have been
developed to convert voxels with the same z-axis into a 2D
pillar representation in the BEV for faster feature processing.
In this study, we select PointPillars as the backbone for
processing LiDAR point clouds because of its fast inference
speed and low memory usage.

Multi-sensor-based methods, such as Pointpainting [16]
and MVXNet [17], utilize both camera and LiDAR data.
Images typically provide rich semantic and texture infor-
mation, whereas LiDAR point clouds provide clear distance
and depth information. Ideally, integrating the two types
of sensor data should yield better results than using only
one type. However, early works on leveraging the synergy
of cameras and LiDAR, such as MV3D [18], may lead to
even worse performance than the algorithms that only utilize
LiDAR point clouds (e.g., PointPillars [15] and STD [19]) to

perform detection. This is because it is difficult to effectively
align and integrate data with different representations (such
as LiDAR point cloud and camera image data) to obtain a
unified semantic feature space, which is also the focus of this
study.

B. COOPERATIVE PERCEPTION
As an import application of the V2X communication
technology, multi-agent cooperative perception has started
to attract research attentions. For instance, V2VNet [7]
applies a graph neural network-based multilayer infor-
mation iteration to integrate sensing data collected from
multiple vehicles to achieve better perception performance.
When2com [20] saves channel resources through handshake
communication mechanisms to ensure real-time perception.
DiscoNet [8] adopts knowledge distillation to leverage the
advantages of early fusion (raw data fusion) and middle
fusion (feature fusion). OPV2V [21] proposed a graph-based
self-attention feature fusion to enhance perception perfor-
mance, along with V2X-Sim [22], serving as two simulated
datasets for research onmulti-vehicle cooperative perception.
V2X-ViT [23] introduced a heterogeneous multi-agent atten-
tion module to fuse sensing information among different
types of intelligent agents. These pioneering works are
conducted based on customized or simulated data, whichmay
not be able to fully reflect the issues presented in real-world
scenarios, such as imperfect temporal and spatial data align-
ment, limited communication bandwidth, and non-negligible
transmission latency. Thus, comprehensive investigation and
resolution using real-world data is necessary.

Recently, DAIR-V2X [5] releases a large-scale real-world
dataset, collected by both vehicle and roadside LiDAR and
cameras, for vehicle-infrastructure cooperative 3D object
detection (VIC3D). Several baseline algorithms for early
and late fusion are also provided. Based on this dataset,
FFNet [24] develops an intermediate feature fusion frame-
work that addresses the challenge of temporal asynchrony
between the input of the framework. However, the majority of
existing studies on VIC3D still focus on single-modal sensing
fusion, mainly using point clouds. The benefits of perception
with LiDAR and camera fusion have not been fully exploited.
We intend to fill inthis knowledge gap.

C. VISION TRANSFORMER
Transformer [6] was initially developed for machine trans-
lation. Its advantages lie in the use of the multihead
self-attention mechanism and feed-forward networks to
capture long-range interactions between words. Dosovit-
skiy et al. [25] proposed a Vision Transformer (ViT) to unify
the fields of computer vision and natural language processing
(NLP), by dividing an image into multiple image patches,
each being treated as a visual token. To address the challenge
of heavy computational complexity that hinders scalability to
long sequences or high-resolution images, several methods
introduce locality into self-attention, such as Swin [26] and
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CSwin [27]. Typically, they adopt a hierarchical structure to
progressively increase the receptive field and capture longer
dependencies. The core idea of the attention mechanism
is to selectively identify and focus on a small amount
of crucial information relevant to the current task, while
ignoring less significant information. The ViT framework
with a self-attention mechanism has proven to be effective
in modeling homogeneous structured data. However, it has
not yet been widely applied for the representation modeling
of multimodal heterogeneous data in VIC3D tasks.

To address the above issues, in this study, we propose
a ViT-based solution for vehicle-infrastructure cooperative
multimodal fusion perception that effectively integrates
camera and LiDAR data with different representations. Our
method can learn to capture the correlation between image
features and point cloud features through a cross-attention
mechanism and unify the information from two modalities
into a common feature map. In addition, it enhances
the vehicle-side sparse point cloud through the infrastruc-
ture point cloud and improves perception performance.
The middle fusion approach can significantly reduce the
computation and communication resources. Details of
the proposed framework are presented in the following
section.

III. METHOD
We consider a scenario in which an intelligent vehicle
equipped with LiDAR and a camera drives close to a
roadside infrastructure with LiDAR. The three sensors have
an overlapping field of view (OFV). We aim to develop
a multimodal feature fusion framework to realize VIC3D
and enhance the performance of vehicle-side detection.
To achieve this goal, PointPillars [15] is employed as
the backbone for LiDAR point cloud feature extraction.
PointPillars was originally developed for object detection
by using only point clouds. However, this may result in
limited detection accuracy owing to the lack of semantic
and color information in the LiDAR data. To improve
the performance, ViT-FuseNet incorporates a Transformer
encoder based on the cross-attention mechanism, effectively
integrating features from LiDAR point clouds and camera
images. The fused feature map contains rich semantic and
depth information, which effectively compensates for the
sparse LiDAR point cloud features and improves detection
performance.

The overall architecture of our framework is illustrated
in Fig. 1, and includes four major phases: 1) data shar-
ing, 2) feature extraction, 3) ViT multimodel fusion, and
4) detection head. The framework accommodates inputs
from heterogeneous sensor devices and facilitates end-to-
end detection in vehicle-infrastructure cooperative scenarios
to enhance the accuracy of 3D object detection. The key
component of our framework is the third part: the ViT
multimodal fusion module. It can effectively combine data
from different modal sensors while capturing the interactions
of features in both adjacent and global spatial domains. In the

following sections, we describe the main architecture design
of the framework in Section III-A and the details of the ViT
multimodal fusion module in Section III-B.

A. MAIN ARCHITECTURE DESIGN
1) DATA SHARING
ViT-FuseNet aims to integrate the roadside LiDAR and
vehicle-side camera sensing data with the vehicle-side
LiDAR point cloud to carry out VIC3D. We assume that the
V2X communication between the vehicle and infrastructure
is of sufficient quality for data exchange to be realized with
negligible error and delay. In the first phase of the framework,
the infrastructure attains the real-time location of the vehicle,
and determines the OFV. It then projects its LiDAR point
cloud in the OFV onto the vehicle coordinate system
using a coordinate transformation matrix, and transmits it
to the vehicle. The vehicle overlays the received roadside
infrastructure point cloud with its own LiDAR point cloud,
and determines the region of multimodal fusion based on the
perception range of the camera.

2) FEATURE EXTRACTION
Upon reception of the infrastructure sensing data, the second
phase of ViT-FuseNet performs feature extraction. Two
networks are adopted: one for image features and one for
point cloud features. The image branch uses a semantic
segmentation network for feature extraction to capture
abundant colors and semantic features. In our study, we use
the output of the last DSConv layer of a pre-trained Fast-
SCNN network [28] as the original image feature map.
The feature map is upsampled to the original image size
and aligned with the dimension of the LiDAR point cloud
features, generating the image feature map, denoted by Fi ∈

RH×W×C with H is the height of the feature map, W is the
width, C is the number of channels, and R is the set of real
numbers.

For the point cloud branch, we leverage the anchor-based
PointPillars backbone [15] to extract features because of its
rapid inference speed and optimized memory usage. The
integrated point cloud is first converted to a stacked pillar
tensor and then scattered to a 2D pseudo-image and fed
into the PointPillars backbone. The backbone generates the
informative feature map Fp ∈ RH×W×C . Fi and Fp represent
the features of the two different modalities.

3) VIT MULTIMODAL FUSION
The intermediate features Fi and Fp, which are extracted
from the camera and LiDAR, are input to the key com-
ponent of our framework, namely the ViT multimodal
fusion module. The Transformer encoder in this module
employs a cross-attention mechanism to iteratively learn
the correlation between the image and point cloud features,
thereby facilitating their interactive fusion. The powerful
modeling capability of ViT enables the generation of a
multimodal feature map, denoted as Fm ∈ RH×W×C . The
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FIGURE 1. The ViT-FuseNet framework and the four major operation phases: 1) Data sharing: Attain LiDAR point cloud from the infrastructure through
V2X communication, 2) Feature extraction: Extract image and point cloud features, 3) ViT multimodal fusion: Employ the cross-attention mechanism to
learn interactions between multimodal features and fuse them in the same representation space, 4) Detection head: Apply a detection head for object
predictions.

implementation details of this key module are explained in
Section III-B.

It is important to note that, compared with the traditional
method of simply splicing two different modal features,
our fusion module has no obvious bias to the two modal
information. The model dynamically determines the key
features to be fused based on the desired outcomes.
Meanwhile, considering that the cross-attention mechanism
requires explicit Query, Key, and Value matrices, we use
point cloud feature as Query and image feature as Key and
Value. This enables the model to query image features that
can significantly enhance the point cloud features for positive
correlation fusion.

4) DETECTION HEAD
The final phase involves performing the 3D object detection
using the output of the ViT multimodal fusion module Fm.
Two convolution layers are employed for box regression and
classification. We adopt a Single Shot Detector (SSD) [29] as
the 3D object detection head to generate 3D outputs for more
accurate localization and recognition.

B. VIT MULTIMODAL FUSION
Our goal is to design a customized ViT module that can
handle the common challenges of multimodal feature fusion
in vehicle-infrastructure cooperative perception tasks. The
structure of the module is illustrated in Fig. 2(a). It consists
of three sequential steps. First, to effectively utilize the
Transformer to fuse point cloud and image features, the
patch embedding step is carried out to process the feature
map into an appropriate dimension. Subsequently, a novel
Transformer encoder formed by aMultiHeadCross-Attention
(MCA) block and a multilayer perceptron (MLP) block is
employed to generate image-enhanced features. Finally, the

output of the Transformer encoder goes into the feature
fusion step, which effectively integrates the image-enhanced
features with the original point cloud features. These methods
significantly improve the effectiveness of feature fusion for
different representation forms, leading to a robust aggregated
feature representation for detection. The detailed design of
each step is as follows.

1) PATCH EMBEDDING
The standard Transformer uses a 1D sequence of token
embeddings as the input. The image and point cloud feature
maps obtained through their feature extraction networks
are both 2D. To produce proper inputs to the Transformer
encoder, we implement patch embedding on the image feature
map Fi and the point cloud feature map Fp respectively.
The procedure for each feature map is illustrated in Fig. 3.
We reshape both the image and point cloud feature map into
a sequence of flattened 2D patches x ip ∈ RL×

(
P2×C

)
, where

i is the serial number, C (64) is the number of channels,
P × P (16 × 16) is the resolution of each feature patch, and
L = HW/P2 (837) is the resulting number of patches. Next,
we flatten the patches and map them to D (256) dimensions
with a trainable linear projection matrix E ∈ R

(
P2×C

)
×D to

accommodate the multihead attention mechanism as

z0 = [x1pE; x2pE; · · · ; xNp E] + Epos, (1)

where Epos ∈ RL×D is the position embedding introduced
in the next paragraph. Finally, both the image and point
cloud feature sequences have dimensions of L × D as z0,
where L serves as the effective input sequence length for
the Transformer encoder and each patch within the sequence
has a feature vector with a length of D. It is noteworthy that
Eq. (1) is a normal form operation for both the image and the
point cloud feature maps.
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FIGURE 2. (a) The structure of the ViT multimodal fusion module, and (b) the Transformer Encoder. The fusion module consists of three
sequential steps: patch embedding, Transformer encoder and feature fusion. The main blocks of Transformer encoder are MultiHead
Cross-Attention and MLP blocks.

FIGURE 3. The Patch Embedding procedure: We split a feature map into
fixed-size patches, linearly embed each of them, add position embedding,
and feed the resulting sequence of vectors to the Transformer encoder.

The Transformer encoder simultaneously processes all
patches in the sequence, which means that the model
itself does not consider the order of each patch. However,
context correlation typically exists between adjacent feature
patches [25].Moreover, our research in Section IV-C suggests
that positional information between the feature patches is
essential. Therefore, position embeddings Epos are added
to the patch embeddings to retain positional information,
as shown in Fig. 3. We employ standard learnable 1D
position embedding [25] because we do not observe notable
performance improvements when using more advanced
2D-aware position embedding in Section IV-C, which agrees
with the conclusion of Dosovitskiy et al. [25]. The resulting
sequence of embedding vectors z0 as shown in Eq. (1) from
LiDAR and camera feature maps serves as the input to the
Transformer encoder.

2) TRANSFORMER ENCODER
This step is responsible for capturing the correlation and
cross-modal interactions between the encoded point cloud
features and image feature sequences. The overall architec-
ture of our encoder, which mainly consists of a MCA block

and a MLP block, is illustrated in Fig. 2(b). The output of the
former, denoted as z′f , can be expressed as

z′f = MCA
(
LN

(
zi0, z

p
0

))
+ zi0, (2)

where zi0 and z
p
0 are the sequences of feature vectors from the

images and point clouds, respectively. The output of the MLP
block, denoted by zf , is

zf = MLP
(
LN

(
z′f

))
+ z′f , (3)

which is also the output of the Transformer encoder.
Moreover, layer normalization (LN) is applied before each
block, and residual connections are employed after each
block to facilitate the learning of identity mapping by the
model and mitigate the issue of gradient vanishing.

Standard cross-attention is a widely-used building block
in deep neural network architectures. It can capture the
interrelationship between different modalities and long-range
interactions at various scales [23], thus, we hope to utilize
its ability to extract image features that can enhance point
cloud features. For each feature vector in the input sequence
z0 shown in Eq. (1), we employ three trainable linear layers
with different weight matrices to obtain query Q, key K , and
value V . Specifically, Q is projected from the point cloud
feature sequence, whereas K and V are projected from the
image feature sequence. The weight matrices of the three
linear layers, Wq, Wk , and Wv, are initialized with random
Kaiming initialization [30] to increase the robustness. The
resulting Q, K , and V serve as inputs for the MCA block
shown in Fig. 2(b), with dimensions of L × D, matching the
original sequence dimensions.

In the MCA block, we compute the attention weights
based on the pairwise similarity between the features in the
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FIGURE 4. The Feature Fusion procedure: The attention features
generated by the Transformer encoder go through a series of processing,
and then are fused with the original point cloud features.

sequence and their corresponding Q and K representations.
Subsequently, we use these attention weights to compute a
weighted sum over all V in the sequence as

Cross-Attention (Q,K ,V ) = softmax
(
QKT
√
D

)
· V , (4)

where KT is the transpose of matrix K . This operation allows
us to obtain a weighted image feature matrix that can enhance
the point cloud features.

MCA is an extension of the cross-attention (CA) where
we run k parallel cross-attention operations, called ‘‘heads’’,
and project their concatenated outputs. It enables the model
to learn feature representations from different subspaces,
effectively attend to features of various aspects of the input,
capture richer contextual information, and enhance model
expressiveness and perceptual capabilities [31]. To maintain
consistent computation and parameter counts when varying k ,
the number of feature map channels D of each set is usually
set to Dh by D/k . At this stage, the dimensions of Q, K , and
V are transformed into k × L × (D/k). Each set zi, including
Qi, Ki, Vi, has dimensions of L × D/k . The CA is applied
within each set as

MCA (z0) = Concat (CA (z1) ,CA (z2) , . . . ,CA (zk)) , (5)

where zi, (i = 1, 2, . . . , k) is each set of z0 in Eq. (1). The
results of the k sets are concatenated along the channels to
generate the output of the MCA block. Subsequently, the
encoder module produces the final output through residual
connections, LN and an MLP block as shown in Eq. (3).

3) FEATURE FUSION
The Transformer encoder module generates weighted image
sequence features that can enhance the point cloud features.
It is necessary to restore these weighted image sequence
features to match the size of the original feature map
and integrate them with the original point cloud features.
As depicted in Fig. 4, the dimensions of the image sequence
features are L×D. Initially, the sequence features are stacked
to reshape a 2D feature map with dimensions of (H/P) ×

(W/P) × D. Subsequently, a 1 × 1 convolution is employed

to restore the dimensions of the feature map to (H/P) ×

(W/P) ×C , with the same number of channels as the original
features. Bilinear upsampling is then utilized to resize the
feature map from (H/P) × (W/P) to H × W , generating
weighted image features with dimensions of H × W × C .
Finally, the weighted image features are concatenated with
the original point cloud features along the channels, and
1 × 1 convolution is used for channel fusion to reshape the
number of channels to C . The procedure can be expressed as

Fm = Conv
(
Upsample

(
LN

(
zf

))
⊕ Fp

)
+ Fp, (6)

where zf is the output of the Transformer encoder and Fp
is the original point cloud feature from the beginning. The
resulting fused feature Fm with rich image and point cloud
information is fed into the detection head to accomplish the
3D object detection tasks.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION
In this section, we use the DAIR-V2X dataset [5] to
evaluate the performance of our ViT-FuseNet framework for
the VIC3D task. We compared the proposed method with
several 3D object detection methods that utilize different
fusion strategies. The experimental results demonstrate that
our solution outperforms other existing methods, supported
by sufficiently good V2X communication. Furthermore,
we examined the impact of position embedding in the ViT
multimodal fusion module on the perception performance.
The detection results are all evaluated by the mean Average
Precision (mAP) at an intersection-over-union (IoU) thresh-
old of 0.50 and 0.70, respectively.

A. DATASET AND EXPERIMENTAL SETUP
The DAIR-V2X dataset [5] is a large-scale real-world
vehicle-infrastructure cooperative perception dataset com-
posed of images and point clouds captured by cameras
and LiDARs mounted on both vehicles and roadside infras-
tructure. It covers over 100 traffic scenarios collected in
the Beijing Advanced Autonomous Driving Demonstration
Zone. The dataset is partitioned into three subsets: the
vehicle-infrastructure cooperative dataset (DAIR-V2X-C),
the infrastructure dataset (DAIR-V2X-I), and the vehicle
dataset (DAIR-V2X-V). The DAIR-V2X-C dataset com-
prises 9,311 pairs of vehicle-infrastructure data frames,
offering cooperative annotations (only for one single class
‘‘Car’’) from both vehicle and infrastructure perspectives.
The DAIR-V2X-V dataset has 22,325 data frames, with
labels on three different classes of objects, including ‘‘Car’’,
‘‘Pedestrian’’, and ‘‘Bicycle’’.
Our model is trained and tested using the PyTorch deep

learning framework in a Linux environment on an NVIDIA
GeForce RTX 3090 GPU. PointPillars [15] is used as the
backbone network. Hence, the network parameter setup
and training strategy are chosen mainly following [15].
Specifically, the parameters used in the ViT multimodel
fusion module presented in Section III-B are listed in Table 1.
It is worth noting that these parameters can be modified and
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TABLE 1. The network parameters of the ViT multimodal fusion module.

should vary based on factors such as the number of attention
heads and position embedding dimensions. In our work,
to balance performance andmemory usage, the dimensions of
the original input feature maps Fi and Fp, that is,H×W ×C ,
are set to be 496 × 432 × 64, and the number of sequence
features is set to D = 256. The number of attention heads for
the MCA block is chosen to be k = 4, resulting in each set
feature having D/k = 64 channels.
The training process for the proposed model consists of

90 epochs. The initial learning rate is set to 0.0003 and
the maximum learning rate is set to 0.003. Throughout the
training, the learning rate follows a cosine function to control
the step size, initially increasing and then decreasing. The
ascending phase accounts for 40% of the entire training
process to enhances robustness. The detection ranges of the
vehicle-side point cloud on the x, y, z axes are constrained to
be (−39.68, 39.68), (0, 69.12), (−3, 1) meters, respectively.
The voxel sizes for the x, y, and z axes are 0.16, 0.16, and
4 meters, respectively. All input data are pre-converted to the
KITTI format [32], following the guidelines specified in [5].
They are subsequently divided into training, validation, and
test sets at a 5 : 2 : 3 ratio. Evaluation is performed on the
validation set.

B. PERFORMANCE EVALUATION
We compare our method with several existing models for 3D
object detection. They cover a wide range of cooperative per-
ception and sensing fusion strategies, including independent
perception (i.e., detection with data from sensors mounted on
a single entity), cooperative perception (i.e., detection with
data from sensors mounted on multiple entities), no fusion
(i.e., detection with a single sensor), early fusion (i.e., raw
data fusion), middle fusion (i.e., feature fusion), late fusion
(i.e., detection result fusion), and single-modal fusion (that
is, fusion of LiDAR data only), and multimodal fusion

(i.e., fusion of LiDAR and camera data). To ensure a fair
comparison, all models that perform the detection task using
the LiDAR point cloud utilize the PointPillars model as the
backbone.

1) VIC3D OBJECT DETECTION
We first compare the performance of different models
in conducting the 3D object detection task. Independent
perception solutions are applied to the vehicle-side sensing
data from the DAIR-V2X-C dataset. For cooperative per-
ception approaches, infrastructure-side data are further used
to enhance the vehicle-side detection performance. Table 2
presents the results of this evaluation. Only the class ‘‘Car’’ is
taken into account, because dataset only provides cooperative
annotations of the class ‘‘Car’’.

These methods include three baseline methods from the
DAIR-V2X benchmarks: non-cooperation (e.g., PointPil-
lars [15]), early fusion, and late fusion (e.g., TCLF [5]).
Additionally, we compare it with the existing advanced
cooperative perception method DiscoNet [8], large-scale
vehicle-to-vehicle cooperation network V2VNet [7], feature
fusion baseline FFNet [24] which aims to address latency
and localization errors, and vehicle-infrastructure cooperative
multimodal perception network Multistage Fusion [34].
The detection performance is measured using KITTI [32]
evaluation detection metrics: BEV-mAP and 3D-mAP with
0.5 IoU and 0.7 IoU, respectively. Clearly, the proposed
ViT-FuseNet framework exhibits better performance than the
other solutions.

Specifically, compared with the single-vehicle perception
baseline PointPillars [15], our method shows a signifi-
cant improvement of 31.71% in 3D-mAP (IoU=0.5) and
29.5% in BEV-mAP (IoU=0.5). These results reveal the
advantages of conducting vehicle-infrastructure cooperative
multimodal perception in future autonomous driving systems.
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TABLE 2. VIC3D object detection performance comparison, on the DAIR-V2X-C dataset. The performance of the F-Cooper, V2VNet, DiscoNet, OPV2V is
provided in [35]. ‘‘-’’ means that the associated results are not reported. ViT-FuseNet-V means only using vehicle point clouds as LiDAR input without
vehicle-infrastructure cooperation.

TABLE 3. Performance gained by ViT multimodal fusion module on the DAIR-V2X-V dataset. The performance of the ImVoxelNet, Pointpillars, SECOND,
and MVXNet models is provided in [5].

Additionally, compared with the early fusion and late
fusion benchmarks provided by DAIR-V2X [5], the pro-
posed ViT-FuseNet achieves an improvement of 17.16% in
3D-mAP (IoU=0.5) and 12.83% in BEV-mAP (IoU=0.5).
Such observations confirm that camera sensing data play a
positive role in supporting point cloud data in perception
tasks, and the potential of multimodal information should
be taken into consideration. The multimodal fusion module
proposed in this study, which is based on the cross-
attention mechanism, effectively integrates features from two
distinct representation forms, resulting in efficient fusion and
enhanced perception performance.

F-cooper [33], V2VNet [7], DiscoNet [8], OPV2V [21],
and FFNet [24]1 have recently emerged as 3D object
detection models via feature fusion. In comparison with these
advanced perception methods, our ViT-FuseNet framework
achieves varying degrees of improvement, ranging from
6.17% to 23.96% in 3D-mAP (IoU=0.5). The observations
show that the effective fusion of data from two different
modalities of features through the cross-attention mecha-
nism enables significant enhancement of LiDAR sensors.
And the rich color and texture information from image
features are extracted to facilitate LiDAR-based perception
methods to effectively reduce instances of missed detection
and false perception. Furthermore, the point cloud of the
infrastructure LiDAR offers abundant information for vehicle

1The FFNet is originally proposed to address position misalignment and
latency error issues in practical V2X communications. In this study, the
data transmission from the infrastructure to the vehicle is assumed to be
sufficiently good.

perception, compensating for the sparsity of the vehicle point
cloud.

In addition, a Multistage Fusion method is developed
in [34] to carry out vehicle-infrastructure cooperative mul-
timodal perception. The vehicle-side utilizes a two-stage
detection network to fuse the feature maps of images and
point clouds, which are then combined with the infrastructure
detection results to generate the final detection outcomes.
When compared with the baselines of the early fusion
and late fusion methods [5], the Multistage Fusion method
exhibits significant performance improvements, as shown in
Table 2. This demonstrates the superiority of multimodal
information in the field of object detection. However,
it does not surpass all LiDAR-based feature fusion methods.
Our method, with a detection accuracy improvement of
7.96% in 3D-mAP (IoU=0.5) and 2.78% in BEV-mAP
(IoU=0.5) over the Multistage Fusion model, achieved
the best performance among all feature fusion methods.
Therefore, feature fusion of different modalities is affected
by different strategies. Our solution utilizes cross-attention
to effectively capture the correlation between heterogeneous
modalities, whereas ViT leverages its powerful modeling
capabilities to encode and reconstruct the fused features,
thereby unifying the representation space of the two different
modalities.

Finally, the ViT-FuseNet-V model shown in Table 2 refers
to the case in which the proposed ViT-FuseNet framework
uses only the vehicle point clouds as its LiDAR input.Without
vehicle-infrastructure cooperation, a decrease in detection
performance ranging from 0.27% to 1.82% is observed.
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TABLE 4. Achievable performance with different position embedding methods.

This suggests that leveraging infrastructure information can
lead to better performance than single-vehicle perception,
mitigating the problem of detection bias. More importantly,
it can enhance the system robustness.

In conclusion, with sufficiently strong V2X communi-
cation, our proposed method outperforms existing model
perception methods. Moreover, as will be shown in
Section IV-B2, the method introduced in this paper is
applicable to various scenarios, including both single-vehicle
and vehicle-infrastructure cooperation scenarios, showcasing
a certain level of transferability.

2) EFFECT OF VIT MULTIMODAL FUSION MODULE
We further investigate the advantages of the ViT multimodal
fusion module. The DAIR-V2X-C dataset only has labels
for a single category of ‘‘Car’’ when cooperation, and the
cooperative methods are only verified on ‘‘Car’’. To better
illustrate the detection capability of the proposed method,
we use the DAIR-V2X-V dataset, which provides three object
categories, to conduct experiments. The four baseline models
provided by [5] are considered as benchmark methods. The
evaluation is carried out using the KITTI [32] evaluation
method, which includes three levels of difficulty: easy,
moderate, and hard. The experimental results are presented
in Table 3. Clearly, our method consistently achieves better
performance in terms of mAP compared with all other
approaches. For instance, considering the best method among
the baselines, that is,MVXNet [17], ourmethod demonstrates
an improvement of 3.78% in 3D-mAP (IoU=0.5) for
‘‘vehicle’’, 6.48% for ‘‘pedestrian’’, and 6.5% for ‘‘bicycle’’
in the moderate-level category.

It is observed from the results presented in Table 3 that
multimodal fusion perception achieves superior performance
improvements in detecting small objects, such as pedestrians
and bicycles, compared with large objects. This is due
to the fact that the information contained in point clouds
is limited and includes only shape and depth. For small
objects, the effective points in the point cloud are limited and
sparse. Therefore, it is difficult to make accurate inference.
For instance, objects such as street light poles and signs
frequently exhibit point cloud features similar to those of
pedestrians, resulting in false detections. The integration
of multimodal features can effectively resolve this issue
by utilizing the abundant texture and color information
available in images. The effective implementation of mul-
timodal feature fusion is in general a challenging task.
Our framework provides a proper colution. In our study,
the powerful cross-modal feature fusion capability of the

cross-attention mechanism and the modeling capability of
the ViT framework are employed to effectively integrate the
features of images and point clouds into a common semantic
space, resulting in a significant enhancement in multimodal
perception performance.

C. IMPACT OF POSITION EMBEDDING
To evaluate the influence of different position embedding
methods on the performance of the ViT multimodal fusion
module, we conducted experiments with different methods of
encoding spatial information, including no position embed-
ding, 1D position embedding, and 2D position embedding.
All the models undergo 50 epochs of training and are
evaluated using the vehicle-side data of the DAIR-V2X-C
dataset.

The achievable performance of the ViT FuseNet model
is summarized in Table 4. It is evident that there is a
performance gap between cases with and without position
embedding. However, a small difference in terms of detection
accuracy exists for the different methods of encoding
positional information. We conjecture that encoding spatial
information is less critical in our Transformer encoder
because it operates on patch-level inputs instead of pixel-
level inputs. The former has significantly smaller spatial
dimensions than the latter. Consequently, learning to depict
spatial relationships in this resolution is equally feasible for
different position embedding strategies. Reference [25] also
mentioned that position embedding is necessary when the
vision Transformer is used to carry out object detection tasks,
but position embeddingmethods of different dimensions have
little impact on the results, because ViT perceives patch-level
features.

V. CONCLUSION
In this study, we propose a novel multimodal feature fusion
framework to conduct vehicle-infrastructure cooperative
perception. The key component is a vision Transformer
module designed based on a cross-attention mechanism,
which effectively overcomes the challenge of integrating
multimodal sensing data with distinct representation forms.
Extensive experiments demonstrate that ViT-FuseNet notably
enhances cooperative perception accuracy and outperforms
existing advanced methods when data transmission is
supported by high-quality V2X communication. Further-
more, our multimodal feature fusion module demonstrated
effective fusion between different modalities compared
with traditional fusion methods. It effectively captures the
interrelationships between heterogeneous modalities, thereby
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facilitating the efficient fusion of multimodal features.
In addition, the framework exhibits a straightforward exten-
sion to single-vehicle perception tasks, showing a certain
level of scalability.

Minimizing transmission costs, practical implementation
and deployment are also of great importance in VIC3D tasks,
and will be treated as a meaningful direction and studied in
our future work.
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