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ABSTRACT Knowledge Graphs are widely used to represent knowledge structures in complex domains.
In most real-world scenarios, these knowledge structures are dynamic. As a result, measures must be
developed to assess the robustness and usability of Knowledge Graphs in temporal settings. Additionally, the
explainability of inherent knowledge constituents is crucial for the desired attention of Knowledge Graphs,
particularly in temporal settings. In this paper, we developed a framework to understand the robustness of
factual explainability of Knowledge Graphs. The method is further verified by using meso-level attributes of
the knowledge graph. The complex network analysis along with the community structures are co-evaluated
through homophilic and heterophilic properties within the graph to validate the robustness of the factual
interpretations. The analysis reveals that symbolic representation could be used as a reasonable metric for
extracting link-based communities.

INDEX TERMS Knowledge graph analysis, complex network analysis, homophily and heterophily analysis,
factual reasoning and explainability, interpretability.

I. INTRODUCTION
With the advent of artificially intelligent applications,
we have witnessed groundbreaking marvels. These applica-
tions entertain millions of users daily, contributing to the
greater good. From virtual-assisted online shopping to movie
recommendations and healthcare, we observe AI-assisted
applications in action. While we leverage these systems for
mutual benefit, there are areas, such as healthcare, military,
and similar decision support systems, where accountability
and responsibility are crucial in case of any issues. This
is especially pertinent following the implementation of
regulations like the European Data Protection Regulation
(GDPR)1 and others. Explainable AI (XAI) is a hot research
area addressing the black-box nature of AI systems in a
human-understandable and interpretable way [1]. However,
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despite significant progress, there are still open challenges
that demand attention.

A growing trend in graph-based intelligent systems has
recently been observed [2], [3], [4], [5]. Various solutions
leveraging Graph Neural Networks (GNNs) have been
proposed, given their effectiveness in handling structures
represented as graphs [6]. GNNs excel in reasoning as they
represent entities connected via edges, such as chemical
compounds with bonds represented as graphs. However,
a notable gap exists in the extensive testing of GNNs for
semantic representations [7].

Similarly, social networks embody semantic relation-
ships represented as interactions like ‘‘friend-of-friend’’ or
‘‘follower-followee.’’ Several solutions have been proposed
for learning and explaining these relationships [2]. However,
there is room for improvement in reasoning methods for
homophilic and heterophilic networks [2]. Homophily and
heterophily analysis help us to identify and study the
underlying attributes of community construction as it changes
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over time. Homophily represents a network’s tendency for
like-minded individuals to attract each other [8]. Conversely,
heterophily represents the tendency of individuals to interact
with diverse groups [9]. These notions are exploited to extract
factual explanations or reasoning for KG.

To counter this gap we propose an end-to-end workflow
that utilizes factual reasoning for exploiting the Knowledge
Graph (KG) based representation(s) and Complex Network
Analysis (NA) as a connecting block for analyzing networks
statistically and structurally. Often these networks depict
complex systems that exist in our daily lives (friendship
networks, biological networks, etc.) [10], [11]. NA is a tool
used to analyze networks through statistical measures like
community detection, centrality measures, connections, and
ties [12]. Factual reasoning is a special type based on evidence
known as facts [13]. These facts are usually represented by
formal logic (First Order Logic (FOL), Horn Clause, etc.).
KGs efficiently integrate multi-dimensional information in a
query-able and understandable manner, originally utilized by
Google in 2012 [14] to enhance search results.
Network analysis (NA) can be divided into twomain types:

static and dynamic. Static NA examines a network at a single
point in time, whereas dynamic NA tracks the changes in
a network over time. In this study, we focus on dynamic
NA, as KGs often exhibit temporal and structural complexity.
To measure the properties and analyze selected KG, we use
the followingmetrics: modularity, betweenness and closeness
centrality, homophily, heterophily, and preferential attach-
ment. Modularity quantifies the degree to which a network
can be partitioned into communities or subgroups that reflect
the overall system [15].

This study introduces a novel approach for knowledge
extraction to factually explain the KG. This study is distinct
from previous research by proposing an integrated method-
ology that incorporates symbolic rule extraction (facts),
homophily and heterophily analysis, and factual reasoning for
Knowledge Graphs (KG). The objectives for conducting this
study are as follows:
• To study and analyze KGs and understand their features
such as relationship dynamics, communities, and other
properties, as a dynamic representation.

• To pipeline the methodology that processes the raw
semantic triplets and extract reasonable (explainable or
interpretable) facts for modeling KG.

• To utilize the KG for homophily and heterophily
analysis to validate factual reasoning.

• To validate the proposed approach over real-world
networks.

• Aggregating dynamic NA for observing facts at different
snapshots.

We adopted a workflowwith the following features to counter
the objectives mentioned.
• An end-to-end workflow is presented that is capable
of processing raw data. Extracts symbolic facts and
rules (FOL) to represent decision boundary and models
the KG.

• Incorporating stochastic models for homophily and
heterophily analysis to confirm factual explanations or
interpretations.

• A dynamic NA driven by interaction is presented to
observe concrete facts within KG at different snapshots.

• For validation, we pilot the presented approach with a
real-world dataset.

This study is organized into six sections for a detailed
discussion of these contributions. Section I introduces the
foundational aspects of this study. Section II discusses the
current state of the art and related technologies. Section III
delves into the methodological and experimental details
of the proposed workflow. Section IV provides a brief
discussion of the results we acquired from KG analysis
specifically homophily and heterophily analysis. Section V
highlights future avenues and limitations of this work.
Finally, section VI concludes the study.

II. BACKGROUND AND RELATED TECHNOLOGIES
In this section, we will delve into the current state of the art.
To begin our discussion, we will explore the background and
related technologies that have paved the way for our proposed
study.

A. KNOWLEDGE GRAPH AND SYMBOLIC
REPRESENTATION
A Knowledge Graph (KG) is a highly effective semantic
method for information representation in a query-able
form. Everything in a KG is connected via relationships,
typically representing connections between two entities.
More formally, a KG is a graph G with nodes and edges
(V and E), where V denotes entity nodes (such as Authors,
Country, Seniority, etc.) and E represents relationships
(Met , Has_Country, Has_Attended , etc.). Each node and
edge connection can be expressed as a semantic triple
(Subject,Predicate,Object) or (Entity,Relationship,Entity),
where the entity could be any physical property or thing.
For example, {SirajMunir, Study_At,UniversityofUrbino}.
A dynamic KG is a timestamped version of a static
KG, denoted as {KG1,KG2, . . . ..,KGN }. In our case,
each relationship has an associated timestamp, such as
{AuthorA,met(timestamp),AuthorB}.

B. COMPLEX NETWORK ANALYSIS
Complex Network Analysis (NA) allows for characterizing
a given graph through a collection of metrics that provide
insights from various statistical perspectives. Examples
include degree, connectivity, centrality, modularity, etc.
Dynamic Network Analysis is an extension of NA, with the
notion of dynamicity being based on time. In other words,
the evolution of a network is tied to a timeline. In this
work, instead of dealing with simpler graphs, we model the
dynamic KG as {KG1,KG2,KG3, . . .KGN }, as mentioned
in the previous sub-section. For detailed insights into static
and dynamic network analysis, refer to the methodology
section.
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FIGURE 1. Literature review pipeline.

C. STATE OF THE ART
In this section, we will spotlight the latest contributions
that align with our presented work. To shortlist articles,
we applied the query criteria depicted in Figure 1. In selecting
research articles, we exclusively relied on top-notch articles
from reputable databases such as IEEE, ScienceDirect,
Springer, etc. Given the plethora of articles, we considered
only those published in the last 5 years.

As part of our filtration criteria, we selected three
keywords: Knowledge Graph Representation, Knowledge
Graph Explainability, and Dynamic Network Analysis.
Additionally, we incorporated keyword extensions, including
temporal KG analysis, spatiotemporal KG analysis, factual
and counterfactual reasoning for KG, etc. Following the
application of these criteria, we conducted a meticulous
review, summarizing key points from the selected articles.

1) KNOWLEDGE GRAPH REASONING AND
REPRESENTATION
KG is a hot research area, and several public and commer-
cial solutions have recently leveraged its semantic power
fantastically. For instance, KG completion and reasoning
via link prediction, neighborhood prediction, and community
detection have been explored [6], [16], [17]. To provide a
snapshot of the current state of the art, we highlight relevant
work in this section, focusing on KG completion, modeling,
explainability, and representation.

2) KNOWLEDGE GRAPH REPRESENTATION AND
REASONING (SYMBOLIC)
In a study by [18], a KG completion and reasoning approach
for knowledge enrichment tasks was presented. Symbolic
reasoning poses challenges, particularly in terms of scala-
bility and interpretability. This study proposed an approach
employing knowledge extraction, relational reasoning, and
inconsistency checks. A comparative analysis validated the
approach, outperforming formal methods. Another survey
by [3] explored challenges in symbolic and neural symbolic
reasoning, presenting a hybrid approach. Reference [5]
proposed a deep learning model for symbolic representation
and explainability, validated for cultural heritage use cases.
A survey by [16] discussed present and future perspectives
for symbolic KG reasoning, including related technologies.

Reference [19] introduced a similar approach to the presented
study. The proposed approach prunes textual representation
and extracts rules from modeling KG.

3) KNOWLEDGE GRAPH AND STATIC GRAPH
EXPLAINABILITY
In [20], a bi-kernel homophily-heterophily modeling
approach for Graph Neural Networks (GNN) was pre-
sented, emphasizing its efficiency for consistent results.
Reference [21] introduced a causal inference theory-driven
approach for factual and counterfactual reasoning over
GNN, focusing on factual reasoning and KG interpretation.
Reference [22] proposed an interpretability-based attribution
approach for GNN recommendations, and [2] presented
a visual evaluation approach named GraphXAI, extending
GNN explainability. In [23], a survey on link prediction
and related tasks explored potential applications and the
critical role of link prediction. Reference [24] identified
research frontiers and hotspots for utilizing KG for recom-
mendations. Reference [25] presented a KG-based reasoning
question-answering system, achieving state-of-the-art results.
Reference [26] introduced a KG clustering methodology
based on information fusion, and [27] proposed a KG toolkit
for data science applications. Reference [28] conducted a
detailed survey of KG representation, highlighting hotspots,
contributing countries, and top literature. In [29], a KG
modeling framework was presented, utilizing information
fusion for system modeling. Reference [30] introduced
a unique methodology for information representation in
KG, emphasizing a semi-autonomous approach. Another
study [31] presented an interesting approach for interpretable
and explainable deep learning models. The author empha-
sized how KG can add more value to decision-making
and make black-box models translucent. Reference [32]
work that is currently available as a pre-press version
introduced a very interesting approach for interpreting KG.
The authors presented a detailed framework comprised of
three parts (i) mechanization layer (ii) composition layer, and
(iii) assistance layer. Reference [33] presented an encourag-
ing KG modeling approach for predicting and interpreting
disease based on gene interaction. The presented approach
integrates heterogeneous data sources for modeling KG.
In contrast to the mentioned works the presented study differs
as it integrates complex network analysis along with KG for
interpretability and explainability.

4) KNOWLEDGE GRAPH COMPLETION
Reference [16] introduced a temporal KG completion
approach incorporating link prediction, showing effec-
tiveness for spatial-temporal link prediction tasks. Refer-
ence [34] introduced a box embedding approach for temporal
KGs, intensely validating it for inference and expressivity.
Reference [35] proposed the T-GAP model for path-based
inference in static KG, outperforming baselines. Refer-
ence [36] proposed scoping for KG to enhance temporal
representation, validated for various tasks. Reference [37]
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presented a 4-order tuple representational modeling for tem-
poral KG, achieving superior performance. Reference [38]
introduced the RLogic model for KG completion, utilizing
deductive reasoning for recursive rule patterns.

5) DYNAMIC NETWORK ANALYSIS AND REPRESENTATION
In this section, we explore the current state-of-the-art for
dynamic network representation and analysis, considering
dynamic networks as presented in [7] and [39]. Recent works
addressing challenges in dynamic network analysis have
drawn inspiration from both machine and deep learning [40],
[41], [42], [43], [44], [45], [46].

For example, in [40], dynamic metrics for assessing
dynamic networks were introduced using a deep neural
architecture to analyze temporal growth. The approach
was validated with link prediction over real-world datasets.
Reference [41] explored dynamic network connectivity
patterns, providing insights into graph connectivity and
statistical features. Reference [42] focused on neuroimaging
and temporal community analysis, presenting a toolbox
for MATLAB based on time-varying structural features.
Reference [44] conducted a thorough survey on dynamic
networks, covering aspects like taxonomy and definitions.
In [45], a survey on data modeling and embedding strate-
gies for dynamic networks was presented. Reference [46]
introduced an approach for Graph Neural Networks (GNN)
utilizing LSTM neural network architecture for temporal
features, achieving successful link prediction. The literature
reports significant results for dynamic networks across
various analytical contexts. However, further advancements
are anticipated, with researchers actively exploring this
domain. The subsequent subsection will shed light on the
methodological details.

III. METHODOLOGY
In this section, we delve into the methodological details of the
presented workflow, which integrates our previous works [7],
[30], [47]. The framework proposed in [30] focused on
symbolic representation using First Order Logic (FOL) and
Horn clause-driven rule extraction from raw data, presented
as a Knowledge Graph (KG) for querying. While [7]
addressed challenges of dynamic networks represented as
KGs.

Our latest work introduced a federated scheme for querying
over distributed decentralized KGs [47]. The intention of
discussing the previous work and the inclusion of them in
the present framework is to show the contributions that led
us to this idea of extending KG’s factual explainability.
However, this work particularly focuses on the KG analysis
phase. Figure 2 presents the end-to-end workflow, for better
understandability we divided the framework into two parts:
(i) information processing and (ii) information representation.

Phase 1: Information Processing
This phase is divided into three parts, serving to process

raw data, extract symbolic representation, and prepare a KG
for the subsequent phase.

1) Data Acquisition: Collection of data from real-world
environments using sensors or camera feeds. In this
study, as a use case, we utilized data collected from
proximity sensors. Details of the dataset are men-
tioned in the subsequent subsection i.e., information
processing.

2) Information Fusion: For the integration of collected
data into a universal representation, that is transferable
to symbolic rule extraction we aggregated acquired
data from the previous phase.

3) Symbolic Knowledge (Rule) Extraction: This part
utilizes the universal view prepared at the information
fusion phase to extract first-order logic rules from
a machine learning-based classification algorithm to
establish decision boundaries. For more details on rule
extraction please refer to our previous work [30].

These three phases complement the first part of the
workflow. The details of phase 1 operations are elaborated
in algorithm 1.

Algorithm 1 Algorithm for Phase 1
Input: Raw Data from the environment
Output: First-Order Logic Rules for KG Modeling
1: Import all raw data from n sources and transform them

into a dataframe.
2: Aggregate data sources from prior step
{d1, d,2 , d3, . . . .dn} into a universal representation
D

3: Identify FOL rules using machine learning algorithm
(CART, ITER, GridEx, REAL, Trepan) [30], [48]

4: Identify decision boundaries using rules and model KG
involving human-in-loop.

5: return FOL Rules

Phase 2: Information Representation
Similarly, the second part (information representation)

is divided into three parts: KG Federation, KG analysis,
and federated querying, intending to aid KG representation
analysis using Network Analysis (NA) metrics.

1) KG Federation: Distribution of information
represented in KGs.

2) KG Analysis: Extraction of explainable details such
as community structures, bridges, and ties. This work
extends this phase by introducing homophily and
heterophily analysis to aid factual reasoning of the
given network represented as KG.

3) Federated Querying: Aggregation of knowledge
stored in different chunks, making it queryable for the
end-user. Note that this work does not emphasize the
querying aspect.

The details of phase 2 operations are elaborated in
algorithm 2.
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FIGURE 2. Workflow for knowledge graph management and analysis.

Algorithm 2 Algorithm for Phase 2
Input: Rules from Phase 1
Output: Knowledge Graph and Analysis
1: Identify rules as a decision boundary for community

representation and pass it to the KG modeler.
2: Transform data rows as semantic triples
{Subject,Predicate,Object}

3: ifMultiple KG exists then
4: Federate them into a suitable number of shards as

suggested in [47]
5: else

Continue with centralized KG. representation.
6: end if
7: Pass Modeled KG to KGAnalysis Phase. See Algorithm 3.
8: Query for desired data.
9: return KG

Table 1 provides a list of mathematical symbols. The
preceding discussion offers a general overview of the
proposed workflow, justifying its potential extension for
different domain applications. Subsequent sections will delve
into a detailed discussion of this workflow in contrast to the
presented study.

A. INFORMATION PROCESSING (DATA ACQUISITION,
INFORMATION FUSION, AND SYMBOLIC KNOWLEDGE
EXTRACTION)
In data acquisition, we relied on an open-source dataset
available at [49] and [50]. The dataset is based on
face-to-face interaction of authors attending international
conferences held in 2016 and 2017, respectively. Data
was collected with the help of RFID (Radio Frequency
Identifier) based sensors with a proximity of approxi-
mately 1.5m. Along with social interactions, the dataset
also includes a temporal track with a frequency of

TABLE 1. Table of mathematical symbols.

20 seconds. Using author’s association, the dataset also
includes some demographic features like {Age, Seniority
level (Education), background, or discipline, and Country}
or semantically {Author_A, met(timestamp), Author_B }
or {(Author_A) Has_Country(A), Has_Education(Ph.D),
Has_Attended (ICCSS17)}. For our analysis, we divided
the dataset into two parts i.e., social and temporal. First,
we aggregated and transformed the tabular data into a
symbolic representation using the scheme presented in [30].
The symbolic representation takes care of the information
processing phase and generates rules based on First Order
Logic (FOL) and Horn clauses. Then, based on the extracted
rules and human-in-loop as fact-checkers and rule modelers,
we modeled the KG.
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FIGURE 3. Symbolic rule representation.

TABLE 2. Summary of knowledge graph.

FIGURE 4. KG data model.

B. KNOWLEDGE GRAPH MODELING
For KG modeling, we utilized the rules extracted from
the previous phase. The rules extracted from the symbolic
knowledge extraction (rules) can be considered a decision
boundary that helps identify the class of a given node in a
graph. In other words, which parameter or what is measured
makes up the particular class representation. The rules
extracted from the symbolic representation are illustrated

in Figure 3. As mentioned earlier these rules represent
the classes. For instance, one of the sample rules states
individuals with seniority levels 1, 2, and 3, and who have
interacted once, possess IDs within the range of 6 to 105,
and belong to a distinct class. Similarly, individuals who have
interacted only once have seniority levels ranging from 3 to
5 belong to another distinct class, and so on.

Based on these rules, and human-in-loop as a domain
expert we modeled the KG. For the modeling of KG,
we adopted the data model presented in Figure 4. Notice that
we named both conferences a single node label because based
on the available dataset there was no clue to differentiate;
so, for our analysis, we worked with the merged version.
A brief statistical description of the obtained KG is presented
in Table 2.
This helps us to federate the knowledge from social and

temporal representation into a KG. Now with KG, we can
also query and filter the interactions based on customized
criteria(s). For example, we want to filter authors attending
the conference held in a specific country. We can filter it
by using the following query {Match(c : ICCSS17) ← [:
Has_Attended] − (a : Author) − [r : Has_Country] −
() return c,a,r}. If required, for upscaled analysis, we can also
distribute data into a suitable number of shards and query
them by the federated querying scheme proposed in [47].

C. KNOWLEDGE GRAPH ANALYSIS
In this section, we will discuss the fundamentals of KG
analysis and how we contributed to factual explainability via
reasoning. The foundational task of Network Analysis (NA)
is to help end-users analyze the given network representation
using statistical features. These approaches come in very
handy because they help filter out interesting measures
instead of just numbers. In this work, we utilized NA for
static and dynamic analysis. The notion of dynamic NA is
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FIGURE 5. Modularity-based community detection.

adopted from our previous work [7]. As per our study, simply
relying on NA is not sufficient because statistics without
semantics are incomplete. In other words, it is like you
have identified an issue but you don’t know how to track
it down. Using semantic representation like KG helps you
interlink the domain constraints via relationships. For ease of
understanding, we have divided this section into the following
sub-sections: (i) KG analysis as Static NA, (ii) KG analysis as
Dynamic NA, and (iii) Factual reasoning of KG (homophily
and heterophily).

1) STATIC NETWORK ANALYSIS
In this subsection, we will shed light on the details of
NA. For in-depth analysis, we divided this phase into
two parts: static and dynamic. For static NA, we simply
divided our KG into two partitions: social interaction and
temporal interaction. To identify communities of interest,
we utilized the mathematical formulation presented in
Equation 5. However, evaluating these communities requires
amatrix representation alongwith closeness and betweenness
centrality. To transform the network into matrix form
and facilitate calculations, we applied the mathematical
expressions presented in Equations 1, 2, and 3. Figure 5
presents the temporal and social interaction community
partitions based on themodularity-based Louvain community
detection algorithm [51]. Specifically, Figure 5A represents
the temporal communities while Figure 5B represents the
social interaction-based communities. Based on NA of social
and temporal networks obtained from dataset [49], we iden-
tified 5 and 3 communities, respectively. As can be observed
from the figures, the communities are overlapped and hence
require further investigation. For further investigation of these
communities and their interactivity, we applied the metrics of
dynamic NA so that we can identify the most participating
individuals based on their activity.

Equations 1-5 exhibit the mathematical formulation for
evaluating modularity-based community detection presented
in Figure 5.

Node_Connection_Matrix = A+ I (1)

where A and I are the adjacency and identity matrix [52].

Closeness_Centrality(U ) =
n− 1
N − 1

n− 1∑n−1
V=1 d(u, v)

(2)

FIGURE 6. Dynamic node analysis based on interaction.

where d is a distance and d(u, v) represents the shortest path
between u and v, and n− 1 is the number of nodes reachable
to U and N is the total number of nodes in the graph [53].

Betwenness_Centrality(V ) =
∑
s,t∈V

σ (s, t|V )
σ (s, t)

(3)

where V is the set of nodes, (s, t) and σ (s, t|v) are the number
of shortest paths [54].

Modularity = 1Q =
ki,in
2m
− γ

6tot · ki
2m2 (4)

Here, m represents the size of the graph, ki,in denotes the
sum of weights from node i to the community, γ stands for the
resolution parameter, ki signifies the sum of weights of links
incident to node i, and 6tot represents the sum of weights of
links in the community [51].

2) DYNAMIC NETWORK ANALYSIS
For dynamic NA, we utilized the aggregated static view
from static NA. Here, by static NA, we mean that for the
initial analysis, we divided the network into two sub-graphs.
These subgraphs were based on (i) temporal interaction and
(ii) face-to-face or social interaction. As mentioned earlier,
for dynamic NA, we adopted the notion that the dynamicity of
the network depends on the interaction concerning time [55]
and mathematically represented by:

D (Node X ) =

∑S
n=1 d(xi, c)
S − 1

(5)

where D is a rewiring score used to measure the dynamic
neighborhood of node Node X in a dynamic network.
A dynamic network is derived by a 3-dimensional matrix
i.e., the extension of an adjacency matrix along with a
network state or state space S. State space or network state is
represented by the adjacencies view of the network snapshot
i.e., {S1, S2, S3, . . . ., S}. c is the relative mean centroid based
on the variance within S, while d is the dissimilarity measure
among nodes based on simple Euclidean distance. All of these
measures are used together to calculate the dynamicity of the
network [55].
We compared the network timestamps based on node

activation and edge (interaction or relationship) activation.
The results of the analysis are shown in Figures 6 and 7.
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FIGURE 7. Dynamic edges analysis based on interaction.

Figure 6 shows the changes or dynamicity in the network
concerning node activity, i.e., author or person mobility,
and Figure 7 shows the dynamicity concerning edge or
relationship. In Figures 6 and 7, the different color shades
represent the dynamicity or activity of individual nodes and
relationships. Darker shades represent more activity within
the network.

3) FACTUAL EXPLAINABILITY
This sub-section highlights the utilization of the NA as a
tool for confirming factual reasoning specifically homophily
and heterophily. Homophily, as previously mentioned, is a
measure confirming the characteristic likeness of correlated
items. These items could be associated with any individual or
physical entity (e.g., machine, sensor-based device, Internet
of Things). On the contrary, heterophily is not generally
represented by likeness.

In this study, we aim to confirm a factual interpretation or
explanation of why any entity, in this case, a person (author),
is a part of a certain community. In other words, like-minded
authors tend to associate with other like-minded authors or
heterophily, authors could be part of another community
irrespective of their interests, which is mostly false in social
networks. To prove this notion, we employed both homophily
and heterophily as measures to observe the selected KG as a
network based on four characteristics: age, seniority, country,
and background. This type of homophilic analysis is also
known as status-based homophily.

For robustness, we compared our network with two
stochastic network analysis models: (i) Erdős-Rényi model
and (ii) Block Model [49], [50]. Both models use a contact
matrix for homophily analysis and an inverse contact matrix
for heterophily analysis. Based on the earlier criteria,
we divided all nodes into two groups A and B. The homophily
measure can be represented by the symbol h and heterophily
by h0. Whereas hAA represents the probability between
group A members and hBB represents the probabilities of
group B members [50]. Whereas hAB and hBA are the
complementary probabilities i.e., hAB = 1− hAA hBA = 1−
hBB. Furthermore, for feature selection, we assumed simple
intuition i.e., homophily and heterophily are symmetry and
complementary and can be represented by (h = hAA =
hBB), (hAB = hBA = 1 − h) [50]. However, the value of

FIGURE 8. Homophily-dominated clustering of community features.

h ranges from 0 to 1, where 0 ≥ h ≤ 0.5 means the nodes
from one group are connected with a few specific groups
(i.e., heterophily domination). If the value of 0.5 ≥ h ≤ 1 ,
this means the group of nodes is part of the same community
and well-connected (homophily domination). If the value of
h = 0.5, then the network is neutral or mixed. For the
calculation of group-level homophily probability, we adopted
a 4× 4 matrix representing each group like P00 refers to the
homophilic probability between Age to Age feature and so
on, which is calculated by the following equations

hA,B =


P00 P01 P02 P03
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33

 (6)

However, each entry in the contact matrix is a node-level
probability and is calculated by the following equation:

Homophily Probability(Pi,j) =
hAB(i, j)Ki∑
e hBA(e, j)Ke

(7)

where i and j are connecting nodes within a specific group
e.g. Age or Country and (e) represents the total edge count
and Ki,Ke are degree counts for all edges in i. Note that
{ ∀ values of hA,B(i, j) ≡ h}. Where h represents the
homophily hyperparameter for node i connecting node j in
groups A and B [50].

PAB =
(PAPB)1/2

(PAPB)1/2 + [(1− PA)(1− PB)]1/2
(8)

where PAB is the mean homophilic probability between
groups A and B [50].
For inverse Block Model calculation i.e., heterophily,

we just took the inverse of Block Model calculations, i.e.,
(1 − hA,B). For Erd˝s-Rényi model calculations, we utilized
the same contact matrix used for the Block Model. The
subsequent section will briefly explain the results of the
proposed methodology. The details of the KG analysis are
elaborated in algorithm 3.
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FIGURE 9. Heterophily-dominated clustering of community features.

Algorithm 3 Algorithm for KG Analysis
Input: Knowledge Graph Representation
Output: Factual Explanation and Interpretation
1: Identify communities of interest based on equation 4.

To cross-check the fact-based communities extracted
from algorithm 2.

2: Identify dynamic nodes and edges based on temporal
activities as mentioned in equation 5.

3: Combine all temporal snapshots of KG and transform
them into a universal KG for extraction of factual
interpretations.

4: For homophily and heterophily analysis probability
1) Divide KG into two node groups A and B. Where

(h = hAA = hBB), (hAB = hBA = 1− h)
2) Evaluated the homophily probabilities of the cho-

sen groups by 4×4 parametric matrix as mentioned
in equations 6-8.

3) Make 3 variants for analysis i.e., homophily-
dominated, heterophily-dominated, and mixed.

5: Cross-validate the results by correlation analysis (Block
model vs Erdős-Rényi model), Preferential Attachment,
and Z-score.

6: return Knowledge Graph Analysis Results as
community or groups.

D. EXPERIMENTAL SETUP
For the presented study, we utilized Python programming
language (numpy, pandas, networkX, and matplotlib), Gephi,
and Cytoscape (an open-source network analysis platform).
For computing resources, we used Intel Core-i7 10th Gen-
eration. As mentioned earlier for this study we used an
open-source dataset [49].

IV. RESULTS AND DISCUSSION
In this section, we will discuss in detail the results
we achieved from the methodology mentioned earlier.
For validation, we tested the model with two variations:

(i) homophily domination and (ii) heterophily domination.
Homophily domination refers to clustering or grouping, i.e.,
a community of authors based on likeness, and heterophily
domination refers to a sparse group of authors having weak
communication and hence less likely to be in the same cluster
or community.

In this work, we implemented a community-level Block
Model. There are other variants [49], [56] that utilize
edge-level or relationship-level Block Models. But for
simplicity, we adhere to the community level. As mentioned
earlier, we focused only on four features (Age, Seniority,
Country, and Language), and for the calculation of het-
erophily, we considered the inverse homophily matrix.

Figure 8 shows the homophily-dominated clustering of
each feature respectively where A, B, C, and D refer to Age,
Seniority, Country, and Language.

Figure 9 shows the heterophily-dominated features A,
B, C, and D clustering similar to Figure 8. However,
it is observable that only country and language-based
features have a small number of clusters. This clustering
gives a glimpse to cross-validate and ensure analysis; we
incorporated Block and Erdős-Rényi model. As mentioned
earlier, the Block Model is based on a 4 × 4 parametric
matrix model, and Erdős-Rényi is considered a null model.
Hence, to further investigate the analysis from both models,
we model a correlation matrix shown in Figure 10. Where
Figures 10 A, 10 B, and 10 C show the correlations for each
feature based on the null model (Erdős-Rényi) in contrast
Figures 10 D, 10 E, and 10 F show the correlations based
on the Block Model.

However, to identify true homophily and heterophily,
we made three variants of the correlation matrix, i.e.,
homophily dominated, heterophily dominated, and neutral.
The correlation analysis results show that the KG has a
homophilic nature. To confirm and validate that the presented
analysis is true, we also implemented the preferential
attachment algorithm presented in [57]. The preferential
attachment algorithm suggests that famous entities in the
network will receive more links as the network grows.
Figure 11 shows the preferential attachment in a score-
wise manner. This highlights that due to high homophily,
more than half of the authors will connect to more
authors.

Hence, the link prediction analysis based on the pref-
erential attachment algorithm [57] confirms the correlation
analysis results, i.e., the given KG is homophilic. Further,
as an additional layer of the test, we incorporated a
z-score measure A.K.A standard score in statistics that
tells us how a specific data point(s) are relational to the
mean. Figures 12A, 12B, and 12C present the z-score
measure as a histogram. It is interesting as it also high-
lights some heterophilic nature of communities which was
also prominent in some correlation cases. Similar to the
previous analysis we made three variants i.e., homophily
dominated, heterophily dominated, and mixed for the z-score
measure.
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FIGURE 10. Correlation analysis of homophily and heterophily.

V. LIMITATIONS AND FUTURE WORK
This section addresses the limitations of our work and
outlines potential directions for future exploration. The
integrated approach proposed in this study combines sym-
bolic rule extraction, Network Analysis (NA), and factual
reasoning for Social Mobility Knowledge Graph (KG).
We also discuss KG modeling and querying. To strengthen
and validate our results, we conducted various experiments,

FIGURE 11. Preferential attachment score-wise analysis.

FIGURE 12. Z-score analysis.

including link prediction, correlation analysis, homophily,
and heterophily analysis. This study is beneficial for behav-
ioral analysis, hotspot identification, and profiling studies
where we are interested in observing user(s) interaction(s) as
a community. For example, digital advertisement, and mar-
keting, workspace profiling, citizen profiling, andwell-being,
E-Government, etc.

We have conducted a data analysis, which confirms that
the Social Mobility KG has a homophilic nature. However,
we acknowledge that this observation may not be universally
applicable. Therefore, it is important to explore multiple
mobility KGs to corroborate our factual conclusions. Unlike
some studies, we didn’t introduce any novel matrices for
factual reasoning. Instead, we relied on stochastic homophily
and heterophily. Our conclusion is reasonable, but further
investigation across different KG genres is required to
assess stability (robustness) and correctness (truthfulness).
Our study didn’t employ any KG embedding scheme(s) for
learning vector space. However, it is crucial to devise baseline
model(s) that could be applied to integrated studies like the
one presented.

Another avenue worth exploring is the application of
Graph Neural Networks (GNNs) within our framework.
Existing literature [2], [5], [6], [22], [26] has explored GNNs
for explainability, but their application to KGs and utilization
of homophily and heterophily-based metrics for reasoning
remain unexplored areas. KG reasoning and embedding itself
is a compelling research topic.

Furthermore, there is a need to explore NA and its
metrics for reasoning in KGs, especially in temporal and
spatiotemporal settings as discussed in [2] and [58]. This
work presented a factual analysis, indicating that like-minded
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individuals tend to associate. In future work, we intend to
improve the following (i) improvise supervised symbolic
rule extraction by newer methods and without humans in
the loop, (ii) Enhance the mathematical modeling of the
block model for dealing with the complex feature set.
Counterfactual reasoning is a less mature research topic,
but it represents another intriguing direction, much like
attention-based learning such as reinforcement or transfer
learning.

Additionally, the integration of Large Language Models
(LLMs) and Retrieval Augmented Generation (RAG) with
real-world graph networks is an underexplored area. Inves-
tigating different integration schemes and relevant evaluation
metrics is a crucial research avenue. Graph representation
and network science are essential topics for achieving
better explainability. The subsequent section will provide
concluding remarks.

VI. CONCLUSION
This work introduced an integrated approach using com-
plex network analysis as a tool for understanding factual
reasoning. We combined symbolic representation with KG
modeling to enhance the ground truth representation. Further-
more, we introduced homophily and heterophily analysis and
link prediction to validate factual reasoning. Our framework
enables the extraction of rules from raw data and themodeling
of a KG, ready for network analysis-based measures for
factual reasoning. However, as highlighted in our discussion
of future work, some aspects require further attention and
exploration.

Explainable Artificial Intelligence (XAI) is at the forefront
of research and industry, revealing intricate details that may
appear complex from a top-level perspective. The complexity
hidden within data representation and algorithms necessitates
new approaches to revealing these details. Consequently,
further studies, akin to those presented in this article, are
essential for advancing the understanding of these complex
systems.
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