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ABSTRACT This paper proposes a Bayesian neural network method for predicting equipment operational
trends based on a channel attention mechanism. Traditional time series prediction methods have limitations
in handling complex data and nonlinear relationships. To enhance prediction accuracy and stability, the paper
introduces a channel attention mechanism to capture crucial features and contextual information within the
data. This mechanism automatically adjusts the weights of feature channels to focus on the influence of
key features. By leveraging the advantages of Bayesian neural networks, the model undergoes multiple
updates and adjustments while considering uncertainty factors, progressively improving the predictive
outcomes. In experiments, the paper utilizes power transformer data from a Kaggle public dataset and
a substantial amount of temporary facility equipment data from the Winter Olympics site, comparing
the performance against other commonly used prediction methods. Results demonstrate the significant
superiority of the Bayesian neural network method with channel attention mechanism in equipment trend
prediction, outperforming traditional time series models and other commonly used methods.

INDEX TERMS Equipment operational trend prediction, neural networks, Bayesian neural networks,

attention mechanism.

I. INTRODUCTION
With the continuous advancement in technology and societal
progress, there’s a rising trend towards higher levels of intel-
ligence and automation in equipment. This evolution has led
to the generation and accumulation of vast amounts of time-
series data. These data streams originate from various devices
and sensors, encompassing industrial machinery, medical
instruments, transportation systems, energy equipment, and
more. They document equipment states, performances, and
operational conditions, harboring vital information essential
for tasks such as equipment health monitoring, fault predic-
tion, resource optimization, and decision support.
Addressing the prediction of equipment trends often con-
fronts several challenges. Firstly, time-series data commonly
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contains noise and uncertainty, intensifying the complexity
of precise predictions. Secondly, different devices might
possess distinct characteristics and operational patterns,
making generality and flexibility pivotal requirements for
prediction methods. Lastly, comprehending the uncertainty
and credibility of predictions is crucial for engineers and
decision-makers responsible for equipment maintenance and
management.

To tackle these challenges, this paper presents a novel
approach for predicting equipment trends based on the
channel attention mechanism [1], [22], [23] and Bayesian
neural networks(BNN) [2], [25]. The channel attention
mechanism enables the model to autonomously select
relevant feature channels, concentrating more attention on
channels pertinent to the current task. This enhances the
model’s capability to extract information from equipment
data, reducing interference from redundant information, thus
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enabling better capture of useful data insights. Bayesian neu-
ral networks introduce probabilistic modeling [3], facilitating
the model to estimate and manage prediction uncertainties
more effectively. By introducing probability distributions
to represent weights and parameters instead of singular
deterministic values, the model can quantify its confidence
in predictions, significantly aiding decision-making and risk
management. By amalgamating these two methods, the paper
aims to provide a predictive framework adaptable to diverse
equipment and data characteristics, accurately predicting
equipment trends while offering credibility estimation.

The structure of the paper is as follows:Section II reviews
relevant work pertaining to equipment trend prediction,
encompassing methods in time-series forecasting, applica-
tions of attention mechanisms, and the evolution of Bayesian
neural networks. Section III elaborates on the proposed
methodology, detailing the design of the channel attention
mechanism and the modeling of Bayesian neural networks.
Section IV presents experimental results and performance
evaluations to validate the method’s effectiveness. Section V
summarizes the primary findings of the research and explores
future research directions.

The significance of this paper’s work lies in offering a
fresh perspective and methodological approaches for the
advancement and application of equipment trend prediction.
This endeavor aims to propel improvements in equipment
performance and reliability across industries such as indus-
trial, medical, and other sectors, providing decision-makers
with more reliable data support.

Il. RELATED WORK

Mainstream approaches for predicting equipment opera-
tional trends include traditional time series forecasting [4],
intelligent algorithms [5], and neural networks [6]. Many
devices exhibit intricate structures and diverse types, prone to
faults and safety issues during operation. Hence, intelligent
detection, diagnosis, and prediction of operational trends in
devices become imperative.

Over the past few decades, various methods have emerged
in the field of time series analysis for capturing and predicting
trends. Among these, exponential smoothing [33] stands
out as a classical technique with significant success in
prior research. By assigning decreasing weights to past
observations, exponential smoothing effectively captures
trends and seasonal variations in time series data. Previous
studies have demonstrated its widespread application in
forecasting future trends in areas such as finance, sales, and
supply chain management.

On another note, correlation analysis has long been a
pivotal issue in data science and statistics. Kendall’s Tau
[34], as a non-parametric measure, has found extensive
application in correlational studies across different domains.
In contrast to traditional Pearson correlation, Kendall’s Tau is
particularly suitable for ordered data and is robust to outliers.
In prior research, researchers have successfully employed
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Kendall’s Tau to analyze trends in markets, medical data, and
relationships in social sciences.

With the advancement of deep learning, neural networks
have garnered substantial attention in time series analysis.
The Recurrent Trend Predictive Neural Network (RTPNN)
[35], as a specific neural network architecture, possesses
the capability to capture complex trends in time series
data. Studies indicate that RTPNN not only adapts to non-
linear relationships in the data but also handles long-term
dependencies in sequential data, showcasing remarkable
performance in tasks such as stock price prediction and
weather trend forecasting.

Traditional time series forecasting methods focus on
predicting time-based data. Classic methodologies such
as Autoregressive Integrated Moving Average (ARIMA)
models [7] and exponential smoothing models [8] have been
employed for equipment trend prediction. They estimate
future trends by analyzing patterns in historical data.
However, these methods exhibit limitations in handling
nonlinear data and time series with complex dependencies.
Recurrent Neural Networks (RNNs) [9] and Long Short-Term
Memory networks (LSTMs) [10] represent deep learning
methods aimed at capturing long-term dependencies in data,
widely applied in equipment trend prediction. Despite their
significant performance enhancements in many tasks, they
still face challenges dealing with strong nonlinearity and high
uncertainty in data.

In recent years, with rapid advancements in computing
technology, deep neural networks have gained prominence
in predicting equipment operational trends. For instance,
deep neural networks (DNNs) [11], Convolutional Neural
Networks (CNNs) [12], recurrent neural networks (RNNs),
and composite models, among other neural network architec-
tures, have been applied to tasks such as equipment failure
prediction and operational trend prediction. Zhang et al. [13]
utilized an LSTM-DNN network for high-resolution short-
term precipitation forecasting. Due to their high adaptability
and robust feature extraction capabilities, deep neural net-
works have exhibited excellent performance in prediction
tasks across various domains such as engineering, strength
prediction, mechanical control, geological disasters, and
more. Through extensive data training, neural networks can
learn intricate nonlinear relationships, thus making accurate
predictions.

The Bayesian neural network [14] is a special type of
neural network that introduces uncertainty to the weights of
the neural network. This ability to model uncertainty enables
Bayesian neural networks to exhibit superior generalization
performance when dealing with complex, high-dimensional
data. In comparison to other neural network approaches
like deep learning, Bayesian neural networks demonstrate
significant advantages in prediction accuracy and model
robustness. Bayesian methods have showcased strong predic-
tive performance in many practical problems. For instance,
in equipment trend prediction, Bayesian neural networks

33793



IEEE Access

C. Ming-Yu et al.: BNN-Based Equipment Operational Trend Prediction Method

can effectively handle such problems. For example, they
can be employed to predict equipment lifespan, performance
degradation, or failure times [28], [29], [30]. By integrating
Bayesian methods, predictive models can provide proba-
bility distributions for prediction outputs, aiding in further
evaluating prediction uncertainties. This means the model
can understand the confidence level of prediction results,
allowing for more cautious and precise decision-making.
In the field of artificial intelligence, Bayesian inference
is used to establish models and handle various prediction
problems. For instance, in pattern recognition, it’s used
in areas like image recognition, speech recognition, text
classification [31], to establish models and utilize Bayesian
updating to calculate the match between input data and the
model. In natural language processing, Bayesian networks
are used to handle ambiguity and polysemy in natural
language [32], as well as determine word meanings based
on context. Moreover, Bayesian inference is employed in
fields such as data mining, predictive analysis, and machine
learning.

Another important characteristic of Bayesian neural net-
works is their ability to handle noisy data. In real-life
scenarios, many data instances come with noise, which might
result from measurement errors, environmental interference,
or other factors. Bayesian neural networks, through their
unique probabilistic modeling capabilities, can effectively
suppress the impact of noise on prediction results, thereby
offering more accurate and reliable predictions.

The attention mechanism [15] was initially applied in
machine translation and reading comprehension and has
subsequently found widespread application in other domains,
including natural language processing and computer vision.
Neural network architectures with attention layers, known
as the Transformer architecture [16], [24], exhibit better
performance in nearly all language processing tasks. The
use of Transformer networks for masked language modeling
has resulted in groundbreaking pre-training models, such
as Bidirectional Encoder Representations from Transformers
(BERT) [17], [27]. The attention mechanism is a crucial
component of Transformer networks and has become an
indispensable part of natural language processing, signifi-
cantly impacting language applications. In the context of
equipment trend prediction, introducing attention mecha-
nisms can assist the model in focusing on important features
and allocating weights to each feature. This can improve
predictive performance and enhance modeling capabilities
for complex problems.

Through the review of classical time series methods and
the exploration of applications of RNNs, LSTMs, attention
mechanisms, and Bayesian neural networks, a deeper under-
standing of equipment trend prediction has been attained.
These methodologies provide a robust theoretical foundation
and practical applications for equipment trend prediction,
aiding in achieving better predictive results in real-world
problems.
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lll. ALGORITHM MODEL

The paper utilizes a Bayesian neural network with an
integrated attention mechanism to forecast equipment opera-
tional trends. The data is sourced from a Kaggle competition’s
publicly available dataset, containing various conditions of
power transformers along with corresponding health indices.
These data were tested on a real dataset collected from the
accelerometer sensors on temporary grandstand supports at
the Yanqing Alpine Skiing Center during the Beijing Winter
Olympics, capturing a type of non-linear and non-stationary
signal.

The model introduced in this paper employs a Bayesian
neural network that incorporates an attention mechanism,
allowing for modeling the uncertainty of prediction out-
comes. By integrating a channel attention mechanism into the
Bayesian Neural Network (BNN), the model automatically
adjusts the importance of each channel, thereby enhancing
its performance. This mechanism aids in capturing the
correlations and significance between features, thereby
improving the accuracy of regression tasks. In certain
datasets, different channels’ features might hold varying
degrees of importance. The channel attention mechanism
dynamically adjusts channel weights based on data distri-
bution, enabling the model to effectively handle imbalanced
features.

This model comprises three components: a preprocessing
layer, a Bayesian network layer integrated with the channel
attention mechanism, and a prediction layer. The data
undergoes preprocessing operations in the initial layer, then
enters the Bayesian network layer with the integrated channel
attention mechanism for feature extraction. Subsequently,
a one-dimensional convolutional layer operates on the data’s
14 channels, transferring features to the Bayesian linear layer
to produce the final output. The overall framework of the
model is illustrated in Figure 1.

A. PREPROCESSING LAYER
The preprocessing layer comprises a one-dimensional con-
volutional layer. Let’s consider the initial input tensor as
X, where X € RB*L, with B representing the batch size,
C representing the number of channels (typically denoting
different features or filters in convolutional neural networks),
and L representing the input sequence length. To ensure
proper data preprocessing using the convolutional neural
network, an unsqueeze operation might be necessary to
alter the dimension of the data input. Therefore, before
preprocessing, it might be required to insert a new dimension
into the input X, modifying its dimensions to X € REXCxL
Therefore, before preprocessing, an additional dimension
is inserted into the input X’s dimension, transforming its
shape into (B, 1, L).

Yijk = Xik (nH

Following the aforementioned equation, where the
shape of X becomes (B, 1, L), the input X undergoes a
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FIGURE 1. Bayesian neural network framework with channel attention mechanism.

one-dimensional convolution operation, generating an output
y according to the following formula:

K-1

Vi = z (xc,i+j * a)]) + b (2)

J=0

where y; represents the i-th element of the output feature
map; c¢ denotes the channel index, indicating the current
channel being processed; i denotes the position index in
the output feature map; j signifies the element index within
the convolutional kernel, ranging from 0 to K — 1, where
K is the size of the convolutional kernel; x. ;y; denotes the
element in the input data, where ¢ represents the channel
index, and i+-j denotes the position within the input sequence;
wj represents the weight in the convolutional kernel, where j
denotes the weight index; and b represents the bias term used
to adjust the output.

The dataset contains a total of fourteen columns of data
characterizing various conditions (e.g., hydrogen, oxygen,
etc.) and corresponding health indices of power transform-
ers.After the aforementioned preprocessing, the original
data was transformed from its 2D shape of (B, 14) to a
three-dimensional feature representation of (B, 14, 14), effec-
tively mapping the data into a higher-dimensional feature
space.
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B. INCORPORATING CHANNEL ATTENTION MECHANISM
INTO BAYESIAN NEURAL NETWORK

The Bayesian neural network, designed based on the
channel attention mechanism in this paper, comprises three
parts: the preprocessing layer, the attention layer, and the
postprocessing layer.

1) PREPROCESSING LAYER

A Bayesian neural network introduces probability distribu-
tions into the model parameters to reflect their uncertainty.
In traditional neural networks, weight parameters are typi-
cally considered deterministic values. However, in Bayesian
neural networks, these parameters are treated as random
variables and described using probability distributions to
capture their uncertainty. This capability enables Bayesian
inference, offering a more comprehensive estimation of
uncertainty. Sending preprocessed data into a Bayesian neural
network equipped with a channel attention mechanism can
enhance the model’s focus on specific channels, thereby
improving its capacity to learn and represent data features.
This fusion effectively utilizes the Bayesian neural network to
model parameter uncertainty while dynamically adjusting the
weights of different channels through the channel attention
mechanism, thus better capturing critical information and
patterns within the data.
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Firstly, a neural network model is defined:

y=fx; W) 3)

where x is the input, y is the output, and W represents the
network weights.

In this process, the data initially passes through a linear
layer with Bayesian weights, then proceeds through batch
normalization and the ReLU activation function, mapping
input features to output features. This series of steps
effectively handles data, models the uncertainty of parameters
using Bayesian weights, and processes data through batch
normalization and activation functions to obtain a more
representative and robust feature representation. Bayesian
weights imply uncertainty in the layer’s weights, introducing
a prior distribution for each weight before training. Typically,
a normal distribution is used as the prior distribution,
expressed as follows:

POV)~N (61 12, 0%) )

where 0 is the random variable representing the weights; u is
the prior mean of the weights; o is the prior variance of the
weights.

By observing the training data, updating the distribution
of weights leads to the posterior distribution. According to
Bayes’ theorem, the posterior distribution can be represented
as follows:

P@© | D) = P—(D}l OPO) &)
D)
where D represents the observed data, P(@ | D) is
the posterior distribution of the weights, P(D | 6) is the
likelihood of the data given the weights, and P(D) is the
marginal probability of the data.

The tensor output with uncertainty from the Bayesian
linear layer is normalized, scaling the features to a distri-
bution with a mean of 0 and a standard deviation of 1.
Then, the ReLU activation function sets negative values to
zero while preserving positive values from the normalized
data, introducing non-linearity to enable the network to learn
complex functions.

FIGURE 2. Bayesian neural network.
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2) CHANNEL ATTENTION MECHANISM

After a series of preprocessing steps, the data is fed into the
proposed channel attention module of this study. Comprising
one-dimensional convolution, ReLU activation function, and
Sigmoid activation function, this module generates attention
weights through convolutional operations. These weights
are utilized to weight information from different positions
within the input data, allowing the model to better focus
on specific parts of the input during both pre- and post-
processing stages. This enhances features related to fault
information, suppresses interfering features, and improves
network performance. Overall, this mechanism initially
reduces the number of channels in the input data using
a one-dimensional convolutional layer, then restores the
channel count to the original number through another one-
dimensional convolutional operation.

Atten-layer

bxcxl

L/
Convld c-c/2

Convld c/2-c

Sigmoid

)'(4—, bxcxl

l bxcxl

FIGURE 3. Framework of the channel attention mechanism.

In this process, the ReLU activation function is used to
introduce non-linearity, while the Sigmoid activation function
is utilized to confine the output within the range of [1, 0],
representing attention weights. The formulas are represented
as follows

x1 = Comv1D (x, W1, by) (6)

x3 = ReLU (x1) = max (0, x) @)

x3 = ConvlD (x2, Wa, bo) ®)
1

=Si id = 9

x4 = Sigmoid (v3) = ©)

3) POST-PROCESSING LAYER

Finally, the data is passed through a post-processing layer
to further refine the feature representations obtained from
the preceding processing layers, thereby generating the final
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output of the model. The post-processing layer introduces
additional non-linearity, enhancing the model’s represen-
tational capacity.The post-processing layer comprises a
Bayesian Linear layer, a normalization layer, and a ReLU
activation function. The Bayesian Linear layer maps the
output features from the preceding processing layers to an
equal number of output features, further refining the features
from the previous layers to better align with the model’s target
tasks.Subsequently, the normalization layer standardizes the
output from the post-processing layer, ensuring that each
feature dimension of the output possesses similar statistical
properties.Finally, the ReLU activation function is applied
to the output data, utilizing rectified linear units to set all
negative values to zero while retaining positive values.

C. PREDICTION LAYER
The feature tensor, processed through multiple layers,
is passed on to the final prediction layer to generate the
ultimate prediction results. This step utilizes the feature data
processed through various neural network layers for the final
output, obtaining the model’s prediction for the input data.
The prediction layer comprises a one-dimensional con-
volutional layer and a Bayesian Linear layer. The one-
dimensional convolutional layer operates on the input’s
14 channels to derive a feature map for a single channel.
Assuming the output of this layer is denoted as y;, where
Conv represents the convolutional operation, W; represents
the weights of the convolutional kernel, and b; represents the
bias. The formula is represented as follows:

y1 = Conv (x, W1) + by (10)

The one-dimensional feature map is passed through a
Bayesian Linear layer, which incorporates prior parameters,
to generate the final prediction output. Assuming the output
of this layer is denoted as y», W> where represents the weights
of the linear layer and b, represents the bias of the linear layer.
The formula is expressed as follows:

y2=Waky+ by (11)

The final output is a scalar value representing the model’s
prediction for the input data, while also considering the
uncertainty within Bayesian inference. This output can be
used for regression tasks or other applications that require
predictions on data.

D. LOSS FUNCTIONS

1) MEAN SQUARED ERROR LOSS FUNCTION

When there’s a need to assess the disparity between
predicted outcomes and real values across multiple samples,
a straightforward subtraction of predicted values from actual
ones might result in the offsetting of positive and negative
errors, thereby diminishing the meaningfulness of the overall
error. To tackle this, a prevalent method involves utilizing
the absolute value loss function to measure the absolute
differences between predicted and actual values.
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The absolute value loss function insensitive enough to
samples that exhibit significant deviations. This means it
doesn’t particularly penalize those samples that deviate far
from the predicted values, thereby failing to effectively guide
supervised training, especially when outliers are present.
Additionally, during the actual training process, it’s often
unnecessary to explicitly calculate the loss function’s value
at every step because the loss function updates automatically
as the backpropagation progresses. In such scenarios, the
Mean Squared Error (MSE) [18] comes into play, encap-
sulating the core idea: by minimizing the sum of squared
differences between each training point and the best-fitting
line, it measures the Euclidean distance between predicted
and actual values. The closer the predicted values are to the
actual values, the smaller the mean squared error becomes.
The specific computational process for the mean squared
error loss function is represented by the following formula:

LoSS = MSE = % O —y)° (12)

where N represents the number of samples, y and y
correspond to the predicted and actual values, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATA

The data used in the experiment was obtained from a
publicly available dataset on Kaggle, which includes various
conditions of power transformers (such as hydrogen, oxygen,
etc.) along with their respective health indices. This dataset
is utilized for fault analysis of power transformers. This
paper employs the health index to analyze and predict the
operational trends of the equipment.

Additionally, this paper also utilized acceleration sensors
on the temporary stands of the Beijing Winter Olympics
Yanqging Alpine Skiing Center, generating real multi-
dimensional time-series data. The dataset was divided for
experimentation into training, validation, and testing sets in
aratio of 3:1:1.

B. EXPERIMENTAL SETUP

The experimental dataset was divided into training, vali-
dation, and testing sets in a ratio of 3:1:1. The training
model employed the Adam optimizer with basic parameter
settings as follows: Ir = 0.0005, weight_decay = le-5, and
200 training epochs were conducted using the training set
input to the model. The experiments were conducted on an
Ubuntu system, utilizing a Tesla V100 GPU with 128GB of
memory. The programming language used was Python 3.6,
employing PyTorch as the neural network framework. Data
handling and computations were performed using the NumPy
and Pandas libraries.”

C. RESULTS AND ANALYSIS

This paper utilized two datasets: one from the publicly
available dataset in the Kaggle competition and another
collected from the Winter Olympics site. To better assess
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the model’s performance and generalization ability, a five-
fold cross-validation method [19], [26] was employed for
model evaluation.To comprehensively assess the model’s
performance and generalization ability, a five-fold cross-
validation method was employed for model evaluation. In the
five-fold cross-validation, the dataset was randomly divided
into five equally sized parts, with one part used for testing
and the remaining four parts used for training and validation.
This process was repeated five times, ensuring that each
subset served as the test set once. At the beginning of
each training iteration, the model should be reinitialized.
Finally, the average of the five test results was calculated
as the model’s performance evaluation metric.This method
maximizes the use of data for training the model and
utilizes all data points during testing, thereby better eval-
uating the model’s performance and generalization ability.
Additionally, it helps alleviate the impact of randomness
in dataset partitioning. In practical applications, five-fold
cross-validation is commonly used for selecting optimal
model parameters or comparing the performance of different
models. When employing five-fold cross-validation, it is
important to ensure that the dataset partitioning is random,
and the data distribution in each part should be as similar as
possible.

The data was initially fed into a preprocessing layer,
utilizing one-dimensional convolution to alter the channel
dimensions and map the data to a high-dimensional feature
representation to adapt to subsequent operations. The prepro-
cessed data was then fed into a Bayesian neural network that
incorporated channel attention mechanisms. This network
processed the data through three parts: pre-processing layers,
attention mechanism layers, and post-processing layers,
outputting multi-layer processed feature tensors that were
fed into the final prediction layer for forecasting. Figure 4
illustrates the comparison between predicted values obtained
using the BNN and actual values. It can be observed from the
overlapping curves that the prediction performance is quite
satisfactory, except for the initial experiment in the first fold,
while subsequent folds demonstrate good performance.

Simultaneously, from a quantitative perspective, this paper
conducted an analysis by observing the results of the
five-fold cross-validation. Taking the average of the five
experiments as the performance evaluation for the BNN
model, as shown in Table 1, the overall observation suggests
that the performance of the BNN on this task is not very
consistent. Although the prediction accuracy is relatively
good when averaging the results of the five tests, analyzing
the results of each cross-validation fold indicates that due to
either the small size of the training data or the presence of
noise, the BNN might be excessively sensitive to the data
or unable to capture the true data distribution, leading to
inconsistent and significant variations in performance.

The incorporation of channel attention mechanisms in this
paper aimed to enhance the model’s stability by improving its
focus on data features. This mechanism assists in adjusting
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the model’s emphasis on specific channels, thereby enabling
the model to concentrate more on crucial features and
consequently improving prediction stability.

TABLE 1. BNN 50 fold cross validation.

Fold index MSE MAE RMSE MAPE
1 1.06 0.91 1.03 1.00
2 0.52 0.52 0.72 1.07
3 0.48 0.50 0.69 0.73
4 0.44 0.50 0.66 0.88
5 0.36 0.45 0.60 0.99
Average 0.57 0.58 0.74 0.94

The Figure 5 displays the predictions made using the
BNN+Attention model. In comparison to the BNN approach,
although the first fold’s performance remains suboptimal,
resulting in a similar underperformance of both models in
the initial fold, this might be due to a couple of reasons:
(1) The dataset itself might contain a specific distribution,
and the first fold might include a less representative or
anomalous part of the dataset, leading to poor performance in
the initial fold. (2) During the initial model training, random
weight initialization or initial parameter settings might not
have been optimal, resulting in poorer performance in the
first fold. However, this issue does not affect the algorithm’s
effectiveness and accuracy.

From the subsequent folds, it can be observed that many
parts are more closely aligned than those in the BNN model.
The overlap between predicted values and actual values in
the trends is significantly improved, indicating a notable
enhancement in performance.

TABLE 2. BNN+Attention 50 fold cross validation.

Fold index MSE MAE RMSE MAPE
1 0.46 0.48 0.68 0.92
2 0.41 0.48 0.64 0.94
3 0.54 0.53 0.73 0.76
4 0.48 0.49 0.69 1.31
5 0.41 0.47 0.64 0.63
Average 0.46 0.49 0.68 0.91

Additionally, this paper compared the proposed model,
BNN+Attention, with several classical forecasting models
such as Recurrent Neural Network (RNN), Long Short-
term Memory (LSTM), Gated Recurrent Neural Network
(GRU), Bi-directional Long Short-term Memory (Bi-LSTM),
Informer, and others as competitive models. The comparison
results, as shown in Table 3, further substantiate that the
proposed model outperforms these models as well as the
BNN in the forecasting task.

Compared to competitive models like RNN, LSTM, GRU,
and Bi-LSTM, the results from the four evaluation metrics
show a substantial decrease in MSE by 5.39, 4.46, 4.44,
and 4.01, respectively. Similarly, the MAE decreased by
28.72, 13.65, 13.5, and 12.37, while RMSE decreased by
33.57, 23.48, 23.33, and 19.27. MAPE stands for Mean
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FIGURE 4. The results of the five-fold cross-validation using BNN.
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FIGURE 5. BNN+Attention five fold cross validation result chart.
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TABLE 3. Comparison experiment of power transformer dataset.

Methods MSE MAE RMSE MAPE (%)
RNN 5.85 29.21 34.25 3.94
LSTM 4.92 14.14 24.16 0.61
GRU 4.9 13.99 24.01 0.58
Bi-LSTM 4.47 12.86 19.95 1.37
Informer [20] 0.57 0.61 0.69 0.31
BNN [21] 0.57 0.58 0.74 0.94
BNN+Attention 0.46 0.49 0.68 0.91

Absolute Percentage Error, which is a metric used to measure
the difference between predicted and actual values as a
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percentage of the actual values. It is commonly used to
evaluate the accuracy of predictive models.The errors are
much higher than those of the model proposed in this paper.
Although the MAPE of the proposed model may not be
optimal, this metric alone does not necessarily reflect the
model’s overall performance. Considering the other three
metrics, this model performs exceptionally well in this
task.

The reasons for the poor performance of the cyclic model
are as follows: (1) The performance of cyclic models usually
depends on the characteristics of the data. If the data has
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FIGURE 6. Winter olympics real dataset prediction results.

a more complex, nonlinear pattern and weak long-term
dependencies, the recurrent model may not perform well.
(2) Recurrent models may be prone to overfitting on small
datasets. (3) Since the dataset input has 14 features, this
task may be beyond the capabilities of the recurrent model,
especially if the task needs to deal with a large amount of
contextual information or global relationships.

Although BNN+Attention don’t produce as good a MAE
and MSE as other state-of-the-art methods, the values
produced still seem to be high. This may be due to the
following reasons: (1) MSE is more sensitive to outliers
(squared prediction error). If there are some outliers in your
dataset, they may have a significant impact on the calculation
of MSE, resulting in a smaller MSE. Meanwhile, MAE has
relatively little effect on outliers because it only calculates
the absolute value of the error. For this task it is allowed
to have outliers, which will be more realistic in predicting
the operating trend of the equipment. (2) The distributional
characteristics of the data set may also lead to differences in
MSE and MAE. For example, if there are some relatively
large errors in the data, the squares of these errors may
dominate the MSE, resulting in a smaller MSE. The MAE,
on the other hand, will treat all errors more evenly, resulting
in a larger MAE.

The high MAPE can be attributed to a few reasons: The
dataset might contain extreme values that lead to an increase
in MAPE. However, these values might represent specific
cases in the dataset and may not be crucial for general
situations. In such cases, a high MAPE does not affect the
model’s effectiveness on the majority of data.

A high MAPE could be due to errors within a specific
range rather than an overall high error. If the model performs
well within a specific data range but has higher errors in
other ranges, a high MAPE does not affect the model’s
effectiveness on the majority of data.

Additionally, this paper conducted experiments comparing
the proposed model with Informer. While Informer is a
popular time-series prediction model, it did not perform
well in this experimental prediction task. Conversely, the
proposed model in this paper demonstrated outstanding
performance across all evaluation metrics, achieving high
prediction accuracy.
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Moreover, by introducing channel attention mechanisms
into the BNN network, it’s evident from both the visualization
results and the evaluation metrics that the model outperforms
the BNN network.

The experimental results indicate that the channel attention
mechanism allows the Bayesian Neural Network to auto-
matically adjust the importance of each channel, thereby
enhancing the model’s performance. It assists the model
in capturing correlations and the importance of features,
improving prediction accuracy. Not only can it mitigate the
impact of irrelevant or noisy channels, but it also enhances the
model’s generalization ability on unseen data. As depicted in
Figure 6 and Table 4, the paper conducted tests on the model’s
generalization ability based on real data collected from the
Winter Olympics site, showcasing both visualization results
and experimental evaluation metrics comparing actual values
with predicted values.

TABLE 4. Real winter olympics dataset.

Methods RMSE MAE MAPE (%)
RNN 0.005 0.0032 77.8
LSTM 0.0037 0.0018 26.6
GRU 0.0051 0.0038 50.6
Bi-LSTM 0.0086 0.0074 176.1
Informer 0.1843 0.2477 27.2
BNN 0.008 0.0698 0.73
BNN+Attention 0.007 0.0405 0.82

By observing Figure 6 and Table 4, we can assess
the model’s performance on unknown data. In Table 4,we
compared with the competing models such as RNN, LSTM,
GRU and Bi-LSTM, the model in this paper shows that it
exhibits good stability for real data, and in terms of all the
metrics, our model performs smoothly and with low error.
This comparative table clearly illustrates the model’s ability
to generalize when encountering new data. On the test set,
the small discrepancies between predicted and actual values
demonstrate stability across different samples. This suggests
that the model exhibits strong generalization capabilities and
accurately extends to unknown data. In addition, from the
observations in Figure 6, which indicates that the horizontal
coordinates represent the number of data sample points
collected in a time point, and the vertical coordinates are the
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acceleration values of the corresponding samples, it can be
seen from the curves in the figure that there is no obvious
prediction error or unstable results, indicating that there is no
overfitting or underfitting phenomenon. This indicates that
the model has excellent generalization ability.

V. CONCLUSION

This study explored the integration of channel attention
mechanisms into Bayesian Neural Networks to enhance the
accuracy and interpretability of equipment trend predictions.
The research demonstrates that this approach, combining
uncertainty modeling and feature selection, holds extensive
potential applications in equipment management. By intro-
ducing Bayesian Neural Networks, this paper achieved
better estimations of model parameter uncertainties, thereby
enhancing the credibility of predictive results. Simultane-
ously, the channel attention mechanism aided the model in
dynamically adjusting the weights of each feature channel,
allowing better capture of essential features within the data.
This not only improved predictive performance but also
heightened the model’s interpretability, enabling decision-
makers to better comprehend the model’s operational prin-
ciples.

While this research has made significant strides in
equipment trend prediction, several future research directions
remain. Firstly, further exploration can be done on various
types of channel attention mechanisms to adapt to diverse
data distributions and tasks. Secondly, consideration can
be given to integrating multimodal data (e.g., sensor data
and image data) into the proposed model to enhance
comprehensive performance. Lastly, investigating methods to
handle larger-scale datasets can further validate the scalability
of our approach. Additionally, applying this methodology
to other domains such as industrial automation, medical
equipment management, and financial forecasting holds
promise for future research endeavors.
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