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ABSTRACT Machine learning-based systems have presented increasing learning performance, in a wide
variety of tasks. However, the problem with some state-of-the-art models is their lack of transparency,
trustworthiness, and explainability. To address this problem, eXplainable Artificial Intelligence (XAI)
appeared. It is a research field that aims to make black-box models more understandable to humans. The
research on this topic has increased in recent years, and many methods, such as LIME (Local Interpretable
Model-Agnostic Explanations) and SHAP (SHapley Additive exPlanations) have been proposed. Machine
learning-based IntrusionDetection Systems (IDS) are one of themany application domains of XAI. However,
most of the works about model interpretation focus on other fields, like computer vision, natural language
processing, biology, healthcare, etc. This poses a challenge for cybersecurity professionals tasked with
analyzing IDS results, thereby impeding their capacity to make informed decisions. In an attempt to
address this problem, we have selected two XAI methods, LIME, and SHAP. Using the methods, we have
retrieved explanations for the results of a black-box model, part of an IDS solution that performs intrusion
detection on IoT devices, increasing its interpretability. In order to validate the explanations, we carried out
a perturbation analysis where we tried to obtain a different classification based on the features present in the
explanations. With the explanations and the perturbation analysis we were able to draw conclusions about
the negative impact of particular features on the model results when present in the input data, making it
easier for cybersecurity experts when analyzing the model results and it serves as an aid to the continuous
improvement the model. The perturbations also serve as a comparison of performance between LIME and
SHAP. To evaluate the degree of interpretability increase, and the explanations provided by each XAImethod
of the model and directly compare the XAI methods, we have performed a survey analysis.

INDEX TERMS Artificial intelligence, explainability, intrusion detection system, local interpretable model-
agnostic explanations, machine learning, shapley additive explanations.

I. INTRODUCTION
Nowadays, network security is extremely important. It is
estimated that by this year will be a trillion physical
devices connected to the internet [1]. To cybersecurity, this
is a big concern. Devices connected to the Internet with
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wide distribution and openness are the ideal targets for
cyber attacks. Since new equipment with this characteristics
is being made and connected every day, collecting and
processing private information, they become the perfect
targets for attackers [2].

In recent years, the field of Artificial Intelligence (AI)
has seen significant advancements in terms of learning
performance of Deep Learning (DL) methods, compared
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FIGURE 1. Explainability of machine learning models appear inverse to
their prediction accuracy [3].

to traditional Machine Learning (ML) methods. Intrusion
Detection Systems (IDS) have proven to be effective,
especially with the use of Deep Neural Networks (DNNs)
that have improved the detection rates of such models.
However, the problem with some state-of-the-art models is
their complexity, making them hard to understand when
analyzed by humans.

There are models considered interpretable, e.g., Decision
Trees, Decision Rules and Linear Models. Unfortunately,
usually there is a tradeoff between explainability of the model
and its learning performance. Explainability of a machine
learning model is usually inverse to its learning performance
[3]. Models with high learning performance are not as
explainable as simpler models as Figure 1 shows. We can see
so in the figure that Decision Trees have high explainability
values. However, looking at the learning performance, they
are the learning techniques that present the lowest learning
prediction. In contrast, Deep Learning techniques such as
Deep Neural Networks (DNNs) show high values of learning
performance but are the least explainable. The motivation
for eXplainable Artificial Intelligence (XAI) research is to
increase the explainability of these high learning performance
models.

eXplainable Artificial Intelligence (XAI) is a research
field that aims to address the lack os explainability and
trusworthiness of black-box models and make them more
understandable to humans. The research on this topic has
increased in recent years. However, the majority of work
and research about interpretation and transparency of models
is focused on other fields like computer vision, natural
language processing, biology, and healthcare making model
interpretability on IDS still very uncovered.

In non-critical applications such as product recommen-
dations on e-commerce websites or friend suggestions on
social networks, a wrong prediction may not have severe
consequences. However, in critical applications such IDS
or medical diagnosis, the lack of transparency, trustworthi-
ness, and explainability in these models poses significant
risks. Thus, there is a need for techniques that enhance
the interpretability and increase trustworthiness on these
models. For those reasons, in this work, we used two XAI
methods such as LIME (Local Interpretable Model-Agnostic
Explanations) and SHAP (SHapley Additive exPlanations)

to provide explanations and increase the interpretability of
a black box model part of an IDS solution that performs
intrusion detection on IoT devices.

In the execution of our work we have used a generated ver-
sion of the ADFA-LD dataset. The model receives sequences
of system calls - a programmatic request for a service
provided by the operating system, enabling applications to
interact with the underlying hardware and access various
system resources. The model output is 0 if the sequence
is deemed normal and 1 if an anomaly is detected. Given
that analyzing system call sequences when unexpected events
occur is a complex task, providing explanations about the
model predictions gives cybersecurity personnel insights
into the model’s behavior, enabling them to make informed
decisions about the results. In our approach, we have
additionally conducted a perturbation analysis based on the
explanations to obtain a different input, thereby validating
the explanations. Through perturbation analysis, the adverse
impact of specific system calls on classification, when
present in the input, is identified. This serves as added value
when scrutinizing the model and its results, and it proves
advantageous for the continuous improvement of the model.
As an additional step, we have conducted a survey analysis in
which participants answered questions evaluating the degree
of interpretability increase when each XAI method is used,
directly comparing both methods. Additionally, it assesses
the level of necessity for XAI methods and interpretability in
the analysis of black-box models. This work also leaves open
the possibility of being enhanced applying this approach to
other models and types of data.

The main contributions of this work are the following:
(i) We propose an architecture that uses XAI methods

such as LIME and SHAP to provide local explanations for
the results of a black-box model that is part of an IDS
solution that performs intrusion detection on IoT devices.
This architecture is beneficial to the understanding of the
predictions made from the IDS, and help cybersecurity
personnel to interpret the those predictions with insights of
the model behavior.

(ii) In addition to the local explanations, we use an
approach to validate and enhance the trust on the expla-
nations, based on a perturbation analysis that takes into
consideration the explanations provided. The input suffers
perturbations in an attempt to obtain a different output,
hence validating the explanations provided. Since we use two
XAI methods, the perturbation analysis can also serve as a
comparison of the XAI methods performance.

(iii) To evaluate the explanations provided from the
XAI methods, and make a direct comparison between the
methods, we carried out a surveywhere participants answered
questions destined to evaluate the degree of interpretability
increase of the model using each method, and answered
questions that directly compared the XAI methods, choosing
the preferred method.

(iv) During the experimental phase, we successfully
identified features with adverse effects on the model outcome
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when present in the input. This holds paramount significance
for cybersecurity professionals, as it allows for informed
analysis of model results. The recognition of these features
in the input signals potential inaccuracies in the output. It is
notable to highlight its importance in ensuring the continuous
improvement of the model.

The rest of the paper is organized as follows. Section II
describes the related works. The background is discussed in
section III. In section IV we present our proposed approach
to increase the interpretability of a black box model part
of an IDS solution for IoT devices, and the validation and
evaluations steps of the explanations provided. In section V
we describe the experiments carried out using a generated
version of the ADFA-LD dataset, presenting the results in
detail. Finally, section VI presents the conclusion to this work
and how it could be further enhanced.

II. RELATED WORK
Although XAI is a captivating research area, the majority of
research efforts are directed towards domains like healthcare,
natural language processing, and computer vision. The inter-
pretability methods are rarely used for intrusion detection.
However, with the intrusion detection systems becoming
more complex, works to improve the interpretability of such
models have emerged.

Wang et al. [4] propose a framework that leads to improve
the transparency of any IDS, presenting the first use of
SHAP to provide local and global explanations for intrusion
detection. The authors interpret and compare two different
classifiers, one-vs-all classifier andmulticlass classifier using
the NSL-KDD dataset to test the framework feasibility. The
experimental results show that the interpretation results,
generated by the framework, are consistent with the char-
acteristics of the specific attacks, and the results are very
intuitive.

Patil et al. [5] proposes an innovative intrusion detection
system, using ensemble methods of machine learning and
incorporating the XAI method LIME for better explainability
and understanding of the black-box approach to reliable
intrusion detection. The experimental results confirm LIME
is more explanation-friendly and more responsive.

Marino et al. [6] presented an approach to generate
explanations for incorrect classifications made by data-driven
IDS. An adversarial approach is used to find the minimum
modifications (of the input features) required to correctly
classify a given set of misclassified samples. The magnitude
of the modifications is used to visualize the most relevant
features that explain the reason for the misclassification.
Experimental evaluation was conducted on the NSL-KDD99
benchmark dataset using Linear and Multilayer perceptron
classifiers.

Mane and Rao [7] have used deep neural network for
network intrusion detection and also proposed explainable
AI framework to add transparency at every stage of machine
learning pipeline. The explanations are generated from
SHAP, LIME, Contrastive ExplanationsMethod (CEM), Pro-

toDash and Boolean Decision Rules via Column Generation
(BRCG). The approaches were applied to NSL-KDD dataset
for intrusion detection system (IDS).

Siganos et al. [8] introduced an AI-powered IDS with
explainability functions for the IoT. The proposed IDS relies
on ML and DL methods, while SHAP is used to explain
decision-making. The evaluations results demonstrate the
efficiency of the proposed IDS in terms of detections
performance and explainable AI (XAI).

Barnard et al. [9] present a two-stage pipeline for robust
network intrusion detection. The authors implement an
extreme gradient boosting (XGBoost) model to perform
supervised intrusion detection, and leverage the use of SHAP
to provide explanations. In a second stage, the explanations
are used to train an auto-encoder to distinguish between
previously seen and unseen attacks. Experiments were
conducted on the NSL-KDDdataset showing that the solution
accurately detect new attacks encountered during testing,
while the overall performance is comparable to numerous
state-of-the-art works from literature.

Neupane et al. [10] conducted a comprehensive survey on
Explainable Intrusion Detection Systems (X-IDS), empha-
sizing the importance of transparency and interpretability in
the context of evolving cyber threats. The paper provides an
overview of current methods, challenges, and opportunities
in X-IDS, making it a valuable resource for researchers and
practitioners in the field.

Sharma et al. [11] propose a deep learning-based approach
for intrusion detection in IoT networks. They address security
issues in IoT layers and use XAI techniques such as LIME
and SHAP to interpret the deep learning model’s decisions.
The approach achieves high accuracy and offers valuable
insights for researchers in this field.

Even though the past works use XAI methods for intrusion
detection, they focus on the part of developing an IDS and
apply the XAI methods to have explanations, either local
or global in scope. Although there has been adoption of
XAI methods like LIME and SHAP, the literature lacks
validation, evaluation, and comparison of the results of such
methods. These steps are important not only to ensure the
reliability and robustness of these methods but also for
facilitating meaningful comparisons between different XAI
techniques, allowing possible end-user of such techniques to
make well-informed decisions when it comes to the selection
and use of XAI methods. In this work, we went further
and address it; we explored the explanations provided by
LIME [12] and SHAP [13] through evaluation and validation
analysis.

In the validation analysis, perturbation on the input data
was performed based on the explanations in order to obtain
a different output to attempt to check the truthfulness of the
explanations. Through the validation analysis we were also
able to retrieve system calls that have a negative impact on
the classification of the model when present in the input
that will be discussed in more detail on Section V. The
evaluation analysis was based on the validation and on a
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FIGURE 2. A taxonomy of eXplainable AI methods.

survey where the participants answered questions on how
the explanations are important for a better understanding of
the model. In the survey, a direct comparison of both XAI
methods used (LIME and SHAP) is performed to evaluate
which method the participants felt more confident with.

We have selected LIME and SHAP due to their model-
agnostic nature, allowing their application to multiple models
and data types, also offering local explanations. The selection
of these methods was also influenced by their widespread
use in the literature, and we will elaborate more on them
in the next section. However, there are other well-known
and used XAI methods that could have been selected,
such as Anchors [14], Accumulated Local Effects (ALE)
[15], Counterfactual Explanations [16], and Contrastive
Explanations Method (CEM) [17]. For further improvement
of this work such methods could be considered to be applied
on the approach and compared with LIME and SHAP.

III. BACKGROUND
There are many factors that contribute to how a model
operates and makes its predictions and, therefore, many ways
to explain it. XAI methods can be classified using two
dimensions: stage and scope.

The extent of the explainability method can vary, with
the method capable of offering either a global explanation
encompassing the entire model or a local explanation specific
to a single prediction, or both.

A taxonomy of XAI methods can be seen in Figure 2. The
explainability method can be applied through the three stages
of an AI development model (pre-modelling, modelling, and
post-modelling). The two main stages where explainability
can be applied are the modelling (intrinsic explainability),
and the post-modelling (post-hoc explainability) [18]. Intrin-
sic models refer to interpretable models like decision trees
or rule-based models. Post-hoc models involve extracting
information from pre-trained models, and their effectiveness
is not tied to the inner workings of the model, making
them either model-agnostic or model-specific when the XAI
method is developed specific to a DL model.

A. LIME
The authors of LIME [12] propose a concrete implementation
of local surrogate models. Local surrogate models explain
individual predictions of a black-box model. LIME focuses

on training local surrogate models to explain individual
predictions. LIME is based on a perturbation mechanism,
testing the model with variations of the data. Generates a
new dataset consisting of permuted samples and the corre-
sponding predictions of the model. On this new dataset LIME
trains an interpretable model, weighted by the proximity of
the sampled instances to the instance of interest. The local
surrogate model should be a good approximation of the black
box model predictions locally. The local surrogate model can
be calculated in the following way:

ξ (x) = argmin
g∈G

L(f , g,wx) + �(g), (1)

where - g represents the explanation model for the instance x,
(e.g., decision tree). G is the family of possible explanations.
For example all possible decision tree models. L is the loss
function (e.g., mean squared error), which is used to measure
how close the predictions from the explanation model are to
the original. f represents the original model. wx defines the
wight between the sampled data and the original data. If the
sampled data is similar to the original data, the weight is
greater, and vice versa. � ((g) represents the complexity of
model g. Steps must be followed [19] to train a surrogate
model:

1) Select instance of interest to have an explanation for its
black-box prediction;

2) Perturb dataset and get predictions of the new points;
3) Weight the new samples according to their proximity

to the instance of interest;
4) Train a weighted, interpretable model on the dataset

with the variations;
5) Explain the prediction by interpreting the local model.

B. SHAP
SHAP is an unified framework proposed by Lundberg and
Lee [13] for interpreting predictions. Assigns each feature
an importance value for a particular prediction and connects
LIME and Shapley values.

One innovation that SHAP has is that the Shapley value
explanation is represented as a linear model. That view
connects LIME and Shapley Values. Each SHAP value
measures how much each feature in the model contributes,
either positively or negatively. It offers two essential benefits:
it can be calculated for any model rather than just simple,
linear models and each record has its own set of SHAP value.
SHAP values provide three significant advantages compared
to other methods. First, SHAP has a solid theoretical
foundation in game theory [4]. Shapley values are the
only attribution method to satisfy the properties: Efficiency,
Symmetry, Dummy, and Additivity [19]. Efficiency refers to
the feature contributions that must add up to the difference
of prediction for x and the average. Symmetry is about the
contributions of two feature values j and k should be the same
if they contribute equally to all possible coalitions. Dummy
refers to a feature j that does not change the predicted value,
regardless of which coalition of feature values it is added to
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and should have a Shapley value of 0. Additivity means that
the total Shapley value assigned to a coalition of players or
features is equal to the sum of the individual Shapley values
of the players or features when they join the coalition. SHAP
can also satisfy these since it gets Shapley values from linear
models. Second, SHAP connects LIME and Shapley values.
It helps to unify the field of interpretable machine learning.
At last, SHAP has a fast computation for machine learning
models compared to calculating Shapley values directly.
SHAP specifies the explanation for an instance x [4] as:

g(z′) = φ0 +

M∑
j=1

φjz′j, (2)

where - g is the explanation model. z’ is the coalition vector
(also called simplified features), and z’ ∈ 0, 1M. The 1 in
z’ means the features in the new data are the same as those
of the original data (the instance x), while the 0 means the
features in the new data are different from those of the original
(the instance x). M is the maximum coalition size. φj ∈ R
is the feature attribution for the feature j for instance x. It is
the Shapley value. If φj is a large positive number, it means
feature j has a large positive impact on the prediction made
by the model.

IV. PROPOSED APPROACH
A. RETRIEVAL OF EXPLANATIONS
To implement our approach, we applied the selected XAI
methods (LIME and SHAP) to a black-box model integrated
into a solution designed for intrusion detection in IoT devices.
Both methods exhibit model-agnostic characteristics, accom-
modating multiple models and data types, and offer local
explanations. The selection of these methods was influenced
by their widespread use in the literature and their similarity,
a crucial factor facilitating a meaningful comparison between
them.However, some changes on themethodswere necessary
in order to achieve the desired setup. The dataset used is a
generated version of the ADFA-LD [20], [21], [22] dataset
that we will further describe with more detail in section V.
The dataset is based on system calls, with normal traces and
attack traces with attacks such as password brute force, denial
of service, and network scan.

For the explanations with LIME, we used the LimeTab-
ularExplainer [23], where we defined our explainer and fed
it information about the model and data. We provided to the
explainer the data, the feature names, and the class names.
For every dataset instance, explanations were retrieved. It was
defined that the explanations would be made using the
10 most important features of each instance.

In the execution of the explanations with the second XAI
method (SHAP), the approach is similar. As in the LIME case,
SHAP supports numerous models and data types. For our
approach we decided to use the KernelExplainer [24] as it is
the model-agnostic explainer of SHAP. For all the instances,
as in LIME, the explanations were retrieved using the 10most
important features of each instance.

FIGURE 3. Perturbation analysis experiments base architecture.

At the conclusion of this step, we obtain explanations from
LIME for all instances in the dataset, along with correspond-
ing explanations from SHAP for the same instances in the
dataset.

B. EVALUATION OF EXPLANATIONS
In order to better analyze, validate, and evaluate the expla-
nations provided by the XAI methods, we have performed a
perturbation analysis based on the explanations.

Perturbation analysis is a valuable technique used to
understand the behaviour of the system when subjected to
small changes or disturbances in its inputs. The primary
goal of the perturbation analysis is to assess how the
model responds to the small perturbations carried out.
First, we have collected the 10 most important features
for the classification of each instance (as presented in the
subsection above). Then we have performed perturbations on
the input data of each instance by perturbing the 10 most
important features previously collected. The perturbations
were based on removing/replacing these features from the
original input instances, generating new input instances. After
the perturbations, the new generated input instances were
fed back to the model with the goal of obtaining different
outputs, validating and evaluating the explanations provided
by the XAI methods. Figure 3 shows the main layout of
the experiments that we just described. The results, and
experiments are explained in more detail in Section V.
For further validation and evaluation of the XAI methods

and explanations provided by them, we have performed
a survey analysis. The participants of the survey had to
answer questions about the degree of interpretability increase
by each method, which method they felt more confident
with/preferred and why for the exact same problems, if they
felt that XAI is important to help the interpretability of
black box models, and other questions to compare the XAI
methods, and evaluate their explanations. The survey and
questions and answers as well as information regarding the
participants is present further on Section V.

C. ALGORITHMS
In this section we explain in more detail the algorithms used.
The base architecture can be seen in Figure 3. For an overall
analysis we have proceeded with the first algorithm presented
in detail in Figure 4. We start by collecting the explanations
for all the instances of the dataset, using LIME and SHAP,
saving the explanations of each separately. Through the
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FIGURE 4. First algorithm scheme for the overall perturbation analysis.

explanations of each method, we are able to retrieve the
10 most important system calls for the classifications of each
instance and save them separately by the ones provided from
LIME and the ondes from SHAP. This is the first part. For the
second part, we use the same approach for both LIME

and SHAP, but separately also for each. We start by
dividing the collected most important system calls by true
positive instances, false negatives, true negatives, and false
positives. Then we check which and if are there system calls
present in the explanations of TP cases that are not present
in the explanations of FN (opposite) cases. If so we save
them and we perform the same for the opposite and repeat
the process for the TN and FP cases. This being, we have a
set of system calls that only appear in the explanations of TP
and not in FN explanations and a set for the opposite. We also
have two sets for the TN and FP the same way. For the third
step, we select a system call of the set of TP (X), and one
of the FN (Y). We then proceed to replace in the dataset, the
appearances of Y with X generating a new modified dataset
that we feed back to the black box model and observe the
changes in the output.We repeat the process for all the system
calls, combining all possible X with all possible Y. We repeat
the process for the TN and FP cases.

For the first batch of specific experiments, we simply
remove from each instance of the dataset, the 10 most impor-
tant system calls, result from the XAI methods explanations,
for the classification of each instance, generating a new
modified dataset. This new modified dataset differs from
the original by having 10 system calls removed from each
instance.We then feed the new dataset to the model and check
the differences in the output. The algorithm is presented in
Figure 5.

The second and third batch of experiments are similar.
On the second batch we start by iteratively select a system
call (X) from the set of system calls only appearing on
the explanations of TP cases, and one (Y) from the FN
cases. Then, on every FN instance, we replace the 10 most
important system calls for the classification of that instance
for X, and on the instances of TP, the same but for Y. Then
we feed the new generated instances back to the model

FIGURE 5. Algorithm for the first batch of experiments.

FIGURE 6. Algorithms for the second and third batch of experiments.

to obtain different outputs and check differences from the
original. The third batch only differs in terms of selection
of system call to replace, being on the third batch selected
randomly instead of iteratively. We perform the same for the
two XAI methods separately and do the same for the TN
and FP cases. The second and third batch of experiments is
presented in Figure 6. The results of the experiments using
these algorithms are presented in the section V.
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FIGURE 7. Example of sequence of system calls input instance.

V. EXPERIMENTAL WORK
A. DATA PREPROCESSING
The dataset is a generated version of the ADFA-LD dataset.
The dataset is based on system calls, with normal traces and
attack traces with attacks such as password brute force, denial
of service, and network scan. Every instance of the dataset
consists of a sequence of 30 system calls. A system call is a
programmatic request for a service provided by the operating
system, allowing applications to interact with the underlying
hardware and access various system resources. Each different
system call in the dataset is represented by a number. For
instance, the system call ‘‘swapoff’’ is represented in the data
as ‘‘168’’. In the dataset used, there are 149 different system
calls. Figure 7 represents an example of an instance of the
dataset. It is a sequence of system calls.

One system call might appear multiple times in one
sequence. This means that it is possible for one sequence to
only have one or two system calls with multiple appearances.

In order to pre-process the system call sequences, two
mechanisms are used, the Term Frequency-Inverse Document
Frequency (TF-IDF) and the chi-squared test.

One of the most common methods to calculate the weights
of words that occur in a document, in document classification,
is the TF-IDF model. Term Frequency (TF) refers to the
occurrences of a certain word in a document, and Inverse
Document Frequency (IDF) pertains to the number of times
the word occurs in a document corpus (i.e., collection of
documents). The n-gram technique is defined as a tuple of
n words where n is, a small positive integer, in our case the n
is equal to 2.

For dimension reduction, the chi-squared test is applied.
The chi-squared test is often employed to analyze data that is
organized into categories or counts. It compares the observed
frequencies of each category in a dataset with the frequencies
that would be expected if there were no association between
the variables. It calculates the statistic called the chi-squared
statistic (X2), which measures the difference between the
observed and expected frequencies.

Figure 8 shows the pre-processing stage of the input system
call sequences. A sequence of system calls is received, suffers
a vectorization, followed by a feature reduction, resulting in
an array of 150 features, being each feature a constant ngram
(label), the value of the features, according to the system call
sequence in question. Then, the data is fed to the model.

B. PERFORMANCE EVALUATION
Accuracy is the most common metric used to evaluate
classification models. It represents the proportion of correctly
classified instances out of the total number of instances in the

FIGURE 8. System call sequence pre-processing.

dataset. It is calculated as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(3)

Precision is the measure of how many instances predicted
as positive are actually TP. In other words, it measures the
ability of the model to avoid FP. High precision indicates a
low rate of FP, which means the model is more reliable when
it predicts a positive result. Precision is calculated as:

Precision =
True Positives

True Positives + False Positives
(4)

Sensitivity (Recall or TPR) measures the proportion of
actual positive instances that are correctly identified as
positive. It indicates the ability of the model to detect positive
cases. High Sensitivity indicates a low rate of FN, meaning
themodel is good at identifying positive instances. Sensitivity
is calculated as:

Sensitivity =
True Positives

True Positives + False Negatives
(5)

Specificity (TNR) measures the proportion of actual
negative instances that are correctly identified as negative.
It represents the ability of the model to avoid false alarms
for negative cases. High Specificity indicates a low rate of
FP, indicating that the model is good at correctly identifying
negative instances. Specificity is calculated as:

Specificity =
True Negatives

True Negatives + False Positives
(6)

The F1 Score is the harmonic mean of precision and recall
(sensitivity). It provides a balanced measure of a model’s
performance, taking both FP and FN into account. The F1
Score considers both precision and recall, making it useful
when the classes are imbalanced or when both types of errors
(FP and FN) are important. It can be calculated as:

F1 Score = 2 ×
Precision × Sensitivity
Precision + Sensitivity

(7)

C. STRUCTURE AND PERFORMANCE OF THE IDS
In order to apply and validate our approach we used as the
black box model, a MLPClassifier, part of an IDS solution
that performs intrusion detection on IoT devices.

The MLPClassifier has four layers: one input layer and
3 dense layers. The first and second layers of the dense layers
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FIGURE 9. IDS black box model confusion matrix.

have as activation function the ‘‘relu’’ function, while the
third dense layer has the ‘‘sigmoid’’ function as activation
function. The model is a Tensorflow model and generated
with Keras framework. The IDS analyzes sequences of
30 system calls - a fundamental interface between a user-level
process and the operating system (OS) kernel. The sequences
undergo a pre-processing stage, transforming them in the
input data of the MLPClassifier. The model input data is in
form of arrays of 150 features, and is explained in more detail
further ahead. The model makes binary predictions. If the
output of the model, to a certain input instance is 1, then it
is because something abnormal has happened, possibly being
an intrusion. In the case of the output being 0, no anomaly is
detected.

Figure 9, and Table 1, present the current scores of
the model. As it can be seen, the model presents good
performance values which means that most of its predictions
are accurate. However, there are cases where the model is
incorrect, as we can see through the confusion matrix. There
are 52656 instances on the dataset that we have used. We can
see that there are 24 038 TP, whichmeans the number of times
that the model predicted that there was a possible anomaly
and was correct. The number of FN is 2832, and, as we can
understand, very low in comparison to the number of TP.
However, the number is relevant and represents important
mistakes of the model. In the case of anomaly detection, a FN
can be harmful because it is misunderstood by the model and
so the cybersecurity experts that are in charge of analyse the
system, in case of a potential threat, will not be aware that
there is one in these cases. Similarly, the number of TN is 25
311 and the number of FP is 475, which is not as impactful
as the TP and FN. This is because a FP was supposed to be
a negative prediction, meaning that there was no anomaly
happening. In Figure 9 we can see the complete confusion
matrix for the model.

As for the scores, the accuracy indicates that the model
classifies approximately 93.7% of the instances, which is a
good result, especially, taking into account the size of the
dataset.

The precision suggests that when the model predicts
a positive instance, 98.1% of the time it is correct. The
sensitivity value of 89.5% represents that the model correctly
identifies that number of percentage of the actual positive
instances. A higher value is desirable to minimize FN since
it suggests a lower rate of missing positive cases, which is of
high importance for the use case of the model. With the value
of specificity being 98.2%,we can understand a low rate of FP
for negative cases, being the number of FP 475 which is very

TABLE 1. IDS black box model metrics scores.

low in comparison to the size of negative cases. The F1 score
with a value of 93.6%, means the model achieves a balanced
performance in terms of precision and recall. It indicates a
good trade-off between FP and FN. The overall analysis of
the model based on the scores is good.

The model demonstrates appropriate values for the metrics
and it seems to be effective in correctly classifying both
positive and negative instances. In overall, we can consider
that the model presents high score values, which is important
for the classification problem it is inserted on.

D. OVERALL RESULTS
In order to address the explainability of the model, we have
successfully implemented XAI methods, such as LIME and
SHAP. With the implementation of these methods we were
able to retrieve explanations about the model results.

With the explanations, we were able to retrieve the most
important system calls for the classification of each instance
of the dataset. These most important system calls are the
ones having the most impact on the classification of a
particular instance. On a global analysis, it was possible
to observe that there are system calls that only appear, for
example, in the explanations of FN cases and not in the
explanations of TP cases (and vice versa). This information
is useful to cybersecurity experts because one system call
that only appears in the explanations of FN cases and not
in the explanations of TP cases means that when present in
the input, that system call might be misleading the model
classification. The same was observed for FP and TN cases.
These results are presented in Figure 10. It is important to
refer that these results match for both LIME and SHAP.
However, on a local scope, for the same instance, the systam
calls present in the explanations of LIME might be different
than the ones present in the explanations of SHAP. For
example, it is possible to see that the system call setsockopt
appears in the explanations of FN cases and never appears in
explanations of TP cases. This might induce that this system
call present in the input might be misleading the model to
classify the instance as negative when it should be positive.

To evaluate the explanations provided, we have performed
perturbations, based on system calls of Figure 10. A system
call that only appears, for instance, in the explanations of FN,
is replaced every time it appears, with a system call that only
appears in the explanations of the opposite case (this being,
TP). The same was performed for the TN and FP cases. Some
of the most relevant results are represented in Figure 11. For
example, when the system call setsockopt that is only present
in the explanations of FN cases is replaced with the system
call accept that only appears in the explanations of TP cases,
90% of the instances of FN where setsockopt is present in
the input change the prediction to TP. This might be a clue
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FIGURE 10. System calls that only appear in the explanations of
particular cases.

FIGURE 11. Perturbations based on the system calls that only appear in
the explanations of opposite cases.

that this system call is having a negative impact on the model
classification when present in the input.

With the explanations provided by the XAI methods, the
interpretability of the model increases and cybersecurity
experts might extract insights about the model behaviour
from them. Based on the perturbations carried, the explana-
tions are validated and on an overall analysis, the identified
system calls in Figure 10 represent a significant evolution to
the interpretation of themodel results leading to cybersecurity
experts knowing before-hand the impact these features might
have when present in the input sequence. Discovering such
features that might lead to incorrect predictions, as revealed
by LIME and SHAP explanations, assists in refining the data
and enhancing the model, thus improving the accuracy of
the intrusion detection system. This understanding allows for
adjustments to decision thresholds and model improvement,

TABLE 2. Remove the 10 most important system calls of each instance
(LIME).

TABLE 3. Randomly replace the top 10 most important system calls of
each instance with system calls that only appear in the explanations of
the opposite case (LIME).

ensuring more effective intrusion detection in real-world
scenarios.

E. LIME RESULTS
For all the experiments, the 10 most important system calls
of each instance were retrieved with LIME.

On a first experimental batch, for each instance, the
10 most important system calls were removed from the
respective input instances, and the instances were fed back
to the black box model to obtain a new result and observe
the differences in prediction. The results can be observed in
Table 2. In terms of % of changes in prediction, the results are
not as satisfactory as expected. However that might be due to
the fact of the system call being removed from the sequences.

On a second attempt, the 10 most important system calls
are not removed, but replaced. For example, for the FN, the
10 most important system calls were replaced by system calls
that only appear in the explanations of TP (opposite of FN).
The respective system calls can be seen in Figure 10. The
same was performed but on the contrary, and the process was
repeated for the FP and TN cases. The results can be viewed
on Figure 12. The results represented are just a part of the best
and most relevant ones. It is possible to see the impact that the
system calls have. For example, in the FP, by replacing the
10 most important system calls for the classification of every
instance, with the system call nfsservctl, we can observe that
about 100% of instance change prediction to TN.

On the final experimental batch, instead of replacing by a
fixed system call every time, we have chosen random system
calls that only appear in the explanations of the opposite case,
to replace. The experiment was performed 5 times due to the
randomness of the system calls replacement selection. The
results can be observed in Table 3. Besides the TN, the results
are satisfactory, and the bad result on the TN might be due to
the randomness of the system calls replacing.

On an overall analysis of the LIME results, the impact of
different system calls for different scenarios can be observed.
These perturbations serve to validate the explanations of
LIME as we try to obtain a different output by perturbing
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FIGURE 12. System calls that only appear in the explanations of
particular cases.

TABLE 4. Remove the 10 most important system calls of each instance
(SHAP).

the system calls that LIME says have the most impact for
each instance’s classification. Not only that but we can also
obtain tangible values about the impact of particular system
calls that might be affecting the results of the model to
a wrong classification when present in the input. It can
also be used to compare the precision of the explanations
with the ones retrieved with SHAP. It is notable to mention
again that this information is significantly important to the
cybersecurity experts analyzing the results and helps the
continuous improvement of the model.

F. SHAP RESULTS
The experiments with SHAP were similar to the ones with
LIME. However, since the methods are different, the results
are different as well. For the first batch of experiments (where
for all the instances, the 10 most important system calls were
removed) the results are presented in Table 4.

For the second batch, the 10 most important system calls of
each instance are not removed, but replaced. The experiment
is the same as in LIME, but using the explanations of SHAP.
The results are presented in Figure 13.

For the final batch, instead of replacing with a fixed system
call from the ones that only appear in the explanations of
the opposite cases, they are randomly selected from that

FIGURE 13. System calls that only appear in the explanations of
particular cases.

TABLE 5. Randomly replace the top 10 most important system calls of
each instance with system calls that only appear in the explanations of
the opposite case (SHAP).

particular group. The results are presented in Table 5. We can
see that by replacing in the input sequence the 10 most
important system calls for the classification of each instance
with system calls that only appear in the opposite case we are
able to obtain significant changes in the output.

In a comparison with the LIME results, it is possible to
conclude that the results with the two methods are very
similar. There are cases where perturbations considering
explanations with LIME have a bigger percentage of changes
in prediction. But the same happens in some cases when
perturbing based on SHAP explanations. It is important to
analyze instances where the two methods produce divergent
explanations since it can reveal vulnerabilities in the IDS
model, such as susceptibility to adversarial attacks or
the presence of non-linear interactions between features.
This information can inform strategies to enhance model
robustness and resilience against potential threats.

G. COMPARISON OF LIME AND SHAP RESULTS
In order to evaluate, validate, and compare the two XAI
methods used (LIME and SHAP), we have performed a
survey. The survey had 24 participants. From the participants,
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7 had a doctorate degree, 7 a master’s degree, and 8 a
bachelor’s. The majority had worked with machine learning
or AI, and were familiar with the concept of XAI. The
questions are based on two distinct classification problems.
The first is very simple in order to the participants familiarize
with LIME and SHAP. The second is the actual IDS
classification and explanations examples. The survey can be
divided into three main sections. The first section presented
the first problem,with examples of inputs and outputs without
explanations, with explanations from LIME and SHAP, and
additionaly with a validation of the explanations from LIME
and SHAP. The second section is similar to the first but using
the second presented problem. On the third section, LIME
and SHAP were compared directly to observe the differences
in terms of interpretability increase and confidence felt by
the participants regarding one method over the other. On an
overall analysis of the answers, it is possible to conclude that,
as expected, having explanations to help in the interpretation
of the results of the model is of significant importance.

It is important to note that a choice of method takes into
consideration the application context, user preferences, and
dataset and model characteristics. In terms of application
context, LIME may be more suitable if the priority is local
interpretability for individual predictions while SHAP might
be a better fit for global interpretability and if consistency is
crucial. In terms of user preferences, some users may find
LIME’s local, user-friendly explanations more accessible,
while others might appreciate the theoretical foundations and
global interpretability of SHAP. The nature of the dataset
and the complexity of the ML model can influence the
effectiveness and efficiency of each method, for instance
when dealing with large datasets, the scalability of the
explanation method becomes important. However, in the
survey, in the questions that directly compared the two
XAI methods and where the participants had to chose
a favorite, LIME is the clear preferred. These questions
presented the explanations from LIME and SHAP for the
same instance, questioning the participants which they felt
more trust and in which they felt the interpretability increased
more.When participants were queried about their preferences
and specifically sought information about the characteristics
of each method, LIME remained the favored choice. This
preference is likely attributed to the more user-friendly
visual explanations offered by LIME. In the survey, nearly
all participants emphasized the significant importance of
the visualization of explanations. However we must also
highlight that some of the participants who usually voted
on SHAP over LIME were the ones with more technical
background, elucidating probably to the consistency of the
method over the visualizations.

It is notable that generating explanations using LIME
and SHAP can be computationally expensive, especially
for large-scale IDS deployments with high data throughput.
The additional overhead of explanation generation might
impact the real-time performance of the system. Comparing

both methods in terms of computational load, in our work
and experiments, we have to highlight that SHAP was in
fact considerably more expensive than LIME, for the exact
same experiments. This certainly impacts the choice of the
XAI method when one of the factors to look for is the
computational load.

We must highlight that the majority of the participants
answered that the additional validation step of the expla-
nations increased their trust on the XAI methods and their
explanations.

VI. CONCLUSION
In this work, we have used two XAI methods (LIME
and SHAP) to provide explanations for the results of a
black-box model part of an intrusion detection solution for
IoT devices. With the explanations, we were able to identify
the most important system calls for the classification of each
instance. Based on the explanations provided, we carried out
perturbations to the input to observe a different output. With
these results, we were able to collect system calls that have a
significant negative impact on the output, when present in the
input sequence. This way, the cybersecurity person in charge
of analyzing the model, is provided with insights about the
model behavior, and particular features that when present in
the input can lead to wrong predictions.

In this work, we have also performed a direct comparison
between the two used XAI methods, LIME, and SHAP.
We have performed the same experiments with the two
methods and checked which performed better for each
experiment. We have also conducted a survey where the
participants answered questions that directly compared the
two methods in terms of interpretability increase of the
black box model, and preference of method, based on
characteristics and different provided examples.

The work can be further improved by conducting similar
experiments with a broader range of XAI methods, or by
implementing the same approach and experiments on differ-
ent black box models and diverse use cases. Additionally,
extending the approach to other types of intrusion detection
systems (IDS) beyond IoT, and exploring applications in
various domains, could provide valuable insights. Moreover,
ongoing validation, evaluation, and comparison of XAI
methods and their explanations are essential for advancing
the understanding and adoption of transparent AI systems in
real-world scenarios.
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