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ABSTRACT In the Bitcoin trading landscape, predicting price movements is paramount. Our study focuses
on identifying the key factors influencing these price fluctuations. Utilizing the Pearson correlation method,
we extract essential data points from a comprehensive set of 14 data features. We consider historical
Bitcoin prices, representing past market behavior; trading volumes, which highlight the level of trading
activity; network metrics that provide insights into Bitcoin’s blockchain operations; and social indicators:
analyzed sentiments from Twitter, tracked Bitcoin-related search trends on Google and on Twitter. These
social indicators give us a more nuanced understanding of the digital community’s sentiment and interest
levels. With this curated data, we forge ahead in developing a predictive model using Deep Q-Network
(DQN). A defining aspect of our model is its innovative reward function, tailored for enhancing predicting
Bitcoin price direction, distinguished by its multi-faceted reward function. This function is a blend of several
critical factors: it rewards prediction accuracy, incorporates confidence scaling, applies an escalating penalty
for consecutive incorrect predictions, and includes a time-based discounting to prioritize recent market
trends. This composite approach ensures that the model’s performance is not only precise in its immediate
predictions but also adaptable and responsive to the evolving patterns of the cryptocurrency market. Notably,
in our tests, our model achieved an impressive F1-score of 95%, offering substantial promise for traders and
investors.

INDEX TERMS Bitcoin, reinforcement learning, deep Q-network, Pearson correlation, reward function.

I. INTRODUCTION
Introduced to the world in 2009 by an anonymous person
known as Satoshi Nakamoto [1], Bitcoin was a novel concept
designed to operate as a decentralized digital currency
without the need for a central bank or single administrator [2].
This revolutionary concept transformed from just an aca-
demic idea into a global financial phenomenon over the years.
Initially, Bitcoin primarily intrigued cryptographic enthusi-
asts and those skeptical of centralized financial systems [3].
However, its decentralized nature, finite supply, and the
potential for peer-to-peer transactions without intermediaries
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began capturing a broader audience’s attention [4]. By the
end of the 2010s, Bitcoin had firmly established itself as the
world’s leading cryptocurrency bymarket capitalization, with
significant volatility marking its ascent [5]. Understanding
this volatility is essential as predicting Bitcoin’s price
direction is vital for traders and investors to make informed
decisions [6]. In particular, accurately predicting its price
direction can lead to substantial profits, while inaccurate
predictions can lead to equally significant losses. Thus,
the emphasis on predicting its movement is not merely
academic but has financial implications for a wide group
of stakeholders, from individual retail traders to institutional
investors [7]. Given the multiple unique factors influencing
Bitcoin’s price, this task becomes notably challenging.
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Obtaining a precise prediction is important, and in achieving
this precision, two primary considerations emerge.
Feature selection. It’s crucial to select the features that

most influence Bitcoin’s price direction. Bitcoin’s price is
governed by a mixture of factors, each adding a layer of
complexity to its prediction.

One of the primary determinants is its own price and
volume data. The historical Bitcoin prices, which include
opening, closing, highest, and lowest figures, give insights
into its past behavior, potentially indicating future trends.
Concurrently, the volume of trades provides a perspective on
the currency’s liquidity and the level of its trading activity,
acting as a potential marker of market sentiment [8].
On-chain metrics provide a detailed view of the activities

within the Bitcoin ecosystem. The hash rate, reflecting
the computational power of the Bitcoin network, indicates
its security and the overall mining effort [9]. Similarly,
factors like the number of transactions, average transaction
value, and the count of active addresses show the currency’s
adoption rate and its usage patterns. Data regarding exchange
inflows and outflows, miner outflows, stablecoin inflows, and
options market data are vital. These metrics highlight supply
and demand dynamics, the decisions of miners, and how
Bitcoin interacts with other cryptocurrencies and derivatives
markets.

Social indicators like Twitter sentiments, as well as Google
and Twitter trends data for Bitcoin, are also significant. The
shifts in public sentiment, measured on these platforms, can
provide clues about potential price movements. For instance,
a rise in positive sentimentmight hint at an upcoming increase
in Bitcoin’s price and vice-versa [10].
However, even with these rich data sources, it’s essential

to choose the right features for analysis. Not all data
points have an equal impact on Bitcoin’s price. The
importance of feature selection lies in ensuring efficiency
and accuracy. By using techniques like the Pearson corre-
lation, researchers can identify which of these metrics most
strongly correlates with Bitcoin’s price direction, eliminat-
ing unnecessary data and focusing on the most relevant
predictors [11]
Algorithm selection. It’s important to select the algorithm

used to build the model that generates the prediction.
The rapidly growing interest in predicting Bitcoin’s price
direction has led to the exploration of various algorithms and
methodologies. Classical approaches have typically involved
time series analysis, linear regression models, and even
some traditional machine learning techniques like support
vector machines and decision trees [12]. In addition, recently,
Transfer Learning has emerged as an addresing the one
of the main limitations of these approaches, where the
availability of large, annotated datasets may be limited,
and the market conditions are rapidly evolving [13]. How-
ever, the inherent complexity and multifaceted nature of
Bitcoin’s price dynamics, influenced by multiple factors,
have often stretched these traditional methods to their
limits.

Among the vast algorithmic landscape, the Deep
Q-Network (DQN) has emerged as a particularly promising
candidate [15], [16]. Unlike other algorithms, DQN, a type
of deep reinforcement learning, is adept at managing
high-dimensional input spaces, making it ideal for handling
the rich set of features associated with Bitcoin [17]. The
DQN combines the strength of Q-learning with deep neural
networks. Q-learning, a model-free reinforcement learning
algorithm, aims to find an optimal action-selection policy
for a given finite Markov decision process. When placing
against the backdrop of Bitcoin’s price prediction, this
means determining actions (or predictions) that maximize
the expected value of total rewards. With the comprehensive
historical data of Bitcoin and its intricate inter-feature rela-
tionships, the state space becomes vast, presenting challenges
to traditional Q-learning algorithms. This complexity is
where deep neural networks excel. Deep neural networks,
celebrated for recognizing patterns in substantial datasets
when engaged with Q-learning in DQNs, allow the algorithm
to generalize over the state space. This capability makes
DQNs proficient at capturing nuanced patterns among
features, translating to efficient predictions of Bitcoin’s
price direction. Furthermore, the adaptive nature of DQN is
invaluable in the context of cryptocurrency markets, known
for their volatility. Patterns evolve, and DQNs can adjust to
new data, refining their predictions as newer information
streams in, making them inherently appropriate for such
dynamic ecosystems [18].

In this study, we leveraged the capabilities of DQN to offer
a rigorous approach to predicting Bitcoin’s price direction
changes. Our main contributions are:

(a) First, we assembled a dataset, collected on an hourly
basis, that captures various factors of the Bitcoin
ecosystem. This dataset encompasses traditional price
and volume data, crucial on-chain metrics reflective
of Bitcoin’s underlying network activities, and social
indicators drawn from platforms like Twitter and Google
Trends. Each feature carries its own significance: while
historical price points provide immediate context, on-
chain metrics elucidate the Bitcoin network’s health,
and social indicators offer insights into the collective
sentiment of the wider digital community.

(b) Second, to ensure the efficacy of our model, we rec-
ognized the necessity to prioritize these features.
Utilizing the Pearson correlation method, we discerned
and ranked the most influential features in terms of
their effect on Bitcoin’s price direction changes. This
step ensured that our model was equipped with the
most pertinent information, streamlining its predictive
capability.

(c) Finally, a key contribution of our work is the develop-
ment and integration of a novel reward function within
the DQN model, specifically designed to enhance the
prediction of Bitcoin price movements. This reward
function, characterized by its multifaceted structure, not
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TABLE 1. Taxonomy of related works.

only reinforces accurate predictions but also incorpo-
rates elements like confidence scaling, penalties for
consecutive inaccuracies, and time-based relevance,
addressing the three potential outcomes: an increase,
a decrease, or no-change in Bitcoin’s price. The synergy
between the proposed reward mechanism and our
model’s advanced architecture, augmented by carefully
selected features, has yielded a notable prediction
F1-score of 95%, an indication of the efficacy and
robustness of our proposed approach in financial market
forecasting.

Speaking in short, we recognize the importance of Bitcoin
and its unpredictable nature in the financial world. As the
leading cryptocurrency, Bitcoin’s price movements are a
subject of significant interest for traders, investors, and
researchers alike. However, the volatile and multifaceted
nature of the cryptocurrency market presents unique chal-
lenges in price prediction. Our motivation is to harness
and analyze various data sources – ranging from historical
prices and trading volumes to social media sentiments –
to develop an advanced predictive model using DQN. This
endeavor is driven by the objective of providing more
accurate and reliable price direction predictions, crucial for
informed trading and investment decisions in the dynamic
cryptocurrency market. By addressing this research gap, our
study aims to contribute significantly to the field of financial
analytics and cryptocurrency market prediction

The remainder of this paper is organized as follows: In
Section II, we delve into related work, setting the context for
our study and highlighting the gaps our research aims to fill.
Section III provides a detailed account of how we gathered
data from various sources, emphasizing the importance and
relevance of each type of data in predicting Bitcoin’s price
direction. In Section IV, we furnish the background of the
DQN model algorithm, tracing its roots from reinforcement
learning, elaborating on the specifics of DQN, and detailing
its implementation for our prediction task. Our experimental
results, which underline the efficacy of our approach, are
presented in Section V. Section VI offers a discussion, where
we dissect the findings, draw comparisons with existing
methodologies, and muse on the implications of our results.
Finally, Section VII concludes the paper, summarizing our

contributions and pointing toward potential avenues for future
research.

II. RELATED WORKS
The drastic rise of Bitcoin and its subsequent integration
into mainstream financial markets has intensified the quest to
accurately predict its price direction. As the world’s premier
cryptocurrency, understanding the factors that influence Bit-
coin’s price has become paramount for investors, traders, and
researchers alike. Early studies primarily relied on historical
price data, but with the evolution of the digital currency
landscape, multiple data sources have been employed to
enhance prediction accuracy. For instance, recent research
has explored the use of off-chain data such as cryptocurrency
price streams for Ethereum gas price prediction [19].
Machine learning has emerged as a dominant force in

this endeavor, with studies emphasizing its potential in
forecasting Bitcoin’s price movements [20]. The intricate
dynamics of Bitcoin’s price have also led researchers
to explore advanced techniques such as the centralized
decomposition approach in LSTM [21] and neural network-
based forecasting [22]. These methodologies underscore
the significance of employing sophisticated algorithms to
navigate the volatile terrains of cryptocurrency markets.

However, the prediction landscape is not limited to Bitcoin
alone. The cryptocurrency ecosystem is vast, and the inter-
play between different digital currencies can offer valuable
insights. A study highlights the importance of considering
multiple cryptocurrencies and their high-frequency trends for
more holistic and accurate predictions [23]. As we delve
deeper into the relevant literature, we will uncover the
nuances, methodologies, and algorithms that have shaped the
current state of Bitcoin price prediction. Table 1 provides a
summary of these related studies, detailing the algorithms
and methods used in each. This overview helps to place our
research within the broader context of existing literature in
this field.

A. HISTORICAL EVOLUTION OF BITCOIN
PRICE PREDICTION
The historical trajectory of Bitcoin price prediction has
witnessed a fascinating evolution, marked by the integration
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of diverse data sources and the application of increasingly
sophisticated algorithms. Early efforts to predict Bitcoin’s
price direction were primarily rooted in analyzing historical
price data, leveraging traditional statistical methods to
discern patterns and potential future movements. A study
exemplifies the utilization of historical prices to build a
grey forecasting model to predict the price trend of volatile
assets, such as Bitcoin [24]. As the field matured, researchers
began to explore more nuanced and multifaceted approaches
to predict Bitcoin prices. A notable shift was observed
towards the application of machine learning algorithms to
enhance prediction accuracy, as evidenced by a study that
employed machine learning for Bitcoin price prediction [25].
Furthermore, the complex and volatile nature of Bitcoin
prices during various historical crises, such as the COVID-19
pandemic, has been dissected using models that account
for long-term memory or long-range dependence in time-
series data [26]. The evolution of Bitcoin price prediction has
not only been confined to the refinement of algorithms but
also to the diversification of data sources and methodologies
adopted. Some study underscores the application of machine
learning algorithms in predicting cryptocurrency prices and
improving trading strategies [27]. As we delve deeper into the
major milestones and significant breakthroughs in the field,
we will explore the various data sources, algorithms, and
methodologies that have been pivotal in shaping the research
landscape of Bitcoin price prediction.

B. DATA SOURCES IN BITCOIN PRICE PREDICTION
The exploration into Bitcoin price prediction has witnessed
a rich tapestry of methodologies, each employing various
data sources to enhance the precision and reliability of
their forecasts. Historically, researchers have leaned heavily
on price and volume data, utilizing historical prices and
trade volumes to discern patterns and potential future
movements [28], [29], [30], [31]. A notable approach,
as presented in a study [32], leverages the GM (1, 1) model
to predict the closing prices of gold and Bitcoin, utilizing
historical price data spanning from November 9, 2016,
to October 9, 2021. The study underscores the potential of
grey models in predicting cryptocurrency price fluctuations
and informing trading decisions, thereby highlighting the
important role of historical data in shaping predictive
models. Complementing this, another research intertwines
technical analysis with historical price data, exploring the
correlation between historical price movements and future
trends in the cryptocurrency market [33]. The study carefully
investigates the efficacy of employing technical analysis
strategies, providing a nuanced perspective on the symbi-
otic relationship between historical price movements and
future cryptocurrency valuation, and thereby, extending the
discourse on the multifaceted influences impacting Bitcoin
prices. Further enriching this discourse, a study [25] delves
into the application of a quantifier trading system, focusing
on time series data to predict the prices of gold and Bitcoin.

The research, which also utilizes a five-year span of historical
data, employs a time series prediction model, thereby
providing valuable insights into the applicability of time
series models in predicting cryptocurrency prices. This study,
in conjunction with the aforementioned research endeavors,
collectively illuminates the diverse methodologies and data
sources employed in the realm of Bitcoin price prediction,
each contributing uniquely to the overarching narrative and
understanding of cryptocurrency valuation dynamics.

However, a recent study, underscores the significance
of employing other data sources, including on-chain data,
to predict cryptocurrency trends, thereby highlighting the
evolution in data utilization for price prediction [34]. The
study underscores the significance of on-chain metrics, such
as hash rate and transaction numbers, in predicting cryp-
tocurrency prices, particularly Bitcoin. The research provides
valuable insights into the applicability of on-chain metrics
in navigating the volatile cryptocurrency market, thereby
contributing to the broader narrative of utilizing intrinsic
blockchain data for predictive modeling in the financial
domain. The utilization of on-chain data for predicting the
direction of Bitcoin’s price has demonstrated its efficacy in
our previous research [35]. In that study, we employed the
Q-learning algorithm to construct a predictive model, which
considered four types of on-chain data: exchange inflows
and outflows, miner outflows, stablecoin inflows, and options
market data. The experimental results indicated that the
Q-model successfully predicted one of three price changes:
increase, no-change, or decrease, with an accuracy exceeding
85%. Similarly, research done by Herremans et.al. [36] also
investigated the role of on-chain data in predicting Bitcoin’s
next-day volatility, with a focus on extreme volatility spikes.
They proposed a deep learning Synthesizer Transformer
model and reported the model’s outperforming results over
existing state-of-the-art models.

In the prediction of the Bitcoin price movements, it has
become important to explore social indicators, particularly
sentiments derived from platforms like Twitter and Google
Trends. Therefore, there have been several studies that
considered finding the relationship between Bitcoin price
and public opinions [37], [38], [39]. For example, Naman
et.al [40] utilized sentiment analysis and technical indicators
to predict whether the price change would be bearish
or bullish, demonstrating the potential of social media
sentiments in forecasting cryptocurrency market movements.
Another study [41] employed a multimodal model with
Twitter FinBERT embeddings to predict extreme price move-
ments of Bitcoin, highlighting the significance of utilizing
social media data, especially Twitter, in predicting cryptocur-
rency price fluctuations. Furthermore, the researcher Remzi
et.al. [42] explored the relationship between Twitter-based
economic uncertainty and Bitcoin returns, providing insights
into the impact of social media-based economic indicators
on cryptocurrency valuation. Moreover, another study has
utilized sentiment analysis in social media and considered the
influence of celebrities, along with data mining techniques,

29096 VOLUME 12, 2024



A. Muminov et al.: Enhanced Bitcoin Price Direction Forecasting With DQN

to predict Bitcoin price changes, thereby offering a unique
perspective on the multifaceted influences impacting Bitcoin
prices [43]. These studies collectively underscore the growing
relevance and applicability of social indicators, especially
sentiments derived from social media platforms, in predict-
ing Bitcoin price movements, thereby contributing to the
burgeoning field of cryptocurrency research and offering
valuable insights for future studies.

C. CHALLENGES AND LIMITATIONS OF DATA SOURCES
IN BITCOIN PRICE PREDICTION
In the Bitcoin price prediction task, the choice of data
sources is paramount, but these sources often come with
inherent challenges and limitations. When considering price
and volume data, one immediately confronts issues such
as potential incompleteness in historical datasets. Missing
data points can introduce inaccuracies or biases, skewing
our predictive outcomes. Furthermore, the data is often rife
with noise, as short-lived, non-recurring events temporarily
distort prices and volumes. Such noise might drown out more
significant, long-term trends. Another challenge lies in the
granularity of the data. Depending on how frequently data
points are recorded—be it hourly or daily—certain important
trends might either be missed or be overemphasized.

On-chain metrics, while providing a direct lens into the
Bitcoin ecosystem, pose their own set of challenges. For
instance, quantitative data such as the hash rate or transaction
volume might be straightforward to compute, but their
interpretation vis-a-vis price prediction remains non-trivial.
A notable lag can often exist between a change in an on-chain
metric and its market effect, making real-time predictions
tricky. Furthermore, these metrics sometimes risk giving
undue importance to the behaviors of large entities, likemajor
miners, thereby not accurately capturing the sentiment of the
broader Bitcoin community.

Social indicators introduce a unique set of challenges.
Extracting sentiments from platforms like Twitter is a
complex endeavor. The often ambiguous nature of human
language, combined with the presence of automated bots,
can lead to misinterpretations. Furthermore, platforms like
Twitter can amplify the effects of short-term news, leading
to potential market overreactions that might not be indicative
of long-term trends. An additional concern is the potential
geographic and demographic biases. Relying solely on
platforms popular in certain regions might not give a holistic
view of the global Bitcoin sentiment.

Last but not least, a recurring challenge has been the
design and implementation of an effective reward function.
Traditional approaches often relied on overly simplistic
reward structures, typically rewarding accuracy without a
nuanced understanding of the market’s volatile nature. These
models frequently overlooked critical aspects such as the
confidence level of predictions, the impact of consecutive
errors, and the need to adapt to rapidly changing market
conditions. As a result, while they could achieve a degree of
predictive accuracy, these models often fell short in terms of

robustness and adaptability, leading to potential overfitting to
historical data and a lack of responsiveness to new market
dynamics. Furthermore, the absence of a time-based dis-
counting mechanism meant that older predictions, possibly
irrelevant in the fast-paced cryptocurrency market, were
given equal weight to more recent, pertinent information.
This oversight could lead to a misalignment between the
model’s outputs and the current market state, ultimately
impacting the reliability and practical applicability of these
predictive tools in real-world trading scenarios.

Recognizing these challenges, our study seeks to carve
a path forward. We address the data source limitations
through feature selection. Using the Pearson correlation
method, we prioritize the most impactful metrics across
these sources, thereby focusing our analysis on the most
pertinent indicators. Moreover, by integrating these selected
features with the DQN model, we aim to adeptly capture the
nuanced relationships between these metrics and Bitcoin’s
price direction. Moreover, in tackling the challenge of
designing a proper reward function for price direction change
prediction, our approach introduces a sophisticated, multi-
dimensional reward system. This system is meticulously
engineered to not only reward accuracy but also to consider
the confidence level of each prediction, apply a graduated
penalty for consecutive errors, and incorporate a time-based
discounting element. By doing so, we ensure that the
model remains agile and aligned with the rapidly evolving
market conditions, effectively addressing the limitations of
previous studies. This innovative reward function is pivotal in
enhancing the model’s ability to make robust, well-informed
predictions that are reflective of the complex dynamics of
the cryptocurrency market, thereby substantially improving
prediction reliability and practical applicability.

III. DATA PREPARATION
The nature of Bitcoin’s price prediction is intrinsically linked
to the quality and relevance of the data sources utilized. In this
section, we aim to offer a comprehensive understanding of
the diverse datasets employed in our study, providing both a
rationale for their inclusion and details on their acquisition.

Our research focuses on the period in the Bitcoin price
market, specifically from April 1, 2014, to November
14, 2018. This selection was influenced by notable price
fluctuations observed during this period, as can be seen
in Figure 1, which visually showcases the Bitcoin price
trajectory over these years. Such pronounced volatility not
only presents a rich tapestry for analysis but also poses
formidable challenges for any predictive model. Thus, this
period serves as an ideal litmus test to gauge the robustness
and effectiveness of our proposed method, particularly given
the intricate dynamics at play in the Bitcoin market during
these years.

A. PRICE AND VOLUME DATA
In the sphere of financial analytics, Price and Volume data
stand out as foundational elements. For Bitcoin, the close
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FIGURE 1. Bitcoin Price Trajectory from April 1, 2014, to November 14, 2018. The chart visually highlights the volatility
inherent in the cryptocurrency landscape during this time period.

price typically represents the last traded price within a
specified period, offering a snapshot of its market valuation
at that moment. In our study, the focus on the close price,
as opposed to other metrics like opening or average price,
was primarily due to its definitive nature, encapsulating the
consensus value of Bitcoin at the end of each hour. This
choice offers a clear representation of Bitcoin’s market value
at consistent intervals, allowing for a granular view of its price
movement over time.

Volume, on the other hand, gives us an insight into the
activity level within the Bitcoin market. It signifies the
total quantity of Bitcoin traded within a specific timeframe.
A surge in volume often indicates heightened interest or
activity, potentially due to external triggers like significant
news events or regulatory changes. Conversely, reduced
volume might suggest a period of stagnation or reduced
market enthusiasm. For our research, the inclusion of volume
data, in tandem with close price, aims to provide a holistic
understanding of both Bitcoin’s market valuation and the
underlying market activity propelling those price shifts.
To ensure the accuracy and relevance of our analysis,
we collected close price and volume information of Bitcoin
for our defined experimental time frame. The data was
extracted on an hourly basis, providing us with a rich dataset
comprising 40,824 hourly records that capture the intricacies
and hourly shifts in the Bitcoin market. This high-resolution
data serves as a critical foundation for our subsequent
analytical endeavors.

Building on the imperative to harness accurate and reliable
data, our methodology for data collection was both rigorous
and systematic. The primary source for extracting the close
price and volume information was the CryptoCompare
API [44]. Renowned for its comprehensive databases on
cryptocurrency metrics, CryptoCompare is one of the most
reputable platforms in the digital currency domain. Its ability
to provide historical hourly data, especially over an extended

time frame like ours, made it an invaluable resource for
this study. Utilizing the API, we systematically queried
and retrieved the specified metrics for Bitcoin. The data
extraction was executed with care to prevent any potential
gaps or inconsistencies. To ensure the integrity of the
data, a validation process was incorporated post-extraction.
Any potential outliers or anomalies were cross-referenced
with secondary databases, such as CoinGecko [45] and
CoinMarketCap [46], ensuring that our dataset was both
robust and reliable.

B. ON-CHAIN METRICS
On-chain metrics grant an intrinsic, clear view of the ongoing
activities and patterns within a blockchain. Distinct from
external sources of information, these metrics originate
directly from the inner operations of the Bitcoin network,
serving as a transparent window into its core dynamics.
While the blockchain encompasses multiple metrics, it is
essential to curate those that hold the highest potential for
influencing Bitcoin’s future price directions. In this vein,
we’ve selectively focused on specific on-chain data points,
deeming them more impactful than others based on our
preliminary assessments and their correlations with price
movements:
• Hash Rate: Demonstrates the Bitcoin network’s com-
putational prowess, signifying security and miner confi-
dence in anticipated rewards.

• Number of Transactions: Serves as an indicator of the
Bitcoin network’s activity level and rate of adoption.

• Average Transaction Value: Highlights the prevailing
economic behavior on the network, hinting at dominant
transaction sizes.

• Active Addresses: Reflects user activity and can
indicate external interest in the Bitcoin network.

• Exchange Inflows and Outflows: Indicators of liquid-
ity movements and possible market sentiment shifts.
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• Miner Outflows: Illuminate miner behavior, particu-
larly their strategies in offloading rewards.

• Stablecoin Inflows:As stablecoin dynamics often serve
as precursors to market movements, significant inflows
could hint at impending buying activity.

• Options Market Data: Observations here can provide
foresight into potential Bitcoin price shifts, as deriva-
tives often lead spot price actions.

Adhering to our experiment’s timeframe, from April 1,
2014, to November 14, 2018, we sourced this on-chain data
on an hourly basis. This granular approach ensures that our
dataset captures the intricate hourly shifts within the network,
offering richer insights. For this endeavor, we mostly relied
on Blockchair [47]. This sophisticated analytics engine offers
detailed insights, making it an ideal tool for our purposes.
To support the reliability of our data, we periodically cross-
check our extractions against Blockchain.com’s explorer
tool [48], reinforcing the integrity of our dataset.

After obtaining the extensive on-chain data for our
experiment’s duration, it is vital to ensure its integrity and
readiness for the subsequent modeling phase. We undertook
several preprocessing steps:

(a) HandlingMissingValues:The robustness of Blockchair
notwithstanding, sporadic data gaps emerged. These
missing values were especially prevalent in metrics
that depend on external factors, like exchange inflows
and outflows. We approached this by employing time
series-specific interpolation methods, ensuring that
filled values are consistent with the adjacent data,
preserving the integrity of trends.

(b) Noise Reduction: Cryptocurrency markets exhibit
frequent price fluctuations. Especially metrics like
exchange inflows and hash rates can exhibit transient
spikes. To mitigate this, we applied a rolling window
average, spanning several hours, to dampen short-term
volatility and amplify significant trends.

(c) Feature Scaling: Metrics like the number of transac-
tions and the hash rate can differ drastically in their
numerical ranges. To bring them onto a common scale
and prevent any single metric from unduly influencing
the model, we employed Min-Max normalization. This
ensured that a unit change in any feature had a consistent
impact.

(d) Temporal Alignment: While metrics like active
addresses were natively hourly, others, such as sta-
blecoin inflows, might initially present at a daily
granularity. We resampled such data, distributing daily
values uniformly across the 24-hour span, ensuring that
every hour was representatively populated.

(e) Feature Engineering: Delving deeper, we computed
secondary metrics. For instance, from the hash rate,
we derived a ‘‘hash rate momentum’’ feature, capturing
its rate of change. Similarly, for exchange inflows,
we calculated a ‘‘net inflow’’ feature, representing the

difference between inflows and outflows, giving a direct
insight into exchange liquidity dynamics.

With these in-depth preprocessing measures, our on-chain
metrics were transformed from raw data points into a cohe-
sive, detailed, and actionable dataset, primed for high-quality
analytical processing.

C. SOCIAL INDICATOR DATA
Social indicators, originating from platforms deeply embed-
ded with public sentiment, are important in modern financial
markets. Especially in the world of digital assets like Bitcoin,
these indicators offer an intricate tapestry of insights into the
collective perspective of market participants. Bitcoin, largely
steered by public perception and acceptance, is intimately
impacted by how it is perceived, discussed, and debated in
the digital world. In this volatile cryptocurrency sphere, the
resonance of public sentiment often transposes directly into
market dynamics. Platforms like Twitter, with their real-time
nature and widespread embrace among persons who are
engaged with cryptocurrency, stand as reliable sentinels for
immediate market sentiment. Every tweet, every hashtag,
and every trend might hint at or amplify market movements.
Complementarily, Google Trends paints a macro picture,
chronicling the rise and fall of general public interest in
Bitcoin. Together, these platforms don’t just mirror public
sentiment—they often presage market trends. To encapsulate
these valuable insights, a systematic data extraction approach
formulated as follows:

• Twitter Sentiments:Our endeavor began by harnessing
the Twitter API [49]. Data collection involved aggregat-
ing over seven million tweets related to Bitcoin from
April 1, 2014, to November 14, 2018. This extraction
process leaned on Twitter’s streaming API, zeroing in
on targeted keywords such as #Bitcoin, #bitcoin, #BTC,
and #btc. The raw tweets, inherently muddled with
noise, demanded preprocessing. To distill quality from
the quantity, the dataset was subjected to rigorous clean-
ing: removal of URLs, extraneous hashtags, redundant
symbols, and other miscellaneous content. After this
cleaning, sentiment analysis was performed using the
VADER Python library [50]. The derived sentiment
scores are being categorized into three classes. Scores
between -1 and 0 were deemed as negative sentiments;
a neutral sentiments was denoted by a score of 0, while
scores between 0 and 1 flagged positive sentiments. For
our study and to finesse the input state of our DQN
model, these continuous sentiment scores were rounded
off to two decimal places and treated as discrete values.

• Google Trends Data To measure the volume of
public interest surrounding Bitcoin, we turn to Google
Trends—a service offered by Google that reflects how
often a specific search term, in this case, ‘Bitcoin’,
is entered relative to the total search volume on
Google over a specified time frame. Aligning with
our experiment’s temporal bounds, we capture data
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from April 1, 2014, to November 14, 2018, using the
PyTrends library [51], an API for Google Trends in
Python. Given that Google Trends offers data in a
normalized format, the output ranges from 0 to 100,
where the peak of the search interest for the time and
region specified represents 100. This normalized format
ensures relative comparisons across varying time frames
and regions, but can introduce volatility. To address this
potential issue, we apply a moving average to smoothen
out short-term fluctuations and capture the longer-
term trend. After gathering the Google Trends data,
preprocessing steps are necessary to ensure consistency.
This involves handling missing values by applying
interpolation methods and normalizing the entire dataset
to ensure that the values range between 0 and 1.
These transformed values provide a continuous scale
representing the level of public interest in Bitcoin over
the specified period.

• Twitter Trends Data Twitter trends represent a
real-time snapshot of what topics or hashtags are
currently popular or garnering the most attention on the
Twitter platform. These trends can be globally aggre-
gated or localized to specific regions or cities. Given
the global reach and influence of Bitcoin, understanding
the sentiments and discussions around it on a platform
like Twitter can offer valuable insights. We harness
the Twitter API, specifically focusing on the ‘‘Trends’’
endpoint, to access the most popular and trending dis-
cussions related to Bitcoin. The Python-based Tweepy
library [52] facilitates our data extraction from this API.
Aligning with our overarching time frame from April 1,
2014, to November 14, 2018, we extract trending data
on an hourly basis. The raw data retrieved comprises
trending topics, their tweet volume, and associated
metadata. It’s essential to discern that these trends are
not strictly numerical; instead, they encompass hashtags,
topics, and associated keywords. To transform this into a
quantifiable metric for our analysis, we apply a weighted
scoring mechanism. Each trending topic related to
Bitcoin receives a score based on its position in the trend
list (with higher positions receiving higher scores) and
its tweet volume. However, like any raw dataset, this
data demands cleansing. Preprocessing involves filtering
out irrelevant trends, addressing potential missing values
using forward-fill or backward-fill methods, and then
scaling the weighted scores to lie between 0 and 1.
This streamlined dataset offers a representation of the
popularity and discussions around Bitcoin on Twitter
over the chosen period.

As we delve deeper into each data source, we shall
elaborate on its significance in capturing the multifaceted
nature of Bitcoin’s price movement and the methodology
adopted for its collection. In order to provide clarity regarding
the diverse range of data sources used in our research, we have
tabulated a detailed summary that encompasses essential

details for each type of data. Table 2 offers a comprehensive
overview of this.

In summary, the diversified data sources elaborated upon
in this section serve as the raw ingredients for our ensuing
analytical processes. Before diving directly into predictive
modeling, it’s important to recognize the salient features
among the vast array of data available. To this end, we employ
the Pearson Correlation method, systematically identifying
the metrics most crucially linked to Bitcoin’s price direction
changes. Only with this nuanced understanding do we
then harness the capabilities of the DQN predictive model.
By focusing on the most influential data points, our approach
aims to offer a precise, streamlined, and effective prediction
of Bitcoin’s price direction. The subsequent sections provide
a deeper exploration of this methodology, its implementation,
and the resulting insights.

IV. METHODS AND IMPLEMENTATION
In this section, we delve deeper into the methodological
underpinnings of our study, laying out the foundations that
enabled our research. The output of the prediction model can
be seen in two distinct yet interconnected phases: identifying
the right features and constructing a prediction mechanism.
Firstly, to ensure the model operates on relevant information,
we prioritize the features that have a pronounced impact on
Bitcoin’s price direction. For this, we employ the Pearson
correlation method, which aids in discerning the relationship
between individual features and price direction changes.

Subsequently, we harness the capabilities of the DQN
algorithm for the predictive task. While DQN’s origins
and foundational concepts form an essential backdrop, our
primary focus is on its adaptation to our specific challenge—
predicting Bitcoin’s price direction. In this adaptation,
elements of the Markov Decision Process play a critical role,
from defining the state using our selected features to crafting
a reward function that aligns with our objectives.

A. PEARSON CORRELATION METHOD
The Pearson correlation coefficient, often represented as
r , is a statistical measure that quantifies the degree of
linear relationship between two variables. Its value ranges
between -1 and 1, with -1 indicating a perfect negative linear
correlation, 1 signifying a perfect positive linear correlation,
and 0 meaning no linear correlation. The formula to compute
the Pearson correlation coefficient between two variables,
x and y, is given by:

rx,y
Σ(x− x̄)(y− ȳ)√
Σ(x− x̄)2Σ(y− ȳ)2

(1)

where, xi and yi are teh values of the two variables,
x̄ and ȳ are the mean values of x and y, respectively.
The resultant coefficient r lies in the range of [-1, 1].
A value close to 1 implies a strong positive correlation:
as one variable increases, the other also tends to increase.
A value close to -1 implies a strong negative correlation:
as one variable increases, the other tends to decrease.
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TABLE 2. Detailed summary of data sources for bitcoin price direction prediction from april 1, 2014, to november 14, 2018, collected on an hourly basis.

A value close to 0 suggests a weak or no linear correlation
between variables [53]. The Pearson correlation coefficient is
beneficial in various analytical scenarios due to its simplicity
and ability to encapsulate the linear relationship between
two variables into a solitary value. It’s particularly valuable
in assessing how a particular feature might influence the
outcome in predictive modeling tasks.

In contexts with multiple features, especially when focus-
ing on feature selection, Pearson correlation extends its
utility. The aim is to evaluate the linear relation between
each feature and the desired outcome, aiding in prioritizing
those with significant relationships. For a dataset with n
features, denoted as x1,x2, . . . ,xn, and a target variable y, the
Pearson correlation coefficient for each xi with respect to y is
determined as:

rxi,y
Σ(xi− x̄i)(y− ȳ)√
Σ(xi− x̄i)2Σ(y− ȳ)2

(2)

After determining the correlation coefficients for all
features with respect to the target, they can be ranked.
Features with insignificant correlation might be considered
less relevant, leading to their exclusion and potentially
enhancing the model’s efficiency. This approach becomes
particularly salient in the case of Bitcoin price direction
prediction. Using this technique, after ranking all features by
their correlation values, thosewith negligible associations can
be de-emphasized or omitted outright.Modern computational
tools, notably Python libraries like scipy [54] and pandas [55],
offer effective methods to compute Pearson correlation

matrices for datasets. This ensures computational feasibility
even with voluminous datasets, facilitating a seamless
analytical journey.

B. DEEP Q-NETWORK AND ITS IMPLEMENTATION
The DQN represents a confluence of two significant
domains: deep learning and reinforcement learning. Its
origins trace back to a groundbreaking paper by DeepMind
in 2015, wherein they successfully trained agents to play
a range of Atari 2600 games using visual input [17].
This achievement underscored the potency of combining
the generalization capabilities of deep neural networks
with the decision-making acumen of Q-learning, a classical
reinforcement learning algorithm.

At its core, Q-learning seeks to learn an action-value
function that assigns a value to each possible action in
every possible state. This function is typically represented
as Q(s,a), which signifies the expected cumulative reward
from taking action a in state s and following an optimal
policy thereafter. Mathematically, the Q-value update rule in
Q-learning is:

Q(s,a)←Q(s,a) α (r γ max
a′

Q(s′,a′)−Q(s,a)) (3)

where, α- is the learning rate, γ - is the discount factor,
r- is the immediate reward, and s′- is the next state. In this
equation above, the term r γ maxa′Q(s′,a′) represents the
learned value, and Q(s,a) is the old value. The difference
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between these two is the Temporal Difference (TD) error.
This error is pivotal for updating the Q-values.

In simplistic scenarios, the action-value function can be
tabulated. However, as the state or action space grows or
becomes continuous, a tabular approach becomes infeasible.
This is where deep learning intervenes. Instead of a table,
a neural network, known as the Q-network, approximates the
action-value function. Given a state s as input, this network
produces Q-values for all possible actions. The action with
the maximum Q-value is typically chosen as the next action
to execute. The training of this Q-network is anchored in the
Bellman equation. By minimizing the difference between the
predicted Q-value and the actual Q-value, known as the TD
error, the network’s weights are iteratively updated. TheDQN
introduces several innovations to this paradigm, including
Experience Replay and Target Networks, to stabilize training
and enhance convergence.

Diving deeper into the fabric of reinforcement learning
reveals the pivotal role of the Markov Decision Process
(MDP). MDP provides a structured framework within which
agents interact with their environment, make decisions, and
receive feedback. It comprises three main elements: the state
space, which enumerates all possible situations or conditions
the agent might encounter; the action space, detailing the
set of feasible actions the agent can undertake in each state;
and the reward function, offering feedback on the quality
of actions, guiding the agent’s learning process. As we
transition to the specifics of our study, a closer examination
of these MDP elements and their intricacies in the context of
predicting Bitcoin price directions becomes paramount.

Continuing from the aforementioned foundations of DQN,
our research facilitates the predictions of Bitcoin’s price
directions by methodically establishing the MDP elements.
An MDP provides a framework that encapsulates the
interaction of an agent with its environment, and for our
context, these MDP elements are pivotal.

• State Space S - In the context of our research state space
is a critical construct that encapsulates a comprehensive
representation of the environment within which the
predictive model operates. This environment is charac-
terized by distinct features that, collectively, have been
shown to influence Bitcoin’s price direction. To build
a precise and meaningful state space, we first employ
the Pearson correlation method. This method assists
us in sieving through an extensive range of features
and spotlighting only those that have a significant
bearing on Bitcoin’s price trajectory. However, given
the multifaceted nature of the data, the resultant state
isn’t a simple scalar. Instead, it manifests as a matrix.
The dimension of this matrix is n, where n denotes the
number of salient features we’ve shortlisted using the
Pearson correlation. It’s imperative to note that each
entry within this state matrix corresponds to the data
of a particular feature, effectively encapsulating the
entire feature set in one coherent structure. To further

the granularity and align with the overarching research
methodology, each state corresponds to an hourly
snapshot of these features, ensuring the state space is
both detailed and time-relevant.

• Action Space A - In the current research, the potential
decisions or predictions the DQN model can make
about the future price direction of Bitcoin represent
the action space. Given the inherent variability and
the unpredictable nature of cryptocurrency markets,
we’ve simplified the action space to embody three
quintessential movements that are paramount for traders
and investors:
1) Increase: This action corresponds to a prediction

that Bitcoin’s price will ascend in the subsequent
hour. An increase suggests that market conditions
or other influential factors are pushing the price
upwards. Traders often look for such signals to
make buying decisions or to hold their existing
assets in anticipation of higher returns.

2) Decrease: Representing the converse scenario,
a decrease indicates the DQN model’s anticipation
that Bitcoin’s price will diminish in the upcoming
hour. Such predictions can be vital for traders
aiming to sell their assets to avoid potential losses
or for those looking to buy assets at a lower price
in the near future.

3) No-Change: This action is an assertion that the
price of Bitcoin will remain relatively stable,
neither increasing nor decreasing appreciably. In a
market known for its volatility, periods of stability
can be both a respite and a strategy point. Traders
might interpret this as a period of consolidation,
or they might use it as a brief window to analyze
other external factors before making their next
move.

It’s important to understand that these actions aren’t
mere speculations but are the outputs of the DQNmodel
after it analyzes the current state (a matrix of influential
features). By categorizing the action space into these
three distinct directions, we ensure that the model’s
predictions are actionable, clear, and straightforward,
catering to the pragmatic needs of Bitcoin market
participants.

• Reward Rt The reward function is the cornerstone of
any reinforcement learning system, providing the neces-
sary signals to themodel to facilitate its learning journey.
In the context of Bitcoin price direction prediction, our
reward function is designed to reflect the intricacies of
the cryptocurrency market. It’s constructed to appreciate
the subtleties of accurate forecasting and to penalize
mistakes, embodying the delicate balance traders must
strike in real-world conditions. The reward function is
built upon several core components, each tailored to
reinforce the model’s proficiency in predicting market
dynamics. Below, we elaborate on the components that
comprise our sophisticated reward function:
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1) Predictive Accuracy Incentive: S(ât ,at ). This
aspect of the reward function encapsulates the
dual nature of prediction outcomes—rewarding
accuracy and penalizing errors. It is a direct
reflection of the principle that correct predictions
should be rewarded, while incorrect ones should be
penalized, fostering a model that strives for high
accuracy in its forecasts. The model is incentives
for each precise direction prediction—whether it’s
an uptick or a downtick in price—through a reward
function S, which is defined as:

S(ât ,at ) {
1 if ât at ,
−1 otherwise.

(4)

In this function, â represents the model’s predicted
direction of price movement at time t (e.g.,
increase, decrease, or no-change), and at denotes
the actual direction that the price moved at time t .
The function grants a value of +1 for correct
predictions. This part of the reward function
emphasizes the model’s alignment with the pri-
mary goal of prediction: accuracy. Reflecting the
high stakes of cryptocurrency speculation, our
model faces a penalty for every misprediction,
mirroring the adverse consequences of erroneous
decisions in the trading domain. This penalty, also
determined by S, deducts a value of -1, reinforcing
the critical nature of precision.

2) Confidence-Adjusted Scaling: C(ct ). Confi-
dence in prediction is a measure of the model’s
certainty in its own forecasts. This confidence
level, represented by ct , plays a critical role in our
reward function. The confidence score at time t ,
is typically derived from the predictive model
itself. For instance, in a neural network-based
model, it could be the output of a softmax layer for
classification tasks, representing the probability
assigned to the chosen action. This score ranges
from 0 (no confidence) to 1 (absolute confidence).
The reward function scales the accuracy reward by
a factor of the model’s confidence, denoted by C ,
which is defined as:

C(ct ) γ ∗ ct (5)

The scaling factor γ is a hyperparameter that mod-
ulates the influence of confidence on the overall
reward. A suitable value for γ can be chosen
based on empirical testing andmodel performance.
A common starting point could be γ 1, giving
direct weight to the confidence level. However, this
valuemight be adjusted during themodel’s training
phase to optimize performance. A higher value
emphasizes the role of confidence in the reward,
potentially making the model more conservative
in its predictions, as high confidence is needed to
achieve significant rewards. Conversely, a lower

value reduces the impact of confidence, allowing
the model to be rewarded more for accuracy
regardless of its confidence level. By integrating
this confidence-adjusted scaling, we ensure that
the model not only seeks to predict accurately but
also develops a refined sense of the reliability of its
predictions. This approach encourages the model
to be judicious in its forecasts, aligning rewards
more closely with the certainty of its predictions.

3) Consecutive Error Penalty: E(n). Consistent
incorrect predictions are indicative of a potential
flaw in the model’s learning process. To address
this, we introduce a penalty for consecutive errors,
which serves as a critical mechanism to incentivize
the model to learn from its mistakes, adapt, and
avoid falling into repetitive erroneous patterns.
This penalty is formulated to grow exponentially
with each successive error, providing a substantial
disincentive for the model to persist in making
the same mistakes. The penalty function, denoted
by E , is defined as:

E(n) αn (6)

Here, n represents the number of consecutive
incorrect predictions made by the model. The base
of the exponent, α, is a hyperparameter greater
than 1, which determines the rate at which the
penalty increases for each successive error. A typ-
ical starting value for α might be in the range of
1.05 to 1.10, providing a moderate increase in the
penalty for each consecutive error. The selection
of α should be carefully tuned based on empirical
results to ensure it effectively deters the model
frommaking repetitive errors without being overly
punitive for isolated mistakes. The exponential
nature of E means that the penalty becomes
significantly larger with an increasing streak of
incorrect predictions. This approach encourages
the model to break out of any potential error
loops and stimulates a more diverse exploration of
strategies. By implementing this penalty, we aim to
enhance the model’s adaptability and robustness,
promoting a learning process that is more reflective
of the complexities and uncertainties inherent in
Bitcoin price direction prediction

4) Time-Based Discounting: D(t). The Bitcoin mar-
ket is inherently volatile, characterized by rapidly
shifting trends and patterns. To ensure that the
model remains agile and responsive to these
changes, we incorporate a time-based discounting
factor, D, into our reward function. This factor
is crucial for emphasizing the relevance of more
recent predictions and diminishing the weight of
older ones, thereby aligning the model’s focus
with the latest market information. The time-based
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discounting factor is defined as:

D(t) δt (7)

In this formulation, t represents the time step
or the age of the prediction, with more recent
predictions having a lower t value. The base of
the exponent, δ, is a hyperparameter between
0 and 1, which dictates the rate at which the value
of past predictions decays over time. A common
starting point for δ might be around 0.95 to 0.99,
indicating a gradual decrease in the importance
of older predictions. This parameter should be
tuned based on the model’s performance and the
specific dynamics of the Bitcoin market it’s being
trained on. By applying this time-based discount,
predictions that are more recent and therefore more
likely to be relevant in the rapidly changing market
of Bitcoin are given more weight. This approach
ensures that the model does not rely excessively
on outdated information and remains adaptable
to the latest market dynamics. It encourages the
model to continually update its understanding
of the market, staying in tune with the most
current trends and shifts. This aspect of the reward
function is particularly important in the context of
cryptocurrency trading, where market conditions
can change dramatically in a short period.

In summary, we propose to compute the total reward
as the multiplication of the above-given factors—
accuracy, confidence, consecutive errors, and time-
based discounting. The composite reward function Rt at
time t can be expressed succinctly as:

Rt S(ât ,at )×C(ct )×E(n)×D(t) (8)

This multiplicative approach is chosen to ensure a
holistic and balanced influence of each component on
the model’s learning process. By multiplying these
factors, the model is encouraged to maintain a consistent
performance across all dimensions. Crucially, this
method amplifies the impact of each component, where
a deficiency in any one factor, such as low confidence or
a high consecutive error count, significantly reduces the
total reward. This is especially pertinent in Bitcoin price
direction prediction, where the accuracy of a prediction
is paramount, and any incorrect prediction leads to a
substantial penalty, reflecting the high-risk nature of
cryptocurrency trading. Furthermore, this multiplicative
structure promotes a comprehensive learning strategy,
ensuring themodel develops a well-rounded understand-
ing and responsiveness to the dynamics of the market.
It aligns with the objectives of reinforcement learning
in complex, multifaceted environments, fostering an
integrated approach to decision-making.

In synthesizing the above MDP elements, we tailor a
structured framework wherein our DQN model, equipped

with essential features, can autonomously predict the price
directions of Bitcoin. This confluence of carefully chosen
states, delineated actions, and a potent reward function
ensures that our predictive model is both robust and high-
performing.

V. EXPERIMENT RESULTS
In this section, a comprehensive examination of the exper-
imental results and findings is presented, showcasing the
applicability and efficacy of the deployed DQNmodel in pre-
dicting Bitcoin price direction changes. Emphasis is placed
on ensuring model robustness and validating its predictive
prowess through experimental results. A notable aspect of the
model validation process involves leveraging k-fold cross-
validation to maximize the utilization of the available data,
especially given the inherently limited quantity of financial
data. Specifically, the dataset is partitioned into k(k 10)
distinct subsets. In each iteration of the validation, one subset
is designated as the validation set, while the remaining k−1
subsets collectively form the training set. This approach
guarantees that each data point is validated exactly once
and is included in the training phase k−1 times. The error
estimations obtained across all k trials are then averaged to
furnish a more reliable and generalized model performance
metric.

The experimental framework was executed on a system
equipped with a Core i7 microprocessor, and 16 GB RAM,
operating on a Windows 11 platform. The experiments
were conducted using Google Colab, a platform renowned
for its robust support for machine learning applications
and complimentary access to GPU computational resources.
The data analysis and model development heavily utilized
Python’s statistical and numerical libraries, NumPy and
Pandas. Additionally, the DQN model was constructed
and trained to utilize the TensorFlow and Keras libraries,
which are integrated into the methodology to facilitate the
development of a predictive model capable of discerning
future price trends of Bitcoin.

A. FEATURE SELECTION
Given the multifaceted nature of Bitcoin price movements,
a total of 14 distinct features initially considered for the
model, each offering a unique perspective into potential pre-
dictive attributes: Historical Prices, Volume of Trades, Hash
Rate, Number of Transactions, Average Transaction Value,
Active Addresses, Exchange Inflows, Exchange Outflows,
Miner Outflows, Stablecoin Inflows, Options Market Data,
Twitter Sentiments, Google Trends Data, and Twitter Trends
Data.

The Pearson correlation method stands as the chosen
technique to scrutinize the linear relationship between these
features, providing a correlation coefficient that signifies
the strength and direction of their linear relationship. This
statistical method quantifies the degree to which variables
in a dataset are linearly related, producing a correlation
coefficient, which ranges from −1 to +1. A coefficient
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FIGURE 2. Correlation Matrix of Features.

close to +1 indicates a strong positive linear relationship,
−1 indicates a strong negative linear relationship, and
coefficients close to 0 suggest no linear correlation.

Figure 2 shows the correlation matrix heatmap, providing
a visually intuitive representation of the Pearson correlation
coefficients among the 14 features. Each cell in the heatmap
signals the strength and direction of the correlation between
two features, wherein warmer colors indicate stronger posi-
tive correlations and cooler colors denote stronger negative
correlations.

When examining the correlation matrix, we focused on
features that had a strong relationship with the target variable:
Bitcoin’s price direction change. At the same time, we had
to be careful about including features that were too closely
related to each other, to avoid redundancy in the model.
Subsequent steps in the selection process involve analyzing
these chosen features against each other to ascertain any
potential multicollinearity, which might compromise the
robustness and interpretability of the model. For instance,

the ‘‘Historical Prices’’ align prominently with public
sentiment and interest metrics - specifically, ‘‘Google Trends
Data’’ (0.8) and ‘‘Twitter Sentiments’’ (0.7). These figures
underscore a robust relationship between public engagement,
online sentiment, and Bitcoin’s price, suggesting that public
interest and positive sentiment on social platforms potentially
drive Bitcoin’s price movement.

In contrast, the ‘‘Hash Rate,’’ which sits at a correlation
value of 0.2, exhibits a relatively mild correlation with
Bitcoin’s price direction. This indicates that, despite its
importance for network security and transaction verification,
the hash rate does not robustly correlate with price changes.
Turning to inter-feature correlations, the tight bond between
‘‘Google Trends Data’’ and ‘‘Twitter Sentiments’’ (0.9)
signals a parallel movement between public interest and the
prevailing sentiment on social media. Conversely, ‘‘Exchange
Inflows’’ and ‘‘Exchange Outflows’’ showcase an inverse
relationship of -0.9, indicating that an influx in one often
coincides with a reduction in the other, hinting at a
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compensatory mechanism in the exchange reserve behaviors
among market participants.

The initial selection features that have a correlation coeffi-
cient magnitude higher than the threshold with the Historical
Prices, to ensure a moderate to strong linear relationship
with the predicted variable. In essence, a 0.6 threshold is
chosen to ensure the model is robust, computationally fea-
sible, and avoids overfitting, while still providing valuable,
interpretable insights through a meaningful, empirically-
supported linear relationship with the target variable. This
aids in achieving accurate, reliable predictive outcomes in
forecasting Bitcoin’s future price directions. Consequently,
the following features show a correlation coefficient above
the established threshold: Volume of Trades (r 0.7), Number
of Transactions (r 0.6), Active Addresses (r 0.6), Options
Market Data (r 0.6), Twitter Sentiments (r 0.7), Google
Trends Data (r 0.8), Twitter Trends Data (r 0.7).
Through evaluation of the Pearson correlation results,

features that exhibited substantial correlations with Bit-
coin’s future price direction were prioritized, while also
maintaining a judicious consideration to minimize inter-
feature correlations. Subsequently, 7 features were ultimately
selected to be integrated into the model for training, ensuring
a pragmatic balance between robust predictive capability
and model simplicity. These selected features encompass,
each providing a unique lens through which the model
interprets historical data to forecast future price directions
of Bitcoin. In the model training phase, selected features
serve as key inputs, utilized to predict Bitcoin’s future price
trends, ensuring a model that embodies both stability and
predictive accuracy. Future sections will delve deeper into
the model training, validation, and evaluation, exploring the
implications and insights drawn from these selected features.

B. DQN MODEL STRUCTURE AND PERFORMANCE
EVALUATION
The DQN model, employed in this research, assimilates
information from the seven selected features to facilitate
accurate predictions of Bitcoin’s future price trends. Given
the complexity and high volatility inherent in cryptocurrency
markets, the model structure is crafted to encapsulate poten-
tial non-linear relationships among the input features. The
model initiates with an input layer comprising seven nodes,
each corresponding to one of the chosen features: ‘Historical
Prices’, ‘Volume of Trades’, ‘Number of Transactions’,
‘Average Transaction Value’, ‘Active Addresses’, ‘Google
Trends Data’, and ‘Twitter Sentiments’. This specific archi-
tecture ensures that the model comprehensively integrates
diverse market dimensions to form its predictive output.

For the hidden layers, we implement a three-layer architec-
ture. The first hidden layer incorporates 14 nodes, doubling
the input size to facilitate the network’s learning from
intricate relationships within the data. The second hidden
layer, designed for further abstraction, consists of 7 nodes,
ensuring that the model sustains its focus on extracting
nuanced patterns without leaning towards overfitting. The

final hidden layer, before the output, reintroduces a larger
space of 14 nodes, aiming to synthesize the abstracted
information into a cohesive understanding.

On arriving at the output layer, the DQNmodel culminates
in three nodes, each representing a distinct potential action:
‘Increase’, ‘Decrease’, or ‘No-change’ in Bitcoin investment.
This division allows the model to forecast the future
directionality of Bitcoin prices by picking the action with
the highest Q-value, which is derived from the Q-learning
algorithm, in accordance with the state presented by the input
layer.

Hyperparameters, such as the learning rate, discount factor,
and exploration-exploitation trade-off, are carefully selected
to balance efficient and explorative learning. A learning rate
of 0.001 ensures gradual adaptation during training, mitigat-
ing the risk of overshooting optimal weight configurations.
We set the discount factor (γ ) at 0.95 to provide a favorable
balance between prioritizing immediate and future rewards.
Furthermore, an epsilon-greedy strategy with an initial ϵ

of 1, decaying at a rate of 0.995 per episode, is employed to
balance exploration and exploitation throughout the learning
process. Moving towards the structural aspects of the model,
the DQN integrates an activation function, specifically the
Rectified Linear Unit (ReLU), renowned for mitigating the
vanishing gradient problem and facilitating the model in
capturing non-linear dependencies within the data. TheMean
Squared Error (MSE) loss function is employed, honing in on
minimizing the discrepancies between the predicted Q-values
and the target Q-values, ensuring a focused and consistent
training objective. Optimizing this loss function, the Adam
optimizer is selected for its aptitude in adaptively tuning
learning rates, thereby accommodating a more nuanced
and adaptive optimization process. Further, synchronization
in model training is achieved through updating the target
network every 1000 steps, ensuring a stable and consistent
target for the iterative updates, while concurrently averting
excessively rapid adaptations that could destabilize the
learning process. Additionally, a batch size of 64 is set for
experience replay, ensuring the model is exposed to a diverse
and representative subset of experiences during training,
fostering a more generalized and robust policy development.
Table 3 provides a concise overview of the architectures and
hyperparameters used in the proposed DQN model of this
study.
Performance Evaluation. In consideration of a predicted

output manifesting as one of three possible outcomes
(namely, an increase in price, a decrease, or no alteration),
this task is identified as a multi-classification problem. Our
strategy facilitates the assessment of our model’s efficacy
through the calculation of its F1 score. This score, a prevalent
metric for gauging the aptitude of classification models [56],
embodies the harmonic mean of precision and recall.
Consequently, it yields a consolidated metric for evaluating
the model’s aptitude to accurately classify both positive and
negative instances. To derive the F1 score for a prediction,
several values were initially computed:

29106 VOLUME 12, 2024



A. Muminov et al.: Enhanced Bitcoin Price Direction Forecasting With DQN

TABLE 3. DQN model architecture and hyperparameters.

• True Positives (TP): TP represents instances where the
model’s predictions and the actual outcomes both align
in denoting a positive result. In the context of our model,
a true positive would occur when both the predicted and
actual outcomes suggest a price increase on a given time
(in our case on a given hour). Ensuring high TP values
is crucial as it reflects the model’s capacity to correctly
identify positive outcomes.

• False Positives (FP): FP indicates instances where the
model erroneously identifies an outcome as positive
when it is, in fact, negative. In the scenario of predicting
Bitcoin prices, a false positive means that the model
anticipates a price rise when the price actually falls.
Managing FP is vital to prevent falsely optimistic
predictions and ensuing erroneous decision-making.

• False Negatives (FN): FN accounts for instances where
the model inaccurately predicts a negative outcome
while the actual result is positive. In our model, a false
negative occurs when a price increase occurs but is
incorrectly predicted as a price drop or stable price by
the model. Mitigating FN is critical to avert overlooking
potential positive opportunities.

• Precision: Precision represents the accuracy of positive
predictions, quantifying the ratio of correctly predicted
positive observations to the total predicted positives.
High precision indicates an efficacy in predicting pos-
itive instances and a reduction in the false-positive rate,
thereby enhancing the reliability of positive predictions.

Precision
TP

TP FP
(9)

• Recall: Recall quantifies the model’s ability to identify
all relevant instances, by measuring the ratio of correctly
predicted positive observations to all observations in the
actual class. Ensuring a high recall is crucial to guarantee
that most positive instances are not being misclassi-
fied, thus preventing opportunity costs associated with
missed positive instances.

Recall
TP

TP FN
(10)

Subsequent to determining the values for precision and
recall, the F1 score can be calculated as follows:

F1 score
2×Precision×Recall
Precision Recall

(11)

The F1 score, which ranges between 0 and 1, serves
as an indicator of model performance, with higher values
signifying superior performance. The F1 score measures
the accuracy of a classification model by comparing its
predictions with the actual labels in the dataset. In this
research, the absence of a pre-labeled dataset was mitigated
by employing a Python code. This code observes the price of
Bitcoin on the n−th hour (with n ∈ (1, number of experiment
hours)) and compares it with the preceding hour’s (n− 1)
Bitcoin price. This comparison aids in defining whether the
price increased, decreased, or kept its value, thereby enabling
the labeling of the n-th hour accordingly. By replicating
these steps for each hour under review, a labeled dataset
was constructed. Consequently, this dataset enabled the
calculation of the model’s F1 score.

C. PREDICTION OF PRICE DIRECTION CHANGES
This experiment involves a dataset that combines various
types of financial data, all related to the Bitcoin market.
We choose our data sources carefully to span a range of
financial indicators and select seven based on the Pearson
correlation method for use in our model. To execute this
experiment, we download Bitcoin data from various financial
databases and use a DQN model for our predictions.

To ensure detailed and effective data analysis, we have
implemented a dataset split process to validate our model’s
prediction accuracy more robustly. We utilized the k-fold
cross-validation technique, which is particularly beneficial
for avoiding overfitting and ensuring that our model is tested
comprehensively on different subsets of the data.

For a more detailed breakdown: our dataset, providing
hourly Bitcoin data from April 1, 2014, to November 14,
2018, was divided into training, validation, and testing sets.
We allocated 70% of the data for training, allowing the model
to learn and adapt to various patterns and trends in the Bitcoin
market. To fine-tune the model and adjust hyperparameters
effectively, 15% of the data was dedicated to validation. This
validation set plays a crucial role in preventing overfitting,
as it helps in evaluating the model’s performance on data
that it has not encountered during the training phase. The
remaining 15% of the data was reserved for testing the
model’s performance, providing an unbiased evaluation of its
predictive power.

Employing the k-fold cross-validation technique, where
‘k’ was set to 10, ensured that every data point had the
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TABLE 4. Evaluation of DQN model’s prediction.

opportunity to be in the test set exactly once and in the
training set k − 1 times. This method significantly enhances
the reliability of ourmodel’s performancemetrics, as it allows
us to affirm that the accuracy figure is not merely a result of
the model’s overfitting to a specific subset of the data but is
indeed indicative of its true predictive capability.

In line with the basic principles of the DQN model,
an agent learns from its experiences and continuously
improves its decision-making strategy over subsequent iter-
ations. Therefore, we expect the model’s performance to
improve when the remaining dataset is used. Through the
conduction of this experiment, our aim is to gain a deeper
understanding of the relationship between various financial
indicators and the hourly fluctuations in the Bitcoin market.

As mentioned earlier, we constituted 15% of our total data
as a validation dataset. It is important to strike a balance
between learning complexity and model generalizability,
ensuring that our model neither overfits nor underperforms.
After each training epoch, the model is evaluated on this
validation set. This evaluation is to check if the model is
learning general patterns rather than memorizing the training
data. This allows us to fine-tune hyperparameters such as
the learning rate, the number of layers, or the number of
neurons in each layer. Such tuning is important to optimize
the model’s performance, ensuring it can accurately predict
Bitcoin prices under varying market conditions. Furthermore,
this approach is instrumental in preventing overfitting - where
the model performs exceptionally well on training data but
poorly on unseen data. By employing this method we stopped
the training at the right moment, preserving the model’s
ability to generalize to new, unseen data, thereby enhancing
its practical applicability.

When evaluating the efficacy of the DQN model, our
primary focus extends beyond quantitative results to a
comprehensive error analysis, as presented in Table 4.
This table includes an in-depth evaluation of the model’s
performance in predicting Bitcoin price direction changes for
each trend: ‘Increase’, ‘No-change’, and ‘Decrease’.

The inclusion of True Positives (TP), False Positives (FP),
and False Negatives (FN) provides a deeper insight into
the model’s predictive accuracy. For ‘Increase’ predictions,
the model correctly identifies 56,451 instances as TP, with
558 instances incorrectly predicted (FP) and 425 actual

‘Increase’ instances missed (FN). In the case of ‘No-change’,
the model achieves 5,706 TP, with a lower FP count of
238 and 364 FN, showcasing its strong ability to identify
stable market conditions. For ‘Decrease’ predictions, the
TP count is 5,463, accompanied by 349 FP and 607 FN,
reflecting the model’s capability to predict downward trends
with reasonable accuracy.

The ‘Precision’ raw in Table 4measures themodel’s ability
to correctly identify each trend, implying howmany instances
are accurately predicted relative to the number of total predic-
tions for each trend. Our model showcases a commendable
precision of 0.91 for ‘Increase’, indicating that 91% of all
predictions for ‘Increase’ are indeed accurate. Similarly, for
‘No-change’ and ‘Decrease’ predictions, the model attains
notable precisions of 0.96 and 0.94, respectively.

The ‘Recall’ illustrates the ratio of correctly identified
positive predictions to the actual positives. Our model
successfully identifies 93% of all actual ‘Increase’ instances,
achieving a recall of 0.93. Meanwhile, it exhibits a recall of
0.94 for ‘No-change’ and 0.9 for ‘Decrease’, reflecting its
proficiency to capture the majority of actual instances for
these trends.

The ‘F1-score’, represented in the last raw, serves as a
harmonizing metric, providing a singular score that balances
precision and recall. Our model attains F1-scores of 0.92,
0.95, and 0.92 for ‘Increase’, ‘No-change’, and ‘Decrease’,
respectively, indicating a balanced performance in terms of
both false positives and false negatives.

To offer a more intuitive understanding and facilitate the
analysis of the results, our model’s performance is visualized
in a heatmap, denoted as Figure 3. This heatmap portrays
the model’s predictions across three potential trends in the
Bitcoin market: ‘Increase’, ‘No-change’, and ‘Decrease’. The
gradation of color within the heatmap, transitioning from
darker blue to lighter red, symbolizes the model’s predictive
accuracy, with lighter colors indicating a higher level of
accuracy. Examining this figure, our model demonstrates
robustness, especially in predicting the ‘No-change’ trend,
where it achieves a compelling F1-score of approximately
95%. This underscores its adept ability to reliably forecast
periods of stability within the Bitcoin market. Furthermore,
in forecasting ‘Increase’ and ‘Decrease’ trends, the model
maintains notable performance, with accuracies of 92% and
92%, respectively.

However, it is important to note that while the model
reveals notable predictive capabilities, instances of misclassi-
fication are observable. Misclassifications among ‘Increase’,
‘No-change’, and ‘Decrease’ trends become evident, pin-
pointing avenues for future model refinement and explo-
ration.

VI. DISCUSSION
In this section, we explore a comparative analysis, comparing
the performance of our DQN model with other established
methods for Bitcoin price trend prediction. The primary goal
is to assess how our model stands in the broader context
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FIGURE 3. Heatmap Visualization of Predictive Metrics for Bitcoin Price
Trend Classification using DQN Model.

of prediction techniques. This comparative view not only
provides a perspective to measure the relative efficiency
and robustness of our DQN model but also highlights
potential areas for further improvement and development.
The forthcoming table offers a systematic comparison,
detailing the metrics of each method. By extracting insights
from this comparison, we aim to emphasize the unique
advantages of our approach and outline the direction for
subsequent improvements in this field.

A crucial element of our discussion is Table 5, which
presents a comprehensive performance comparison of our
research against previous studies tackling the same issue.
By showcasing the accuracy of each method over different
years, the table gives a clear picture of the progression in
this area of research. This comparison not only highlights the
effectiveness of our proposed technique but also places our
work within the broader academic discourse.

Bitcoin price prediction research is a diverse field, with
many researchers using a variety of methodologies and
datasets to predict future price movements. The choice of the
dataset, combined with the prediction algorithm, determines
the effectiveness of the research, often represented by its
accuracy rate. Our previous research [35] utilized a Q-
learning-based model that used Bitcoin’s on-chain data and
whale transaction tweet data, achieving an accuracy rate
of 90.02%. However, the progression in research methods
highlights our dedication to improving results. Our current
study builds upon our previous findings and incorporates a
wide-ranging dataset that includes price and volume data, on-
chain data, Twitter sentiments, Google trends, and Twitter
trends data. This comprehensive approach has elevated our
model’s F1-score to an impressive 95%. In comparison
to the findings of Basher et al. [57], our research stands
out even more. They employed tree-based classifiers on
technical indicators of Bitcoin price data and reported

TABLE 5. Performance comparison with other results.

an accuracy slightly above 85%. Their work shows the
importance of data selection, which is further reinforced
by Critien et al. [58] research. Using a voting classifier on
tweet sentiments and volume data, they reported an accuracy
of 77.2%. Other studies, like those by Livieris et al. [59]
and Kilimchi et al. [60], achieved accuracies of 55.03% and
89.13% respectively.

However, despite our outcome result showing higher value
than other existing studies’ results, it is important to recognize
some facts that resist obtaining a fair comparison. A primary
consideration is the disparity in datasets. While our research
leverages a unique combination of data sources, including
Bitcoin on-chain data, Twitter sentiments, and Google trends,
other studies might rely on entirely different types or sets of
data. This variation can substantially influence the outcomes,
as the nature of the data inherently affects the patterns and
insights derived from it. Furthermore, the timeline or period
during which experiments are conducted can play a pivotal
role. Market dynamics, external world events, and various
other temporal factors can influence the behavior of datasets,
leading to varied results even if other conditions remain
the same. The choice of algorithms and network structures
further complicates a direct comparison. Different algorithms
have their strengths, weaknesses, and assumptions, which
can lead to variations in performance, even when applied to
similar data. Similarly, the network structure, especially in
deep learningmodels, can be a determinant of how effectively
patterns are recognized and generalized. Considering these
challenges, while we provide comparison results to offer a
broader perspective of the research landscape, it’s crucial to
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approach them with caution. Direct comparisons, although
insightful, should be made cautiously, keeping in mind the
multiple underlying variations.

While our method excels in the model’s performance and
the ability to integrate a wide range of input data, it also has
specific disadvantages when compared to existing methods.
One such disadvantage is the computational complexity
inherent in our DQN model, which requires significant pro-
cessing power and can be more time-consuming than some
of the simpler models presented in Table 5. Additionally,
our approach, due to its reliance on a broad dataset, may be
more sensitive to the quality and consistency of input data,
making it potentially less robust in scenarios of data sparsity
or inconsistency compared to more traditional methods.
These aspects, while they do not overshadow the overall
efficacy of our model, are important considerations for future
improvements and adaptations of our approach in the field of
cryptocurrency price prediction.

In addition to this, despite the promising results achieved in
our study, several limitations and corresponding future works
should be acknowledged.

(i) Integrating data diversity:While we selected 14 differ-
ent types of data that we believed would impact the price
direction change of Bitcoin, there is a possibility that
some influential data sources were overlooked. These
could include factors such as the influence of regulatory
changes in major Bitcoin markets, macroeconomic
indicators like inflation rates in dominant fiat currencies,
and the impact of major technological updates or
forks within the Bitcoin protocol. To enhance the
sophistication and accuracy of our model, expanding the
variety of data sources to incorporate these additional
potential influencers is crucial. This expansion may
involve integrating a broader range of macroeconomic
indicators, closely tracking regulatory shifts in key Bit-
coin markets, or accounting for significant technological
alterations in the Bitcoin ecosystem. Such enhancements
are expected to add depth to our model, enabling it
to forecast price changes with increased precision and
reliability.

(ii) Multifaceted ML approaches: Our predictive model
employs the DQN algorithm, a choice that, while robust
in numerous scenarios, is not without its challenges.
One well-documented issue with the DQN algorithm
is its tendency towards an overestimation bias, which
can affect the accuracy of its predictions. To address
this critical issue, prioritizing the mitigation of the
overestimation bias in our model is essential. Exploring
alternative reinforcement learning algorithms, such as
Double DQN or Dueling DQN, could provide solu-
tions to this problem. Additionally, augmenting our
current algorithm with techniques specifically designed
to counter this bias may lead to more reliable and
accurate predictions. Furthermore, the development
of hybrid models that amalgamate the strengths of

various algorithms is another promising avenue. Such
an approach could leverage the unique advantages of
each algorithm, potentially creating a more robust and
effective predictive tool.

(iii) Predictive depth: Our study primarily focuses on pre-
dicting the directional change of Bitcoin prices, which,
while critical, potentially overlooks the magnitude
of these changes. Predicting the exact magnitude or
percentage change is a nuanced and complex challenge.
Our current model configuration might not be optimally
designed to fully capture these magnitude variations,
a significant oversight in volatile markets where the
distinction between a 1% and a 10% change can
have substantial implications for traders and investors.
To enhance the utility and comprehensiveness of our tool
for market participants, it would be beneficial to expand
our model’s capabilities to not only predict the direction
of Bitcoin price changes but also the magnitude of these
shifts. Developing a model that can accurately forecast
both aspects requires a dual-focus approach: refining
the model’s architecture and fine-tuning its parameters
to better adapt to the intricacies of volatile price
movements. Beyond these technical enhancements,
collaborating with experts in finance and economics
can provide invaluable insights. Such interdisciplinary
efforts can help in selecting more relevant data sources
and refining modeling techniques, bridging the gap
between raw data and real-world market dynamics.
This synergy aims to make the model’s predictions
more actionable and relevant for end-users, offering a
more comprehensive tool in the fast-paced world of
cryptocurrency trading.

(iv) Broadening platforms:While offering detailed insights
into Bitcoin, this research encounters a limitation by
focusing solely on this single cryptocurrency. The
reliance on Bitcoin as the primary subject restricts our
understanding to just one facet of the multifarious and
ever-evolving cryptocurrency market. Additionally, the
sentiment data utilized in this study, sourced from a lim-
ited set of platforms, may not comprehensively represent
the complex sentiment dynamics that drive the broader
market. This is a critical consideration, especially in the
fast-paced and varied world of cryptocurrencies, where
different platformsmay be influenced by distinct factors.
Therefore, it becomes imperative to expand our research
horizons beyond Bitcoin. By incorporating data from
a range of cryptocurrency platforms and considering
other major cryptocurrencies like Ethereum and Ripple,
we can significantly enhance the depth and relevance of
our findings.

(v) Practical Application in Trading Scenarios: While our
model has demonstrated proficiency in predicting the
direction of Bitcoin price changes using historical data,
we acknowledge that real-time trading environments
present additional complexities. The current study does
not simulate the conditions of live trading, such as
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execution delay, transaction costs, and market liquidity.
Therefore, a critical area for future work will involve
deploying our model in a simulated trading environment
to rigorously evaluate its real-time effectiveness. This
will allow us to observe the model’s performance
in the presence of factors intrinsic to live markets,
providing a more realistic assessment of its practical
utility for traders and investors. Collaborations with
finance and economic experts will be sought to further
refine our approach, ensuring that our model remains
adaptive and robust amidst the rapidly evolving cryp-
tocurrencymarket. This progressionwill be instrumental
in transitioning our predictive model from a theoret-
ical construct to a viable tool for real-world trading
applications.

VII. CONCLUSION
With the aim of predicting Bitcoin price direction changes,
this study aimed to bring forth a more effective and accurate
predictive model. Our main objective was to enhance the
accuracy of forecasting Bitcoin price direction changes, given
its significant implications for traders, investors, and the
financial community at large. To achieve this, we initially
considered 14 different types of data, spanning a broad
spectrum from price and volume data to social media
sentiments and trending topics. Such a dataset was considered
to capture the nuances of the Bitcoin market. Using the
Pearson correlation method, we narrowed down our selection
to the seven most price-direction-effective features, namely:
Volume of trades, number of transactions, active addresses,
options market data, Twitter sentiments, Google trends data,
and Twitter trends data. This methodological choice ensured
that we focused on the most relevant data, enhancing the
reliability and robustness of our predictions.

We employed the DQN algorithm to develop our predictive
model. It is chosen for its capacity to manage complex
environments and vast datasets. Moreover, we proposed a
novel reward function tailored to improve the accuracy of
the model and align it more closely with the real-world cases
and objectives of our study. While the DQN algorithm has
its inherent limitations, it played an important role in our
study’s success. With an accuracy rate of 95%, our study
stands out, surpassing many other studies in the same area.
This achievement is a clear reflection of the combined power
of targeted data selection, advanced algorithmic techniques,
and innovative reward functions.

In wrapping up, this research has set a significant bench-
mark in the field of cryptocurrency predictions by seamlessly
combining diverse data sources with advanced machine
learning techniques. Our research underscores the potential
benefits of targeted data selection, efficient algorithmic
implementation, and thoughtful innovation. We hope our
findings provide a foundation upon which future studies can
build and critically evaluate this intricate and ever-changing
domain.
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