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ABSTRACT Fragment reassembly is widely used in fields such as archaeology and forensics. This paper
introduces an algorithm for reassembling irregular fragments, enabling the reconstruction of arbitrarily
segmented irregular fragments without any prerequisites. The reassembly procedure encompasses feature
extraction, local pairwise matching, and global composition. We design a classification network to assess the
compatibility of fragment pairings. In order to alleviate the impact of unavoidable errors in the local matching
phase, we put forth an error assessment criterion calculated from the contour differences at the junctions,
a two-stage reassembly strategy involving both initial and candidate phases, and a region completeness
evaluation standard based on the size of the background region to gauge the ultimate composition outcomes.
Additionally, due to the limited availability of publicly shared datasets at present, we created a dataset
comprising 1000 sets of randomly divided irregular fragments for training and testing. The experimental
results show the excellent performance of this algorithm in terms of accuracy and completeness in fragment
reassembly for both public and self-constructed datasets.

INDEX TERMS Irregular fragments, classification network, error assessment, completeness evaluation.

I. INTRODUCTION
Fragment reassembly refers to rearranging and combining
multiple fragments to restore an object to its original form.
This technology is widely used in fields such as archaeology
and forensics. In the past, it has been used to restore wall
paintings [1], rejoin oracle bone fragments [2], reconstruct
damaged skulls [3], and restore shredded documents [4].
These studies have not only conserved labor efforts but also
averted additional harm to valuable artifacts.

The problem of fragment reassembly can be classified as a
variant of the jigsaw puzzle problem. Teaching a computer
to tackle jigsaw puzzles presents a formidable challenge,
a concept first introduced by Freeman and Gardner [5].
Subsequent research has grappled with the complexity of
leveraging extracted fragment features to accurately identify
adjacent fragments and align them, which is inherently an
NP-hard problem [6]. Conventionally, characteristics like
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geometric shapes, colors, and textures of fragment edges
are employed to ascertain pairwise matches. However, these
approaches are susceptible to noise, missing pieces, and
edge approximations. Erroneous matches can ensnare the
global reassembly process within local optima, consequently
impacting the ultimate outcome of the global composition.

In recent years, deep learning technology has achieved
remarkable progress and accomplishments across various
image processing tasks due to continuous advancements
in computer hardware and computing capabilities. Deep
learning networks can autonomously learn image features
and representations, enabling them to adapt effectively to
diverse scenarios and data distributions. The Convolutional
Neural Networks (CNNs) have gained extensive traction in
computer vision applications, utilizing their convolutional
layers to capture a range of image features, including edges,
textures, and shapes. The Vision Transformer (ViT) [7]
is a deep learning model based on the Transformer [8]
architecture, specifically designed for computer vision tasks.
Unlike CNNs, ViT processes images in a serialized manner
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and leverages the self-attention mechanism intrinsic to the
Transformer architecture to comprehend global relationships
embedded within the image.

This paper employs a hybrid methodology integrating con-
ventional image processing techniques with deep learning.
It analyzes both the local and global features of pairwise
matched fragments, resulting in a noteworthy enhancement
in the precision of such pairings. Furthermore, a two-stage
framework encompassing initial and candidate reassembly
strategies is implemented to circumvent the risk of being
ensnared in local optima during the composition procedure.

In summary, our contributions are as follows:

1) In the local matching stage, we introduce a light-
weight, multi-scale classification network to evaluate
the congruence of pairwise matches. An error assess-
ment calculated from the contour differences at the
junctions is put forth to gauge the precision of fragment
pairings.

2) In the global composition stage, we propose a
two-stage reassembly strategy, leveraging a region
overlap-based pruning algorithm to facilitate initial and
candidate fragment reassembly. We also introduce a
region completeness evaluation criterion to appraise the
final outcomes of composition.

3) we create a dataset comprising 1000 sets of irregular
fragment images obtained from the publicly available
ImageNet dataset [9] through random segmentation.

The experimental results, conducted on public and self-
constructed datasets, amply demonstrate the superior per-
formance of our proposed technique in terms of matching
accuracy and completeness.

II. RELATED WORK
The computer-aidedmethod to solving the fragment reassem-
bly problemwas first introduced by Freeman andGardner [5].
Subsequent research in this area can be broadly categorized
into two main methods: conventional image processing and
deep learning networks.

A. CONVENTIONAL IMAGE PROCESSING
Yao et al. proposed a puzzle-solving method that combines
shape matching and image feature fusion [10]. The method
involves image extraction, corner detection, boundary shape
matching, and image merging. Amigoni et al. extracted
boundary contour curvature and color as feature descriptors
for fragment images [11]. They first found the longest com-
mon part using curvature and then matched and aligned the
fragments based on color to reassemble the image. Makridis
et al. introduced another method that utilizes geometric
features and colormatching [12]. They used the IPAN99 algo-
rithm and Kohonen self-organizing feature mapping color
restoration technique to extract geometric and color features
of contour feature points for fragment matching. Cho et al.
proposed a probability-based solver for solving square jigsaw
puzzles [13]. They measured various compatibility metrics

and determined the optimalmeasurement criterion. Pomeranz
et al. improved upon Cho et al.’s work and proposed a novel
and superior compatibility metric. They designed a greedy
strategy-based fully automatic jigsaw solver [14]. Paikin
and Tal introduced an algorithm for the assembly of square
jigsaw puzzles [15]. They employed a greedy approach
that relies on prediction-based dissimilarity and the best
buddies metric to address puzzles with missing pieces and
those containing elements from multiple puzzles. Kamran
et al. identified the optimal adjacency pairs by solving a
Longest Common Subsequence problem [16]. A multi-piece
alignment was employed to eliminate erroneous matches and
globally compose the final image. Huroyan et al. designed
a mathematical framework based on graph connectivity
Laplacian, which allows the reconstruction of jigsaw puzzles
even when the positions and orientations are unknown [17].
Derech et al. introduced a fully automatic general algorithm
for solving jigsaw puzzles [1]. It simplifies the continuity
problem of two fragments into a boundary-matching problem
by inferring the outer contour region of the fragments. This
method has good applicability for worn or faded fragments.
Panagiotakis et al. proposed a graph-based approach for
coastline matching [18]. They applied the CD-RCP algorithm
for commonality detection to match pairs of coastlines.

B. DEEP LEARNING NETWORKS
Sholomon et al. proposed a deep neural network model
called DNN-Buddies for measuring compatibility [19].
Le and Li introduced a CNN model named JigsawNet,
founded on attention mechanisms within stitching regions
and employing a boosted training strategy to assess pairwise
compatibility [20]. They implemented a novel loop-closure
algorithm to enhance the robustness of global composition.
Rika et al. introduced a hybrid scheme incorporating a
genetic algorithm and deep learning to address Portuguese
tile panel problems [21]. They presented an improved
genetic algorithm solver for tile placement and utilized a
deep learning-based compatibility measure to differentiate
between adjacent and non-adjacent pieces. Paumard et al.
introduced a puzzle-solving method named Deepzzle [22].
Initially, they employed a CNN-based deep learning model
to predict the adjacency relationships between fragments,
followed by the application of an enhanced graph shortest
path algorithm for the reassembly of fragments. Ostertag
and Beurton used siamese neural networks to predict the
matching relationship between fragments and then created
a graph structure for global reassembly [23]. Li et al.
proposed a self-supervised learning generative adversarial
model called JigsawGAN [24]. It arranges fragments into
categories and reconstructs images with correct fragment
orders based on features. Zhang et al. proposed an internal
similarity network for the reconstruction of Oracle Bone
fragment images [2]. The model focuses on leveraging
residual network architecture, gradient features, and internal
similarity to enhance discrimination performance. Chen et
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al. proposed a classification model named Jigsaw-ViT [25].
They incorporated solving jigsaw puzzles as a self-supervised
auxiliary loss, aiming to enhance both generalization and
robustness. Hosseini et al. introduced an approach for spatial
puzzle solving [26]. They employed an end-to-end neural
architecture based on DiffusionModels named PuzzleFusion,
capable of addressing Cross-cut jigsaw puzzles, Voronoi
jigsaw puzzles, and room layout arrangements. Song et
al. introduced a Siamese-Discriminant Deep Reinforcement
Learning (SD2RL) method to address Jigsaw puzzles with
substantial eroded gaps [27]. They devised two sets of
Siamese Discriminant networks to assess the compatibility
of vertical and horizontal neighbors, along with a Deep
Q-Network to identify the optimal swap sequence. Zhang
et al. proposed an approach that leverages multimedia
techniques for the restoration of ancient manuscripts [28].
They initially identified candidate locations among fragments
using text-based localization. Subsequently, a Siamese net-
work, utilizing contour similarity assessment, was employed
to refine candidate matching pairs. Finally, reassembly was
accomplished through a hierarchical closure loop method.

The pertinent literature reviewed above indicates that deep
learning is not only viable but also exhibits exceptional
performance in determining the positional relationships
among fragments. In recent years, research on fragment
reassembly has predominantly concentrated on square puz-
zles, regular polygons, and specific scenarios. However,
this paper addresses the reassembly of irregular fragments,
a scenario more reflective of the majority of real-life
situations. Regarding the algorithm, we introduce an initial
step in assessing adjacent relationships among fragments,
where we redundantly store additional matching pairs,
accommodating a certain number of errors in the matching
process. This approach mitigates the risk of erroneously
filtering out correctly matched pairs. In the subsequent
assembly process, pruning is applied to eliminate erroneous
matches, and through a two-stage reassembly, the accuracy
and completeness of the assembly are enhanced. This method
also introduces novel perspectives for future research in the
field.

III. METHODS
This paper proposes a 2D irregular fragment reassembly
algorithm consisting of three main parts: feature extraction,
local pairwise matching, and global composition. The overall
flow of the algorithm is illustrated in Fig. 1.

A. FEATURE EXTRACTION
In the experiments of this paper, each complete image is
segmented into multiple irregular fragments. The segmented
image is subjected to binary processing, contour extraction,
and polygon approximation [29]. Data is extracted from
these fragments, encompassing attributes such as polygon
side lengths, centroids, bounding circle radii, and the mean
color value of the contour edges. These collected features are

then used for further analysis and to support the fragment
reassembly algorithm.

1) POLYGON APPROXIMATION ALGORITHM.
This paper utilizes the Douglas-Peucker polygon approxima-
tion algorithm [29], which can simplify a curve containing
a large number of vertices by iteratively preserving key
points to obtain an approximate polygon representation. The
specific steps are as follows:

1) Firstly, for a curve C , we can represent it as C = p̃ipj,
where pi and pj represent the starting and ending points
of the curve, respectively;

2) Connect pi and pj to form a straight line L(pi,pj) and
calculate the Euclidean distance from all other vertices
to the line L(pi,pj). Find the vertex pk that has the
maximum distance from the line L(pi,pj). If this distance
is greater than the threshold thr , consider pk as a key
point;

3) Use the key point pk as a splitting point to divide the
curve C into two sub-curves C1 and C2, where C =
C1 + C2, C1 = p̃ipk , C2 = p̃kpj.

4) Repeatedly apply the same steps 1-3 through recursion
until no key point can be found with a distance greater
than the threshold thr .

5) Finally, all the key points obtained will constitute the
approximate polygon representation after simplifying
the curve.

In this paper, the threshold thr in the algorithm is
dynamically set by performing contour length statistics on the
fragments to be assembled. The minimum contour length is
found and multiplied by a hyperparameter α, as shown in the
following formula (1):

thr = min(LC1 ,LC2 , . . . ,LCn ) ∗ α (1)

By dynamically adjusting the threshold based on the
minimum contour length, the algorithm can adapt to different
fragment sizes and complexities, enhancing the effectiveness
and accuracy of the reassembly process. The hyperparameter
α allows fine-tuning the threshold based on specific require-
ments or characteristics of the input fragments.

B. LOCAL PAIRWISE MATCHING
In this section, we identify the longest common sub-contour
by establishing edge length thresholds and corresponding
mean value thresholds for contour colors. This approach
helps determine the optimal matching positions between
fragments. A sequence of candidate images is generated by
matching contour points. Subsequently, a classification net-
work is applied to evaluate the adjacency of these fragments.
The key points for assembly and their corresponding error
scores are recorded.

1) ERROR SCORE
Given twomatching curvesCi andCj,Ci= (Ci1,Ci2,. . . ,Cin),
Cj = (Cj1,Cj2, . . . ,Cjn). The error score S, which evaluates
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FIGURE 1. The pipeline of our reassembly algorithm.

the mismatch between two matched fragments, is calculated
using the following formula:

ω1 =
∑ LCik + LCjh

2
∗M(Cik ,Cjh) (2)

ω2 =
∑ D(Cik ,Cjh)

N(Ci,Cj)
(3)

ω3 =
∑ LCik + LCjh

2
(4)

ω4 = N(Ci,Cj) (5)

S =
ω1 ∗ ω2
ω3 ∗ ω4

+ β ∗ ω2 (6)

where:

• L represents the length of the corresponding contour in
Ci or Cj.

• M represents the mean color value the corresponding
contour in Ci or Cj.

• N is the number of corresponding contours matched
between Ci and Cj.

• D is the length error between the corresponding contour
in Ci and Cj.

• β is a hyperparameter.

A lower error score indicates higher compatibility between
the matched fragments. The algorithm aims to minimize
this error score during fragment reassembly to achieve more
accurate and reliable results.

2) CLASSIFICATION NETWORK
MobileViT [30] is an optimized model based on ViT [7],
which combines the strengths of ViT and CNN to create a
lightweight network suitable for mobile devices. It leverages
the advantages of both architectures to achieve efficient
and accurate processing. This work employs a multi-scale
MobileViT to determine the compatibility of fragment-

matching regions. The specific network structure is depicted
in Fig. 2

The network takes a series of 224 × 224 × 3 images as
input. The feature extraction process begins with standard
convolutional layers, followed by lightweight convolutional
blocks MobileNetv2 (MV2) [31] andMobileViT blocks [30].
After feature extraction, 1 × 1 convolutions are applied
to modify the channel dimensions of feature maps that
vary in size. These feature maps, sharing the same channel
count but varying in size, are subsequently upsampled and
fused. The fused feature map is further expanded using
1 × 1 convolutions for channel augmentation. Finally, the
globally pooled feature map is fed into fully connected layers
to accomplish classification tasks.

a: MOBILENETV2 BLOCK
As is shown in Fig. 3, the network architecture includes tow
forms of MobileNetV2 block: regular and down-sampling.
The regular block is a bottleneck depth-separable convolution
with residuals. For a given input feature map, The block
applies a 1 × 1 convolutional layer to expand channels,
a 3 × 3 depthwise separable convolution layer to encode
information and a 1 × 1 convolutional layer to change
channels. Swish is chosen as the non-linearity due to its
robust empirical performance [32], and batch normalization
is applied during training.

b: MOBILEVIT BLOCK
The Fig. 4 describes the MobileViT block’s operation on
a given input tensor X ∈ RH×W×C . The block applies a
n× n convolutional layer followed by a 1× 1 convolutional
layer, resulting in XL ∈ RH×W×d . To capture global
representations with spatial inductive bias, XL is unfolded
into N non-overlapping flattened patches XU ∈ RP×N×d ,
where P = wh and N = HW

P . Inter-patch relationships
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FIGURE 2. The architecture of the classification network.

FIGURE 3. The architecture of MobileNetV2 block.

FIGURE 4. The architecture of MobileViT block.

are encoded using transformers, producing XG ∈ RP×N×d

for each p ∈ {1, ..,P}. XG is then folded to obtain XF ∈
RH×W×d , which is projected to a low C-dimensional space
through a 1× 1 convolution. This result is combined with X
through concatenation. Finally, another n × n convolutional
layer fuses these concatenated features. TheMobileViT block
can model the local and global information in an input tensor
with fewer parameters [30].

C. GLOBAL COMPOSITION
In this section, we construct an undirected weighted graph,
where the weight of each edge represents the error score of

the corresponding fragment pair. The composition process
proceeds in two stages: initial reassembly and candidate
reassembly. The outcomes of assembly are assessed and
produced via the utilization of the region completeness
evaluation metric.

1) INITIAL REASSEMBLY
We represent the pairwise matching relationships between
fragments using an undirected weighted graph G, G =

{V ,E}, vi ∈ V , ei,j,s ∈ E . The vi represents the i-th fragment,
and the ei,j,s represents a matching between the i-th and j-
th fragments, with an error score s indicating the mismatch
between them. To find the initial vertex for the reassembly
process, we calculate the degree of each vertex and select the
vertex with the highest degree as the initial vertex. The degree
of a vertex is the number of edges connected to it. Starting
from the initial vertex, we use the Prim algorithm to obtain the
Minimum Spanning Tree (MST) of the graph. To determine
the order of fragment reassembly, we use three different
methods: greedy search (GS), breadth-first search (BFS), and
depth-first search (DFS). During the composition process,
We record the fragments deemed incompatible matches
due to excessively large overlapping regions using GS_cut ,
BFS_cut , and DFS_cut , respectively. We also record the
paired fragments that have been successfully assembled using
GS_cor , BFS_cor , and DFS_cor . The resulting assembled
images are stored in Init_imgs. Finally, we take the union
of GS_cut , BFS_cut , and DFS_cut to obtain the set of cut-
off vertices, denoted as Cut_vertices. Similarly, we take the
intersection ofGS_cor , BFS_cor , andDFS_cor to obtain the
set of paired fragments, denoted as Cor_edges. Algorithm 1
outlines the steps involved in the initial reassembly process.

2) CANDIDATE REASSEMBLY
In the candidate reassembly process, we start by setting
the error scores of the edges in Cor_edges to zero in
graph G. Then, we iterate through the list of vertices in
Cut_vertices, using each vertex as the initial vertex.We apply
the Prim algorithm for each initial vertex to find the MST
of the graph G. Subsequently, we use the greedy search
method based on the error scores to perform reassembly,
starting from each initial vertex. We generate a series of
candidate-reassembled images by repeating this process for
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Algorithm 1 Initial Reassembly
Input: G← (V ,E), vstart
Output: Init_imgs,Cut_vertices,Cor_edges
1: Staring from vertex vstart , obtain MST using the Prim’s

algorithm.
2: GS_img,GS_cut,GS_cor ← GS(MST )
3: BFS_img,BFS_cut,BFS_cor ← BFS(MST )
4: DFS_img,DFS_cut,DFS_cor ← DFS(MST )
5: Init_imgs← (GS_img,BFS_img,DFS_img)
6: Cut_vertices← GS_cut ∪ BFS_cut ∪ DFS_cut
7: Cor_edges← GS_cor ∩ BFS_cor ∩ DFS_cor

all vertices in Cut_vertices. These candidate results are
evaluated based on our specified region completeness criteria
to determine the final reassembled image with the best overall
quality and compatibility. Algorithm 2 outlines the steps
involved in the candidate reassembly process.

Algorithm 2 Candidate Reassembly
Input: G← (V ,E),Cut_vertices,Cor_edges
Output: Can_imgs
1: while Cor_edges is not empty do
2: Extract the edge(u, v) from Cor_edges
3: Set s(u,v)← 0 in E
4: end while
5: Initialize an empty setCan_imgs to store the final results.
6: while Cut_vertices is not empty do
7: Extract the vertex vstart from Cut_vertices
8: Staring from vertex vstart , obtain MST using the

Prim’s algorithm.
9: GS_img← GS(MST )
10: Add GS_img to Can_imgs
11: end while

3) REGION OVERLAP-BASED PRUNING
During the reassembly phase, fragment pairs are system-
atically combined one by one until the ultimate fragment
is reconstructed. In an ideal reassembly, fragments should
exhibit no overlapping sections, a criterion that can serve
as a gauge for evaluating the precision of the reassembly
process. Nonetheless, owing to the inevitable pixel misalign-
ments between fragments, errors may arise and accumulate
with the increased number of assembled fragments during
composition. This can result in correctly matched fragments
overlapping with already assembled regions, as is shown in
Fig. 5. When deliberating the inclusion of a new fragment
in the reassembly process, the extent of overlap during the
amalgamation is assessed by analyzing the proportion of the
overlapping region in relation to the freshly incorporated
fragment’s area. If this overlap ratio surpasses a prede-
fined threshold denoted as ol_thr , the fragment is deemed
incompatible with the assembled region. Consequently, the

FIGURE 5. Pairwise Fragment Reassembly Process, with the red region
indicating the overlapping area during the reassembly process.

FIGURE 6. The corresponding process of obtaining the final result
through region completeness evaluation.

respective edge connecting the vertices corresponding to
these two fragments in the graph G is pruned (E − {ei,j,s}).

4) REGION COMPLETENESS EVALUATION
After a two-stage (initial-candidate) reassembly, we obtain a
series of reassembled images I = {Igs, Ibfs, Idfs, IC1 , . . . , ICn}.
Based on the centroids and minimum bounding circle
radii of each fragment obtained in the feature extraction
stage, each image IX is divided into regions RIX =

{(x0, y0), (x1, y1), . . . , (xn, yn)}. The size of the background
area AIX contained in each partitioned region is calculated,
and the image with the smallest background area I∗ is
identified as the final output, as shown in Fig. 6. The
corresponding formula is as follows:

A(IX ) =

RIX∑
x,y

P(IX (x, y)) (7)

P(IX (x, y)) =

{
0 if IX (x, y) ̸= background
1 if IX (x, y) = background

(8)

I∗ = argmin
X
A(IX ) (9)

IV. EXPERIMENTS
We conducted experiments on public datasets, including
the ImageNet dataset [9], MIT dataset [13], and BGU
dataset [14]. We randomly selected images for each dataset
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TABLE 1. The performance of different classification networks.

and divided them into 9, 36, and 100 fragments. From the
ImageNet dataset, a subset of 1000 images was chosen to
generate training and validation datasets for the classification
network. These datasets included a total of 17,000 negative
samples and 12,000 positive samples.

A. TRAINING DETAILS
We implement the classification network in PyTorch [33],
and all the experiments are performed on an RTX 3090 GPU
with 300 epochs. The AdamW optimizer [34] was used for
training the model. The batch size was set to 40. The learning
rate was set to 0.0002. The weight decay rate was set to 0.01.
We use the CrossEntropyLoss function as the loss function.
To mitigate overfitting, the label_smoothing parameter was
set to 0.1. The training loss and validation accuracy curves is
shown in Fig. 7.

B. COMPARISON WITH EXISTING CLASSIFICATION
NETWORKS
In this study, the proposed classification dataset was used
to evaluate various classification networks. The tested
classification networks include: CNN-based Networks [35],
[36], [37] and Transformer-based Networks [7], [30], [38].
The networks include light-weight and heavy-weight archi-
tectures. We present a comprehensive analysis of the perfor-
mance metrics obtained from various classification networks
in the table 1. The key metrics considered include True
Positives(TP), False Positives(FP), False Negatives(FN),
True Negatives(TN), Precision, Recall, F1 Score, Params.

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 = 2×
Precision× Recall
Precision+ Recall

(12)

The experimental results demonstrate that the proposed
classification network achieves impressive performance,
even when utilizing fewer parameters. The network exhibits
remarkable accuracy and efficiency in addressing the clas-
sification task of pairwise matching. This indicates that the
proposed model strikes a favorable balance between model
complexity and performance, making it a promising choice

FIGURE 7. Training Loss and Validation Accuracy.

for scenarios where computational resources may be limited
or efficiency is a key consideration. The ability of the network
to achieve competitive performance with fewer parameters
is a significant advantage, as it enables faster training and
inference times while maintaining high accuracy on the
classification task.

C. REASSEMBLY RESULTS EVALUATION
1) EVALUATION METRICS
As mentioned in [39], there are currently unresolved issues
in the field of puzzle problems. One prominent challenge
is the absence of a commonly accepted evaluation criteria.
To quantitatively evaluate the ultimate reassembly perfor-
mance, we employed several metrics in [13], [20], and [40]:

Neighbor Correctness (NC): The ratio of correct pairwise
matching adjecencies.

Largest Component (LC): The size of the largest correct
part in each image.

Perfect Reconstruction (PR): The number of images that
were perfectly reconstructed to their original
state.

In the context of irregular fragment reassembly, especially
when lacking predefined conditions, our focus is on ensuring
the accuracy and completeness of the reassembly process.
The Neighbor Correctness (NC) metric assesses the accuracy
of relative positions between fragments. Additionally, the
Largest Component (LC) metric evaluates the overall com-
pleteness of the reassembly, while the Perfect Reconstruction
(PR) metric counts the number of completely reconstructed
images after the final assembly.
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FIGURE 8. Some reassembly results on the ImageNet data. The first row shows a reassembly of three 9-piece puzzles. The second row shows a
reassembly of three 36-piece puzzles.

FIGURE 9. Some reassembly results on the MIT and BGU data provided by JigsawNet. The first row shows a reassembly of three 9-piece puzzles. The
second row shows a reassembly of three 36-piece puzzles.

TABLE 2. The overall reassembly results on MIT9 and BUG36 datasets
provided by JigsawNet [20].

2) COMPARISON WITH EXISTING METHOD
We conducted tests on the MIT9 and BGU36 datasets
provided by JigsawNet [20], and a comparison was
made between our method and theirs, as illustrated in
Table 2. The results indicate that despite some initial
errors in adjacent matching, our approach exhibits out-
standing performance in both reassembly completeness and
speed.

TABLE 3. The overall reassembly results on 9, 36 and 100 pieces. Single
indicates the strategy of single-stage (greedy search). Two indicates the
strategy of tow-stage (initial-candidate).

3) ABLATION STUDY
We compared the single-stage (greedy search) and the
two-stage (initial-candidate) reconstruction algorithm using
20 sets of 9-piece fragments, 10 sets of 36-piece fragments,
and 10 sets of 100-piece fragments. The results are summa-
rized in Table 3.

Drawing from the findings of our experiments, we can
deduce the following insights: When dealing with a limited
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FIGURE 10. The reassembly results of some 100-piece puzzles.

number of fragments, a greedy search strategy for reassembly
proves viable. This is because, with fewer fragments, their rel-
ative placements exhibit a higher concentration, facilitating
the swift elimination of erroneous matches. However, as the
fragment count increases and their positions become more
dispersed, relying solely on a greedy search approach might
inadvertently eliminate accurate matches and lead to being
trapped in local optimal solutions. In scenarios characterized
by a larger fragment count and greater dispersion of positions,
adopting a two-stage (initial-candidate) reassembly method
can rectify this issue and yield improved outcomes.

4) REASSEMBLY RESULTS
The performance on a subset of the self-created ImageNet [9]
dataset with 9 and 36 fragments is shown in Fig. 8. The
performance on the MIT dataset [13] and BGU dataset [14]
provided by JigsawNet [20] with 9 and 36 fragments is shown
in the in Fig. 9. The partial performance on 100 fragments is
shown in Fig. 10.

V. CONCLUSION
In this paper, we introduce an algorithm for reassembling
irregular fragments, integrating conventional image process-
ing with deep learning to reconstruct arbitrarily fragmented
pieces without requiring prior conditions. The method
proposed here introduces several innovations, including a
multi-scale MobileViT classification network for evaluating
the compatibility of fragment matches, an error assess-
ment criterion calculated from the contour differences at
the junctions, a two-stage (initial-candidate) reassembly
approach, and a region completeness evaluation standard
based on the size of the background region to gauge
the ultimate composition outcomes. These contributions
collectively enhance the precision and coherence of fragment
reassembly. The strategies presented in this study exhibit
the potential for broader applicability to reassembly tasks in
diverse domains.
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