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ABSTRACT Integrating Stereo Imaging technology into medical diagnostics and surgeries marks a
significant revolution in medical sciences. This advancement gives surgeons and physicians a deeper
understanding of patients’ organ anatomy. However, like any technology, stereo cameras have their
limitations, such as low resolution (LR) and output images that are often blurry. Our paper introduces a
novel approach—a multi-stage network with a pioneering Stereo Endoscopic Attention Module (SEAM).
This network aims to progressively enhance the quality of super-resolution (SR), moving from coarse to fine
details. Specifically, we propose an edge-guided stereo attention mechanism integrated into each interaction
of stereo features. This mechanism aims to capture consistent structural details across different views
more effectively. Our proposed model demonstrates superior super-resolution reconstruction performance
through comprehensive quantitative evaluations and experiments conducted on three datasets. Our E-SEVSR
framework demonstrates superiority over alternative approaches. This framework leverages the edge-guided
stereo attention mechanism within the multi-stage network, improving super-resolution quality in medical
imaging applications.

INDEX TERMS Anatomy, stereo endoscopic attention module, stereo imaging, stereo video
super-resolution.

I. INTRODUCTION
The continuous evolution of digital videos and images has
led to significant advancements in visual quality across
various domains. Cameras have become omnipresent, serving
diverse purposes such as surveillance with CCTV, capturing
moments through smartphones, contributing to medical
sciences for more precise diagnostics and surgeries, aiding
space exploration with satellites, and enriching daily life
through various imaging devices. Technological progress has
transformed imaging from the era of black and white to the
current era of 8k resolution and beyond. Video and image
resolution, determined by the number of pixels, is a crucial
determinant of image quality.
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Despite the impressive stridesmade in imaging devices and
standards, certain limitations persist, resulting in blurriness
of video noise and loss of vital details. In contrast to
stereo images, stereo videos face heightened susceptibility to
constrained spatial resolution owing to the added temporal
dimension, posing potential limitations for applications
demanding finer details. Despite the extensive exploration
of super-resolution techniques over the years, prevailing
methods predominantly center on restoring stereo images.
The realm of stereo video super-resolution (StereoVSR)
remains relatively uncharted. Super-resolution (SR) emerges
as a solution to this challenge, involving recovering missing
information from low-quality images.

Endoscopy is extensively used for surgical navigation and
minimally invasive procedures [1]. However, the limited
depth information and field-of-view in endoscopic videos
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captured by a single camera has prompted the increasing
adoption of stereo cameras, particularly in intricate and robot-
assisted surgeries [2]. Stereo endoscopic images, derived
from two distinct viewpoints, offer valuable depth cues and
enhanced sub-pixel information compared to their single-
camera counterparts [3].
However, challenges arise in endoscopy regarding main-

taining high video quality and resolution, primarily due
to the constraints imposed by the confined surgical space
and the limited field of view of endoscopic instruments.
Optical sensors must be compact to capture various tubular
cavities and lumens scales effectively. Furthermore, the
limitations of unstable illumination conditions can lead
to image degradation and the loss of crucial information
in stereo endoscopic images. These issues can negatively
impact subsequent procedures such as image classification,
segmentation, and reconstruction [3], [4].

Consequently, there is a considerable advantage in improv-
ing the resolution and quality of stereo endoscopic images
and video frames to mitigate these challenges and enhance
the overall efficacy of endoscopic procedures.

In the context of stereo endoscopic video super-resolution
(SR), including consecutive frames introduces valuable
temporal consistency. Traditional video SRmethods typically
involve the network processing several successive images,
extracting and synthesizing features to reconstruct high-
resolution (HR) outputs. Nonetheless, when utilizing the
conventional 2D video super-resolution approach on stereo
video frames, there is a potential risk of losing the alignment
or correspondence between the left and right views. This risk
is further elaborated in recent studies, such as the one by [80].
Despite the enhanced visual performance achieved byCon-

volutional Neural Network (CNN)-based super-resolution
(SR) techniques compared to traditional methods, their
efficacy is hampered by constraints related to the convolution
kernel size and the restricted field-of-view regions. CNN
models inherently possess limitations in capturing long-range
dependencies. Recently, transformer networks, which inte-
grate self-attention mechanisms, have emerged as a promis-
ing solution for addressing various visual challenges [5], [6].

Within transformer-based methodologies, the input image
and frames undergo segmentation into smaller patches, which
are subsequently treated as sequential token inputs. These
tokenized inputs are then used to extract image features
utilizing self-attention mechanisms, considering the global
relationships among these tokens. The Swin transformer [7]
distinguishes itself by combining the advantages of both CNN
and transformer architectures through parallel computing
and applying the shifted window technique. This approach
builds a hierarchical feature representation, starting with
small patches and gradually combining adjacent patches
in deeper transformer layers. By harnessing multi-scale
feature maps, the Swin transformer model efficiently and
effectively employs advanced methods for dense prediction
and image reconstruction [8]. Furthermore, similar principles
of feature extraction and handling complex scenarios have

been effectively applied in gait recognition systems, where
parameters such as clothing, angle shift, and walking style
significantly impact system performance. These systems
utilize advanced machine learning classifiers and feature
selection methods to achieve high accuracy in real-time
environments, demonstrating the adaptability of transformer
models in various applications [75], [76]. This integration
allows for a more comprehensive consideration of global
dependencies, overcoming the limitations of purely CNN-
based models.

The StereoVSR task can be effectively addressed through
two distinct strategies. One approach involves deploying
stereo image super-resolution (StereoSR) methods [9], [10],
[11], [12], [13] to independently super-resolve low-resolution
(LR) observations for each frame pair. Subsequently, these
reconstructed frames are merged to form high-resolution
(HR) video clips. Alternatively, the second strategy utilizes
cross-time information from a single view, employing video
super-resolution (VSR) methods [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23] for spatial reconstruction. Both
approaches solely merge multi-view or temporal information
independently, lacking the full utilization of view-temporal
correlated information between frames.

Another approach entails integrating multi-view and
temporal information by first utilizing StereoSR techniques
to generate super-resolved images. Following this, video
super-resolution (VSR) methods are applied to enhance the
high-resolution frames further, resulting in videos with even
greater resolution. In contrast to the previous two methods,
this approach uses information from different views and
adjacent frames within a single view. However, these three
approaches, while effective, do not consider cross-time-cross-
view information, thereby missing an opportunity for further
performance enhancement.

II. LITERATURE REVIEW
This section provides a concise overview of the super-
resolution (SR) methods pertinent to our research, encom-
passing single-image SR [24], stereo-image SR [25], video
SR techniques [26], and Stereo Video Reconstruction.
While single-image super-resolution (SISR) is effective for
enhancing individual images, it falls short in leveraging the
continuity present in video data, such as endoscopic videos,
leading to suboptimal super-resolution results. Multiple
Image Super-Resolution (MISR) addresses this limitation
by incorporating multiple low-resolution (LR) images to
generate a single high-resolution (HR) image.

These methods typically involve taking pairs of LR and
HR patches and learning mapping to translate LR patches
into HR ones. Example pair techniques can be tailored for
general images or specific types, such as medical images,
depending on the provided training set of examples. Sparse
coding stands as a state-of-the-art representative example-
based super-resolution model.

In response to these challenges, researchers have intro-
duced novel methods utilizing deep convolutional neural
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networks for super-resolution reconstruction. Hu et al. [27]
modified the network architecture to simplify performance
and training. Another method enhances the correlation
between neighboring feature information and overall image
quality by incorporating context information into the net-
work. Despite breakthroughs, ongoing research is essential
to enhance super-resolution reconstruction methods further.

A. SINGLE IMAGE SRS
Single Image Super-Resolution (SISR) has been a pivotal
research focus for decades, with recent advancements show-
casing the efficacy of deep learning in achieving high recon-
struction accuracy [28], [29], [30]. The SENext [31] approach
introduces a Squeeze-and-Excitation Next architecture for
SISR, leveraging squeeze-and-excitation blocks (SEB) to
reduce computational costs and dynamically recalibrate
channel-wise feature mappings. Utilizing local, sub-local,
and global skip connections enhances feature reusability
and stabilizes training convergence. SENext, employing
post-upsampling in the pre-processing step, outperforms
previous methods.

Kim et al. [32] propose a popular SISR technique, a Very
Deep Super-Resolution Network (VDSR) with twenty layers,
showcasing the increasing complexity of SR networks in
exploiting intra-view information. Zhang et al. [33] fuse
residual and dense connections, introducing the Resid-
ual Dense Network (RDN) for comprehensive hierarchi-
cal feature characterization. Recent advancements include
Residual Channel Attention Networks (RCAN) [34], Resid-
ual Non-Local Attention Networks (RNAN) [35], and
Second-order Attention Networks (SAN) [36]. Muham-
mad et al. [37] present a novel architecture inspired byResNet
and Xception networks, significantly reducing network
parameters and enhancing processing speed while achieving
high-quality HR images. Experimental results establish this
technique as a state-of-the-art SRmethod regarding accuracy,
speed, and visual quality.

B. STEREO IMAGE SR
Recently, stereo image super-resolution (SR) has gained
heightened attention, with notable works exploring the
effective utilization of stereo information. Enhancing stereo
images requires addressing the critical challenge of effi-
ciently applying corresponding information between two
views within the SR network. Bhavsar and Rajagopalan [25]
introduced a comprehensive framework designed to simulta-
neously estimate the image depth map and the super-resolved
(SR) image using multiple low-resolution (LR) images. This
framework was developed by formulating a unified energy
function and iteratively minimizing it through updates to the
SR image and the disparity map.

Several convolutional neural networks (CNN)–based
stereo super-resolution (SR) approaches integrate features
such as disparity and parallax attention. Jeon et al. [11]
presented the Stereo Enhancement Super-Resolution model

(StereoSR), which utilizes a single image along with a
set of auxiliary shifted images to produce super-resolution
(SR) results with improved details. Nonetheless, this method
encountered constraints when dealing with stereo images
containing varying disparities, mainly because it relied on a
fixed maximum parallax. Addressing this, Wang et al. [38]
introduced the Parallax-Attention Stereo Super-Resolution
Network (PASSRnet). Their innovation was the introduction
of the parallax attention module (PAM), which efficiently
captures information from both views along the epipolar line
to improve correspondence matching. Ying further expanded
on this concept by integrating multiple PAMs into different
stages of pre-trained single-image super-resolution (SISR)
networks to enhance overall performance.

Yan et al. [9] pioneered a domain adaptive stereo super-
resolution (SR) network that estimates disparities using
a pre-trained stereo matching network. They harnessed
cross-view information by warping views to the other side,
enhancing the overall stereo SR performance. On a different
note, Xu et al. [39] introduced bilateral grid processing into
convolutional neural networks (CNNs), presenting a Bilat-
eral Stereo Super-Resolution Network (BSSRnet) explicitly
designed for stereo image SR. In contrast, Chu et al. [40]
introduced an innovative CNN-based approach known as
NAFNet, which includes a distinctive Stereo Cross Attention
Module (SCAM) block designed for parallax fusion.

C. VIDEO SR
Video Super-Resolution (VSR) focuses on the task of recon-
structing a high-resolution (HR) video from its corresponding
low-resolution (LR) input, distinguishing itself from Single
Image Super-Resolution (SISR) methods, which deal with
single images [34], [41], [42], [43], Video Super-Resolution
(VSR) takes advantage of temporal correlations between
frames, resulting in enhanced reconstruction outcomes.
In recent years, significant endeavors have been directed
towards harnessing multi-frame data for VSR within deep
learning [15], [20], [23], [44], [45].

A method of Video Super-Resolution (VSR) methods
pertain to the alignment of various frames using motion
compensation modules that rely on optical flow estima-
tion [46], [47]. Nonetheless, the process of optical flow
estimation is inherently challenging and susceptible to
inaccuracies [48], [49]. Other approaches seek to exploit
multiframe information implicitly [17], [23]. For instance,
Wang et al. [20] employ a combination of techniques,
including a pyramid, cascading, and deformable module for
alignment, alongwith a temporal and spatial attentionmodule
for information fusion, resulting in the attainment of state-of-
the-art results.

However, when dealing with the StereoVSR task, which
involves input with more frames captured from an additional
viewpoint, it is apparent that directly applying conventional
VSR methods may not yield optimal results. To achieve
improved performance, it becomes imperative to carefully

VOLUME 12, 2024 30895



M. Hayat, S. Aramvith: E-SEVSR—Edge Guided Stereo Endoscopic Video Super-Resolution

FIGURE 1. The proposed E-SEVSR network architecture provides an overview, depicted with ILR representing the input low-resolution video frames on
the left side, while ISR represents the output reconstructed video frame on the right side. This network aims to take in low-resolution video frames and
generate high-quality, super-resolved video frames as output.

account for and leverage the task-specific view-temporal
correlations.

D. STEREO VIDEO SUPER-RESOLUTION
Stereo videos offer valuable multi-view information, present-
ing opportunities for improved performance in various recon-
struction tasks. Recent studies have tackled the challenge
of stereo video deblurring by simultaneously estimating 3D
scene flow and removing blurs [50], [51]. Li et al. [52] have
harnessed depth information for stereo video re-targeting in a
different application, facilitating the seamless adjustment of
stereo content to screens of varying sizes and aspect ratios.

In endoscopic surgery, the quest for enhanced visual clarity
has led to developing and comparing various super-resolution
(SR) methodologies, each presenting its unique strengths and
weaknesses. As delineated in Table 1, beginning with the
Minimally Invasive Surgery SR in 2011, which offered a com-
prehensive analysis of SR techniques but required a delicate
balance between enhancement and artifact reduction [81].
By 2013, the RGB Hybrid 3-D Endoscopy method enhanced
spatial resolution using RGB data, albeit its effectiveness
was challenged in diverse environments [69]. Advancements
continued with Hybrid Range Imaging and hybrid imaging
with Maximum a Posteriori (MAP) estimation was intro-
duced, though it faced motion estimation and data fusion
challenges [69]. The introduction of Disparity-Constrained
Parallel Attentionmarked a significant improvement in stereo
image quality despite issues with stereo camera incon-
sistencies [83]. Real-Time Surgery Enhancement promised
real-time performance in surgery, necessitating further data
collection and testing for validation [84]. The subsequent
years saw the introduction of Disparity-Constrained Stereo
SR, which was effective on specific datasets but struggled
with adaptability in surgical applications [63]. The most

TABLE 1. Comparison of Super-Resolution Methods in Endoscopic
Surgery.

recent advancements, Channel and Spatial Attention SR and
Hybrid Attention for Endoscopic Video SR highlighted the
importance of detail enhancement and image reconstruction
through attention mechanisms. Yet, both methodologies
underscored the need for refinement in diverse settings and
optimization of attentionmechanisms, respectively [62], [66].
This progression underscores a continuous effort to refine
image quality in endoscopic surgery, navigating the trade-offs
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FIGURE 2. Architecture of Combined Channel and Spatial Attention Block
(CCSB).

between real-time applicability, environmental adaptability,
and the computational demand of advanced SR techniques.

Our solution addresses the challenges previously proposed
models face in the Stereo Video Super-Resolution (Stere-
oVSR) field. This area has not been extensively explored
in existing literature. This approach aims to leverage the
benefits of deep learning for stereo videos, intending to
achieve notably enhanced super-resolution outcomes.

III. PROPOSED METHODOLOGY
Figure. 1 illustrates our proposed Edge guided Stereo
Endoscopic Video Super-Resolution (E-SEVSR) network
architecture, comprising the following components: Feature
Extractor (FE), Deep Feature Refinement Block (RFDB),
Stereo Endoscopic Attention Module (SEAM), Reconstruc-
tion Block, and Upsampling Block.

The model F(.,., θ), governed by model parameters,
is responsible for generating the reconstructed SR results
I (left,SR)k and I (right,SR)k from the given left LR frames(
I (left,LR)(k−m) , . . . , I (left,LR)k , . . . , I (left,LR)(k+m)

)
and right LR frames(

I (right,LR)(k−m) , . . . , I (right,LR)k , . . . , I (right,LR)(k+m)

)
as represented by

Equation (1):

I (left,SR)k , I (right,SR)k

= F
(
{I (left,LR)(k−m) , . . . , I (left,LR)k , . . . , I (left,LR)(k+m) },

{I (right,LR)(k−m) , . . . , I (right,LR)k , . . . , I (right,LR)(k+m) }, θ
)

(1)

A. FEATURE EXTRACTION BLOCK
In this context, superscripts indicate tensor attributes such
as left (L) and right (R) views, low-resolution (LR) and
super-resolution (SR) resolutions, and processing statuses by
specific modules. Subscripts of tensors represent temporal
information, specifically the frame count, while subscripts
of modules denote their order in the process. This equation
demonstrates how the model processes the input left and
right LR frames to produce the corresponding high-resolution
stereo endoscopic images.

FIGURE 3. Feature Extraction block comprises one CCSB block and three
ASPP blocks. ASPP has three dilated convolution layers, each with
dilation rates of 1,4 and 8. It provides an enhanced receptive field to
features extracted by CCSB.

The Combined Channel and Spatial Attention Block
(CCSB) [66] consists of two integral components: the
Channel Attention Block (CAB) and the Spatial Channel
Attention Block (SAB), as depicted in Figure. 2. The CAB
plays a role in determining the importance of various feature
maps, while the SAB identifies critical areas within each
feature map. These operations involve simultaneous average
pooling and max pooling, which combine and condense the
features, yielding both max-pooled and average-pooled fea-
tures. During the training phase, the max-pooled and average-
pooled features undergo further processing via two densely
connected layers. A reduction parameter is introduced to
manage parameter complexity, setting the activation size as
nchannels
r×1×1×1 . Finally, a sigmoid activation function is applied,

yielding channel attention values F (left,CA)
i ,F (right,CA)

i repre-
sents the current frame under processing.

F (left,CA)
i = fchannel_attention(I

(left)
i−1 ) (2)

F (right,CA)
i = fchannel_attention(I

(right)
i−1 ) (3)

Spatial attention mechanisms are explored to emphasize
important regions within feature maps. The refined features
obtained from channel attention are separately subjected
to max pooling and global average pooling, generating
a 3-dimensional feature map. Concatenating the outputs
of both pooling operations, a 3-dimensional convolutional
operation with a kernel size of 3×3×3 is employed,
creating a three-dimensional spatial attention map. This map
undergoes a sigmoid activation to yield optimized features
F ′
i,left , F ′

i,right .

F ′
i,left = fspatial_attention(FCAi−1,left ) (4)

F ′
i,right = fspatial_attention(FCAi−1,right ) (5)

The low-resolution (LR) images traverse through the CAB,
followed by the extracted features from the CAB passing
through the SAB for further refinement.

B. DEEP FEATURE REFINEMENT BLOCK
Deep Feature Refinement Blocks (DFRB) comprise four
RDB blocks each, further refining features extracted from the
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FIGURE 4. Residual Dense Blocks (RDB), consist of multiple convolutions
and ReLU layers to provide deep feature extraction for feature refinement.

FE block. Utilizing Residual Dense Blocks (RDB) allows for
generating numerous local features whilemaintaining a broad
receptive field, contributing significantly to superior Super-
Resolution (SR) results. Incorporating RDBs is warranted
due to their inherent capacity to facilitate learning complex
and hierarchical features. These blocks encompass multiple
densely connected convolutional layers, fostering feature
reuse and empowering the model to capture intricate patterns
and structures within the data.

Fi,left = fDFRN(F ′

i−1,left ) (6)

Fi,right = fDFRN(F ′

i−1,right ) (7)

RDBs are strategically placed after the feature extraction
block and after every SEAM block. Subsequently, the
extracted features from these RDBs are concatenated and
forwarded to the SEAM for further processing. This approach
allows for comprehensive feature refinement and interaction
before being utilized in the subsequent stages of the model.

C. SPATIAL FEATURE TRANSFORM
The spatial feature transform block [53] serves as a critical
component in the processing pipeline, handling two sets
of features: one obtained from an edge detection algorithm
and the other refined through the Deep Feature Refinement
Blocks (DFRB).

This block is designed to harmonize and integrate these
distinct sets of features, leveraging their respective strengths.
The features derived from the edge detection algorithm focus
on capturing high-frequency information related to edges and
boundaries within the input data. On the other hand, the
refined features from the DFRB encapsulate more abstract
and learned representations of the input, potentially encoding
complex structures and patterns. The spatial feature transform
block orchestrates the fusion or combination of these feature
sets. It might employ various mechanisms, such as attention
mechanisms, learnable transformations, or adaptive pooling
strategies, to effectively merge the edge-focused information
with the enriched and refined features from the DFRB.
This fusion aims to leverage the complementary nature of
the edge-derived details and the hierarchical representations
learned by the DFRB.

F (m,M )
i,left = (αm + 1) ⊙ (Fi−1,left + βm) (8)

F (m,M )
i,right = (αm + 1) ⊙ (Fi−1,right + βm) (9)

By combining these features intelligently and synergisti-
cally, the spatial feature transform block aims to create a
unified representation that encapsulates detailed edge infor-
mation and abstract contextual knowledge. This consolidated

FIGURE 5. Spatial Feature Transform (SFT) block to process features from
pre-trained edge detection model and output features from DFRB. SFT is
deployed before every SEAM block to excel model efficiency by
integrating edge information.

feature representation can significantly enhance subsequent
processing stages, contributing to the overall effectiveness
and robustness of the model for the given task.

D. STEREO ENDOSCOPIC ATTENTION MODULE
The Super-Resolution Edge-preserving and Attention Mech-
anism (SEAM) system, a significant advancement in endo-
scopic imaging, incorporates several innovative features that
set it apart from traditional super-resolution techniques.
SEAM leverages stereo vision integration from stereo
endoscopes, offering dual perspectives for more accurate
depth and spatial relationship reconstruction. Its attention
mechanism efficiently focuses on image areas with intricate
details, thus enhancing super-resolution effectiveness. Unlike
conventional methods, SEAM preserves edges and textures
crucial for medical diagnostics and utilizes depth information
from stereo images to guide the super-resolution process.
This depth-aware approach is key in better preserving fine
details.

Moreover, SEAM likely includes specialized noise reduc-
tion and artifact suppression components, ensuring enhanced
image quality. Empirical evidence from practical applications
demonstrates SEAM’s superiority in preserving fine details
in endoscopic images, backed by quantitative metrics and
qualitative assessments.

We have also integrated the Occlusion Handling block
within the SEAM module, which plays a pivotal role in
generating symmetric stereo correspondence and deriving
occlusions by utilizing the attention mapsMR→L andML→R.
This block is instrumental in identifying and managing
occluded areas, which is crucial for accurate depth perception
and feature extraction in stereo endoscopic videos.

The Occlusion Handling block’s techniques are adept at
processing occlusions, often caused by bodily fluids or tis-
sues, common in endoscopic videos. These techniques focus
on isolating and minimizing the impact of occlusions, leading
to clearer, more interpretable images. This enhancement is
vital in medical diagnostics and procedures where detail is
paramount. The integration of this block improves the quality
of stereo endoscopic videos by adeptly handling occlusions.
It ensures accurate capture and representation of depth and
spatial information, bolstering the overall effectiveness of the
SEAM module in stereo endoscopic video super-resolution
tasks.
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Given a pair of stereo images IL and IR ∈ RH×W , parallax
attention mapsMR→L ,ML→R ∈ RH×W×W can be generated.
These maps are instrumental in identifying occluded regions,
as they highlight areas where depth values change abruptly or
near image boundaries. The occluded regions correspond to
empty intervals in the attention maps, indicating the absence
of counterparts in the other view.

The conversion of the right image into the left perspective,
denoted as IR→L , is achieved through the equation:

IR→L(h, :) = MR→L(h, :, :) ⊗ IR(h, :) (10)

where ⊗ represents batch-wise matrix multiplication. The
softmax normalization performed along the third dimension
of MR→L and ML→R indicates the matching possibility
between corresponding points in the stereo images.

The possibility of a point being occluded in the right view
and its effect on the left image is calculated as follows:

PL(h,w1) =

W∑
w2=1

MR→L(h,w1,w2) ·ML→R(h,w2,w1)

(11)

To account for noise and rectification errors, we extend this
equation by ±2 pixels:

P′
L(h,w1) =

2∑
δ=−2

W∑
w2=1

MR→L(h,w1 + δ,w2)

·ML→R(h,w2,w1) (12)

The valid masks VL and VR for the left and right views,
respectively, are calculated using a tanh function applied to
P′
L and P′

R, with a scaling factor τ set empirically:

VL = tanh(τP′
L), VR = tanh(τP′

R) (13)

The SEAM module, depicted in Figure 6, is enhanced by
integrating patch-wise (PConv) and depth-wise convolution
(DWConv) within stereo endoscopic attention modules for
cross-view feature extraction. This integration and the Occlu-
sion Handling block significantly advance stereo endoscopic
video super-resolution image processing. It boosts the ability
to streamline network architecture by reducing parameters
and computational demands.

Q denotes the query matrix derived from the source
intra-view feature (for example, the left-view), while K and
V represent the key and value matrices derived from the
target intra-view feature (for example, the right-view). The
dimensions H, W, and C correspond to the feature map’s
height, width, and number of channels.

Attention(Q,K ,V ) = Softmax
(
QKT
√
C

)
· V (14)

SEAM introduces a cross-view attention mechanism that
amalgamates information from both left and right-view
images to produce cross-view attention maps.

This strategy leverages distinct information in each
view, enhancing feature fusion and improving restoration

FIGURE 6. SEAM Architecture for cross-view feature extraction.

outcomes. Specifically, given the input stereo intra-view
featuresF (left)

i , F (right)
i (bothwith dimensions RH×W×C),

the cross-view fusion features Fleft→right are obtained through
a process involving point-wise and depth-wise convolutions,
denoted asW ()p andW ()d , respectively. These convolutions
refine features from both channel and spatial perspectives.

Qi,left = W (Qleft)
d W (Qleft)

p
(
LN(Fi,left )

)
(15)

Ki,right = W
(kright)
d W

(kright)
p

(
LN(Fi,right )

)
(16)

Vi,right = W
(Vright)
d W

(Vright)
p (Fi,right ) (17)

Fleft→right = W right
d Attentionleft→right(Qi,left,Ki,right,Vi,right)

(18)

Similarly, the cross-view fusion features Fright→left are
derived through a comparable process. Subsequently, the
interacted cross-view information Fleft→right,Fright→left and
intra-view information Fi,left ,Fi,right are fused via element-
wise addition, utilizing trainable channel-wise scales denoted
as γleft and γright, which are initialized with zeros to stabilize
training.

Qi,right = W
(Qright)
d W

(Qright)
p

(
LN(Fi,right )

)
(19)

Ki,left = W (kleft)
d W (kleft)

p
(
LN(Fi,left )

)
(20)

Vi,left = W (Vleft)
d W (Vleft)

p (Fi,left ) (21)

Fright→left = W left
d Attentionright→left(Qi,right,Ki,left,Vi,left)

(22)

The final fusion equation combines these features to create
a more comprehensive representation.

Fi+1,left = γleftFi,(left→right) + Fi,left (23)

Fi+1,right = γrightFi,(right→left) + Fi,right (24)

In summary, SEAM employs a sophisticated attention
mechanism that integrates information from multiple views,
enhancing feature fusion and leading to more effective
restoration results. This is achieved through operations
involving projections, convolutions, and fusion techniques
applied to intra- and cross-view features.
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FIGURE 7. Edge Estimation using the fine-tuned BDCN model for
enhanced edge detection in endoscopic imagery.

E. EDGE ESTIMATION MODULE
Drawing inspiration from [54], We have refined the
BDCN [55] model, specifically tailoring it for endoscopic
video super-resolution applications by fine-tuning it on
various endoscopic datasets Kvasir [85], Hamlyn [86],
diVinci [63], SCARED [57], and EndoVis [87]. This
refinement has significantly improved the model’s efficiency
in detecting critical features in endoscopic imagery. Our
edge estimation process involves passing the stereo input
ILR through the BDCN-based edge detection network [56],
generating multi-scale edge probability maps (specifically at
a scale of 5) for both the left and right views. These maps,
now refined with the fine-tuned BDCN model, preserve
stereo consistency across the views, an essential aspect of our
methodology.

Subsequently, we employ a conditional subnetwork tai-
lored for processing these enhanced edge probability maps.
This subnetwork, consisting of four convolutional layers,
takes as input the refined edge probability maps from
both views and generates edge-guided features denoted as
FEdgei = {FEdge

i,left ,F
Edge
i,right }. These features, benefiting from

the improved edge detection, serve as a shared input for the
cross-view interaction component.

To contain the receptive field of the conditional network
and focus on the improved edge features, we opt for 1×1
kernels across all convolutional layers. This design choice
minimizes interference from smooth regions within the edge
probability maps, emphasizing the extraction of pertinent
information associated with the enhanced edge regions. The
network, thus, more effectively emphasizes edge features by
employing these specific kernel sizes, allowing for a refined
and selective extraction of edge-guided features critical for
subsequent processing stages.

F. RECONSTRUCTION AND UPSCALING
The Reconstruction Block is the ultimate stage in the
image processing pipeline, dedicated to reconstructing high-
resolution (HR) images from the refined features derived
from earlier processing stages. This block is meticulously
crafted to enhance image quality and detail, particularly in
cross-view integration for stereo endoscopic videos. Com-
prised of a sequence of tailored operations, the Reconstruc-
tion Block initiates with a 1× 1 convolution layer (Conv1×1)
designed to adjust channel dimensions efficiently. Following
this, a Residual Dense Block (RDB) captures intricate
patterns and fine-level details within the image content. The
RDB’s densely connected convolutional layers foster feature
reuse and the extraction of intricate, hierarchical features.
Subsequently, the Combined Channel and Spatial Attention

FIGURE 8. Reconstruction and Upscaling Block.

(CCSA) block is employed, enhancing the discriminative
power of the reconstructed images by dynamically accen-
tuating pertinent spatial and channel features. The output
represented as Fmi,left for the left view’s m-th block of SEAM
and Fmi,right for the right view’s m-th block of SEAM,
is processed by the Reconstruction Block by feeding the
output from the cross-view interaction block.

Fmi,left = Fconv3×3

(
Fconv1×1 (FCCSA (FRDB

×

(
Fconv1×1

([
F (m,R)
i,left ,Fmi,right→left

]))))
(25)

Fmi,right = Fconv3×3

(
Fconv1×1 (FCCSA (FRDB

×

(
Fconv1×1

([
F (m,R)
i,right ,F

m
i,left→right

]))))
(26)

The CCSA layer enhances the model’s capability to focus
on both channel-wise and spatially relevant features, which
is crucial in endoscopic video super-resolution. This dual
attention mechanism aids in the recovery of intricate details
and textures, which is vital for medical diagnostics. It ensures
the model does not overlook subtle yet diagnostically
significant details often in medical imagery.

After the CCSA layer, another Conv1×1 operation
fine-tunes the feature representations. To further refine spatial
information and ensure contextual coherence, a 3×3 convolu-
tion (Conv3×3) is applied. This step contributes to smoothing
and enhancing local patterns, ultimately augmenting the
overall quality of the super-resolved (SR) images.

ISRi,left = UPSCALE(Fmi,left) (27)

ISRi,right = UPSCALE(Fmi,right) (28)

The concluding step involves employing an Upsampling
Block, which is crucial for upscaling the refined feature maps
to the desired HR image size. This crucial stage reinstates
LR feature maps into the HR image domain, ensuring that
the final output images possess the desired level of detail and
clarity.
The output of the Reconstruction Block encompasses both

left and right-view SR images, representing the culmination
of the entire processing pipeline. Their quality is a testament
to the efficacy of the model’s feature extraction, attention,
and reconstruction mechanisms. Augmented with the CCSA
block, the Reconstruction Block is pivotal in transforming
LR stereo endoscopic inputs into high-quality, super-resolved
output images.
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FIGURE 9. Evaluation of the perceptual quality of high-resolution images generated by image super-resolution methods for a scale factor of ×4 on di
Vinci dataset.

FIGURE 10. Evaluation of the perceptual quality of high-resolution images generated by image super-resolution methods for a scale factor of ×4 on the
SCARED dataset.

IV. EXPERIMENTAL RESULTS
This section begins by presenting the datasets used and
outlining the experimental settings. A comparative analysis
is performed between the proposed model and various image
SR and video SR methods. Finally, ablation studies are
carried out to confirm and validate our proposed method’s
components and aspects.

A. EXPERIMENTAL SETTINGS
To train our model, we utilized 240 pairs of stereo video
frames sourced from the da Vinci dataset [63] as the training
dataset. The high-resolution (HR) images were downscaled to
create low-resolution (LR) images for training using bicubic
operations. Data augmentation included vertical flipping of
the images. For testing, two sets of stereo endoscopic video
datasets were used: the test set from the da Vinci dataset,
comprising 80 pairs of stereo endoscopic video frames
recorded using the da Vinci system’s stereo cameras; the
SCARED dataset [57], containing 120 stereo video frames;
and the MICCAI 2017 Kidney Boundary Detection Sub-
Challenge dataset; EndoVis dataset [85], which includes a

variety of clinical conditions. This diverse testing regimen
provides a comprehensive platform to evaluate the versatility
and efficacy of the E-SEVSR model.

The network architecture was constructed using PyTorch
and trained on an NVIDIA 3090ti GPU. For optimization,
the Adam optimizer was employed with specific parameters:
β1 = 0.9 and β2 = 0.999. A batch size of 8 was utilized
during training, and the initial learning rate was set at 1
×10−4. In this scenario, the parameter ‘k’ was configured to
equal 1, signifying that three consecutive frameswere utilized
as input data during the training process.

In our approach, we use a pixel-wise L1 loss function.
When considering a training set with N denoting the number
of training pairs, the loss function incorporating the updated
parameters 2 can be expressed as follows:

ξSR(2) =
1
N

N∑
i=1

∥∥∥HE-SEVSR

(
ILRi | 8

)
− IHRi

∥∥∥
1

(29)

Here, 2 denotes the edge priors, which can be applied
as a condition within the function. The term E-SEVSR (·)
denotes the complete function of the proposed E-SEVSRNet,
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FIGURE 11. Evaluation of the perceptual quality of high-resolution images generated by image super-resolution methods for a scale factor of ×4 on the
Endovis dataset.

encapsulating the entire process within the network archi-
tecture. This loss function enables the optimization of the
parameters tominimize the discrepancy between the output of
the E-SEVSRNet model and the ground truth high-resolution
images across the training dataset.

B. EVALUATION RESULTS
Image super-resolution evaluations commonly rely on the
peak signal-to-noise ratio (PSNR) as a fundamental quantita-
tive measure to assess the similarity between high-resolution
(HR) and super-resolved (SR) images. The structural similar-
ity index measure (SSIM) is also a perceptual metric to gauge
image similarity. In comparison with various SR methods,
our algorithm outperformed them, with these metrics being
computed within the RGB color space. The PSNR and SSIM
scores are averaged across left and right image pairs among
frames and calculated as (Left + Right)/2.
Table 2 presents the noteworthy PSNR and SSIM scores

achieved by our proposed network on test sets for ×2
and ×4 SR tasks. Specifically, our method’s PSNR values
surpass those of other single, stereo, and VSR methods
on the three test sets. For the ×2 stereo SR task, our
model exhibits superior PSNR and SSIM values across all
datasets. These quantitative evaluation results validate our
model’s effectiveness in leveraging temporal cross-attention
and parallel attention mechanisms to reconstruct HR images.

Figure. 9, Figure. 10 and Figure. 11 depict the qualitative
performance comparisons of various methods in the context
of ×4 SR on the da Vinci, SCARED, and EndoVis datasets.
These comparisons provide detailed observations in zoomed-
in regions. Qualitatively, stereo SR methods better capture
finer details than single-image super-resolution (SISR)
approaches. E-SEVSR generated clearer and better-quality
images than SOTA.

Figure 11 unequivocally demonstrates the efficacy of our
model in environments influenced by lighting conditions
on the EndoVis dataset. Notably, our model has effectively
mitigated the impact of lighting variations compared to

TABLE 2. Quantitative comparison using PSNR/SSIM on da Vinci dataset,
SCARED and EndoVis with enlargement factor ×2 and ×4.

ground truth high-resolution (HR) images, showcasing its
robustness in handling complex lighting scenarios. This
advancement is particularly significant as lighting conditions
can substantially affect super-resolved images’ perceived
quality and clarity.

Furthermore, compared to existing methods, our model
stands out by SEAM within stereo image pairs, enhancing
SR performance, especially in edge and texture details.
This incorporation of SEAM contributes significantly to
improving the portrayal of intricate details within the super-
resolved images.
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TABLE 3. Ablation study integrating different FE Block using di Vinci
dataset on ×2.

V. THE SIGNIFICANCE OF EDGES IN ENDOSCOPIC IMAGE
AND VIDEO SUPER-RESOLUTION
Recent advancements in edge enhancement techniques have
significantly improved the sharpness and clarity of endo-
scopic images [67]. Techniques such as edge enhancement
optimization increase perceptual sharpness and reduce noise,
thereby improving the overall image quality perceived by
medical professionals. This is particularly important in
endoscopic procedures where fine details and contrasts in
tissue structures play a critical role in diagnosis [67]. Edges
play a crucial role in the processing and analysis of digestive
endoscopy images, the diagnosis of colorectal diseases, and
the identification of pathological collagen [68]. Enhanced
edge representation is vital for distinguishing between tissue
types and identifying abnormalities. This becomes even more
crucial in minimally invasive surgeries, where visual clarity
and detail are paramount for successful outcomes [69]. Edge
enhancement in endomicroscopy is crucial because it leads
to more precise visualization of cellular structures and tis-
sues [70]. In conclusion, recognizing that endoscopic videos
are essentially sequences of image frames, the role of edge
enhancement becomes doubly significant in both endoscopic
images and video super-resolution. Edges are crucial in
delineating critical structures in each frame, impacting the
overall effectiveness of video analysis and diagnostics. Our
model, by introducing a novel edge detection technique
for endoscopic video super-resolution, has demonstrated
improved results both quantitatively and qualitatively.

VI. ABLATION STUDY
A. FE BLOCK
Our model’s effectiveness undergoes validation through
diverse feature extraction techniques: Conv, CCSB, and
CCSB+ASPP. These techniques extract features utilized
for subsequent transformation. Table 3 results highlight the
superior performance achievedwhenCCSB collaborates with
ASPP, showcasing PSNR/SSIM scores of 43.07/0.9943.

Notably, omitting ASPP from the FE process significantly
impacts performance. The absence of ASPP leads to a
noticeable decrease in PSNR and SSIM, dropping by 0.16 dB
and 0.0001, respectively. Furthermore, restricting the feature
extraction to Conv, as employed in MESFINet [54], results
in a more substantial decline in PSNR and SSIM, with a
collective decrease of 0.26 dB and 0.0002, respectively. This
notable decrease significantly impacts overall performance,
emphasizing the critical role of combining CCSB and ASPP
to achieve optimal outcomes.

The quantitative outcomes effectively emphasize the
benefits and effectiveness of integrating CCSB and ASPP

FIGURE 12. PSNR Performance when using different number of SEAM
blocks from q=1 to q=4 onusing di Vinci dataset on ×2.

TABLE 4. Ablation Study by increasing the number of SEAM blocks from
q = 1 to q = 4.

simultaneously, reaffirming their pivotal contribution to sub-
stantial performance improvements. These findings under-
score the crucial nature of this feature extraction strategy
within our model, highlighting its capability to enhance
output quality significantly.

B. NUMBER OF SEAM BLOCK
We began our exploration by examining the impact of varying
the number of SEAM blocks within the network while
keeping the number of RDBs fixed at 4. Figure. 11 displays
the trade-off between PSNR and network parameters across
different quantities of SEAMs. The results, centered on both
at ×2 and ×4, are detailed in Table 4, where we conducted
an ablation study by progressively increasing the integration
of SEAM blocks into the network, varying from q=1 to q=4.

Our analysis indicates that setting q=3 strikes an optimal
balance between SR performance and network parameters.
This configuration allows for consistent enhancements by
leveraging additional stereo information for image recon-
struction. To optimize this equilibrium, we ultimately adopt
a 3-stage E-SEVSR.

C. EDGE PROBABILITY MAP
In exploring the impact of edge probability maps on Image
Super-Resolution (SR), we utilized diverse edge detectors
to generate these maps, presenting the outcomes in Table 5.
Our analysis, derived from the tabulated data, underscores the
pivotal influence of high-quality edge priors in shaping SR
performance.
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TABLE 5. Ablation Study incorporating different edge detection models
using di Vinci dataset on ×2 .

Table 5 demonstrates the intrinsic connection between
the quality of edge priors and the overall SR performance.
Notably, an enhancement in the quality of edge probability
maps correlates with superior SR outcomes. Interestingly,
while differences among various detectors’ edge probability
maps are discernible, the impact of the detector choice
appears somewhat limited.

Specifically, analyzing edge probability maps generated
by Canny [65], Sobel [64], DexiNed [73], RCN [74] and
BDCN (Fine Tunned), we note BDCN’s significant impact
on PSNR, showcasing a remarkable increase of 0.24 dB
compared to RCN [74]. Additionally, a rise of 0.0004 in SSIM
is evident. Consequently, our model incorporates BDCN
(Fine-tuned) for edge estimation, acknowledging its crucial
role in augmenting model performance. These observations
underscore the pivotal significance of edge priors, with
BDCN (Fine Tunned) exhibiting a notable advantage in this
context.

VII. LIMITATIONS AND FUTURE WORK
Our current model establishes a robust baseline for Stereo
Endoscopic Video Super-Resolution, adhering to experi-
mental procedures paralleled in existing studies [62], [71],
[72]. However, our model currently does not support
real-time super-resolution in endoscopic surgeries due to
computational constraints and the lack of resources for
real-time application in surgical settings. Future enhance-
ments could include integrating motion estimation blocks,
frame interpolation, and feature temporal interpolation.
Additionally, hardware improvements such as using multiple
GPUs, high-speed I/O interfaces, FPGA, server clustering,
or Application-Specific Integrated Circuits (ASIC) could
significantly augment real-time processing capabilities.

While our model is currently specialized for endoscopy,
adapting it for broader applications in medical imaging,
including modalities such as MRI, CT, and PET, is a
compelling direction for our future research. These potential
modifications and advancements pave the way for the
practical deployment of our model in real-time surgical
environments and beyond, extending its applicability and
efficacy in clinical settings.

VIII. CONCLUSION
Our paper introduces a novel Stereo Endoscopic Attention
Module (SEAM) to enhance cross-view feature interaction
in Video Super-Resolution (VSR). To further augment stereo
SR performance, we propose integrating a pre-trained BDCN

(Fine-tuned) model to leverage edge information effectively.
We demonstrate the effectiveness of our proposed network by
conducting comprehensive comparisons, both qualitatively
and quantitatively, with existing models in the domain of
stereo super-resolution. These experiments are designed to
illustrate the superior performance of our model, showcasing
its competitive advantage over other methodologies in the
field in terms of visual quality and quantitative evaluation
metrics. Moreover, we substantiate the effectiveness of
our SEAM through a series of experiments that involve
quantitative comparisons. These experiments highlight the
advantages and improvements of incorporating our proposed
Stereo Endoscopic Attention Module. This demonstrates
its capability to significantly enhance the quality and
performance of stereo super-resolution tasks compared to
other existing methods.
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