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ABSTRACT The escalating incidence of thyroid cancer over the past decade underscores the imperative
for effective classification and early detection of thyroid nodules. An automated system for this purpose
could significantly aid physicians, particularly in expediting diagnostic processes. However, attaining this
objective has proven challenging, primarily attributed to the constrained dataset size for medical images and
the laborious process of feature extraction. This research addresses these challenges by thoroughly exploring
the importance of extracting meaningful features for tumor detection and introducing a quantum-based
convolutional neural network. The proposed approach employs a quantum filter transformation for intricate
feature extraction, coupled with a classical neural network for the classification of thyroid nodules in
ultrasound images. The classification process involves two distinct categorizations: distinguishing between
nodules that are benign or malignant, and identifying the specific suspicious class to which the nodule is
attributed. The amalgamation of both classifiers yields a comprehensive characterization of thyroid nodules,
showcasing notable accuracy. For tumor classification, the model achieves an accuracy of 97.63%, precision
of 97.72%, and recall of 97.64% on a test dataset containing 127 images. Similarly, for suspicious level
classification, the model attains an accuracy of 93.87%, precision of 94.58%, and recall of 93.88% on a test
dataset containing 98 images. These results surpass the performance of existing models, marking a significant
advancement in the field of thyroid nodule classification. The proposed model represents a promising and
innovative methodology that could offer valuable support mechanisms in clinical settings, facilitating the
rapid classification and diagnosis of thyroid cancer.

INDEX TERMS Thyroid nodule classification, quanvolutional neural networks, quantum filter transforma-
tion, tumor classification, benign, malignant, TI-RADS, feature extraction, DDTI.

I. INTRODUCTION

In the contemporary healthcare landscape, the classification
of thyroid nodules holds utmost importance. The thyroid
gland, situated below the epiglottis, is pivotal for regulating
a range of physiological functions by producing essential
hormones. These functions encompass the regulation of
neural and cerebral activities as well as the facilitation of
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optimal development and operation of essential organs [1].
Any anomalies or distortions in the thyroid can significantly
impair its capacity to perform these functions. Thyroid
nodules are commonly encountered, with a higher incidence
among women and older individuals [2]. While most of these
nodules are benign in nature, the potential for malignancy
underscores the need for a precise and consistent evaluation
process. To address the subjectivity and variability associated
with diagnosing thyroid nodules, the medical community has
adopted the Thyroid Imaging Reporting and Data System
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(TIRADS) approach [3]. This standardized system plays a
critical role in stratifying the risk and discerning thyroid
nodules as either benign or malignant, relying on visual
attributes observed through ultrasound imaging.

Traditionally, a range of machine learning models, includ-
ing SVM, Naive Bayes, Logistic Regression, and Decision
Trees [4], were employed to differentiate between benign
and malignant thyroid nodules but struggled to capture
intricate patterns. In recent years, deep learning models like
pretrained convolutional neural networks (CNNSs), including
VGG16 [5], GoogLeNet [6], ResNetl8 [7], transformer
models, and attention mechanisms, emerged as promising
solutions. However, challenges like limited generalizability
and time-consuming feature extraction from small ultrasound
datasets hinder their clinical applicability.

In this research, we employed a quanvolutional neural
network (QuCNet) that integrates quantum data processing
with classical computation to enhance the efficiency and
accuracy of thyroid nodule classification. This approach
tackles the complexities posed by high-dimensional data
within ultrasound images of thyroid glands while also
striving to enhance the generalization of small datasets,
thereby improving classification performance, even in data-
constrained situations.

Our proposed work’s primary contributions are summa-
rized below:

o Introducing a diagnostic support system for thyroid
cancer that utilizes quantum-inspired convolutional
neural networks. This system is specifically designed to
be effective in the classification of thyroid nodules, even
when data availability is constrained.

o The proposed model utilizes a quantum filter transfor-
mation (QFT), extracting four-channel quantum features
from images. This unique approach enhances the
system’s ability to focus on various regions of the image,
providing more detailed and nuanced information cru-
cial for accurate classification.

« In comparison of our proposed QuCNet with established
models (Vggl6, Resnet50, InceptionV3, Densenet121)
on the Digital Database of Thyroid Ultrasound Image
Dataset, our QuCNet model outperforms existing
machine learning and deep learning models. The integra-
tion of intricate feature extraction using QFT, along with
classical convolutional networks, proves to be highly
effective for tumor classification in thyroid ultrasound
images.

The remaining portion of this paper is organized in the
following manner: Section II gives a concise overview of
pertinent studies on thyroid nodule classification. Follow-
ing this, Section III provides in-depth insights into the
dataset, and its preprocessing techniques are detailed in
Section IV. Then, Section V presents the methodology,
which elaborates on the proposed framework. Progressing
further, Section VI delineates the experimental analysis.
Lastly, Sections VII and VIII encapsulate the findings, delve
into a discussion on the utilized performance metrics, draw
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conclusions, and provide insights into potential avenues for
future research.

Il. RELATED WORKS

Given the significance of classifying the nature and early
suspicion of thyroid nodule, substantial attention has been
dedicated to this endeavor. In the past, various machine learn-
ing models have been employed to address this objective [8].

Gomes et al. [3] harnessed geometric and morphological
features in addition to conventional machine learning to
improve the classification of thyroid nodules. This approach
surpassed existing techniques and held promise as an auto-
mated diagnostic system for validating TIRADS guidelines.
Saini et al. [4] employed four classification models (Naive
Bayes, Logistic Regression, KStar, and Decision Tree - J48)
for predicting thyroid disease using machine learning. Their
findings demonstrated that the J48 model outperformed all
other models.

Later, deep learning methods have been explored to
overcome the constraints associated with traditional models.
Liu et al. [9] presented a technique that combines deep
features from a CNN model with conventional features like
scale-invariant feature transform and histogram of oriented
gradient. This integration forms a hybrid feature space,
aiming to improve the classification process. Kwon et al. [5]
used the VGG16 model to create a nodule classification
system addressing subjectivity and variability concerns while
applying data augmentation and cross-validation to reduce
overfitting. Chi et al. [6] developed an automated diagnosis
system utilizing a fine-tuned GoogleLeNet model for feature
extraction from pre-processed images and, consequently,
employed a Random Forest classifier for the final classifi-
cation. Hussain et al. [10] used an ensemble classifier that
combined Gabor features and multiple classifiers to classify
mass regions of interest (ROIs) from mammograms into
benign and malignant categories.

Zhu et al. [7] utilized image preprocessing to extract
ROI, data augmentation using traditional methods for data
preparation, and a pre-trained residual network for classifying
the nodules. Hang et al. [2] integrated deep features with
traditional ones, improved image quality using methods
like histogram equalization, and extracted multiple features.
They then utilized the Res-GAN model for classification.
Khan et al. [11] employed a two-class neural network
classifier in combination with feature selection using mutual
information and used the synthetic minority oversam-
pling technique for class balancing to create a machine
learning-based model for thyroid disease classification,
achieving strong performance.

One of the recent research by Srivastava et al. [12]
developed an optimized CNN model for identifying thyroid
nodules. This work encompassed the incorporation of diverse
architectures, such as Visual Geometry Group-16, ResNet-
50, DenseNet, and AlexNet. Also, hyper-parameter tuning
was employed to experimentally determine optimal values for
learning rate and dropout factors. Jiawei et al. [13] employed
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TC-ViT, a transformer-based model incorporating contrast
learning. With an emphasis on TI-RADS, this application
sought to enhance the classification of thyroid nodules.
Wang et al. [14] utilized an algorithm based on ConvNeXt,
combining artificial marker removal, data expansion, and
an attention mechanism for classifying thyroid nodules.
Feres et al. [15] utilized two models for thyroid nodule
classification: CNNs (VGG16, EfficientNetBO, ResNet50)
and ViTs (ViT_B16, Hybrid ViT), trained with Softmax and
SVM classifiers. Results indicated that the hybrid ViT with
SVM surpassed all other models in effectiveness for tumor
classification.

Baima et al. [16] introduced a Dense Nodal Swin-
Transformer (DST) method for diagnosing thyroid nodules
with ultrasound images. It employed image segmentation,
feature map construction across four stages, and a dense con-
nection mechanism within each stage block. This approach
enhanced diagnostic performance by effectively utilizing
multi-layer features. The Lightweight Global Attention Mod-
ule (LGAM) was developed by Yu et al. [17] to distinguish
between benign and malignant thyroid nodules in ultrasound
images. The incorporation of the attention mechanism
demonstrated notable effectiveness in enhancing the diag-
nostic capabilities of the model. Zheng et al. [18] combines
a multiscale localization network, leveraging data-driven
size and aspect ratio patterns, with an advanced two-way
classification network processing ultrasound images. The
enhanced feature extraction and fusion of deep features,
shallow features, and nodule aspect ratio contribute to
a precise differentiation between benign and malignant
nodules.

Aboudi et al. [19] employs a unique bilinear convolutional
method, combining outputs from two CNN models using
outer products, to classify thyroid nodules in 447 ultrasound
images. Results show that BCNN algorithms outperform
CNN architectures, offering a valuable second opinion for
accurate and objective nodule classification. Thyroid Region
Prior Guided Feature Enhancement Network (TRFE+) was
employed by Gong et al. [20] to overcome challenges during
ultrasound segmentation of thyroid nodules. The method
incorporated a novel multi-task learning framework, adaptive
gland region feature enhancement, and normalization for
channel dimension during training, ultimately improving
accuracy. The Brief Efficient Thyroid Network (BETNET),
a deep CNN model for the location and classification
of thyroid nodules in ultrasound images, was developed
by Zhu et al. [21]. This network, built on the VGG-19
architecture with 16 convolutional layers, 3 fully connected
layers, and a softmax layer, exhibited superior diagnostic
performance. The preprocessing procedures, which included
shrinking and removing black areas, helped BETNET
recognize and classify thyroid nodules more effectively.

At present, quantum computing is considered a pioneering
solution for addressing computational challenges that tradi-
tional hardware finds insurmountable. Its advanced speed and
computational prowess have proven highly successful, when
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combined with machine learning [22]. A study conducted
by Maheshwari et al. [23] has utilized optimized quantum
support vector machine and hybrid quantum multi-layer
perceptron algorithms to classify cardiovascular diseases.
These models exhibited computational efficiency, rendering
them apt for real-time healthcare applications, and showcased
competitive performance when compared to more intricate
architectures in recent research. Xiong et al. [24] employed
Qiskit to simulate quantum circuits and developed VQNet,
a hybrid neural network that combines quantum and classical
architectures. They applied this model to classify the MNIST
and CIFAR-10 datasets, showcasing the superior efficiency
and accuracy of quantum machine learning over classical
methods.

Conventional methods, relying on classical methods for
feature extraction, face challenges in the medical imaging
domain due to the limited size of datasets and resource-
intensive processes. This constraint becomes more pro-
nounced in scenarios where the nuanced details of pathology,
such as subtle texture variations in thyroid nodules, require
a more sophisticated approach. To address these challenges,
our study proposes a quantum-classical approach utilizing
quantum filter transformation to capture intricate features.
This innovative strategy presents a promising solution for
overcoming the limitations of conventional methods, facilitat-
ing a more comprehensive characterization of Thyroid nodule
ultrasound imaging features.

Ill. DATA DESCRIPTION
The classification of medical images is of paramount
importance, as it necessitates the use of real-time data,
which is often scarce and invaluable. We have leveraged the
Digital Database of Thyroid Ultrasound Images (DDTI) [25],
a publicly available dataset that provides a comprehensive
collection of B-mode ultrasound images. Notably, this dataset
includes descriptions and annotations of suspicious thyroid
lesions, all of which have been classified by a panel of more
than two radiologists. DDTI undergoes regular updates to
enhance its content and provide more diverse data. At present,
it encompasses a total of 478 images from 399 medical cases.
Among these images, 460 are categorized into two main
groups: Benign and Malignant, as illustrated in the Figure 1.
Moreover, experts in the medical imaging domain have
classified the thyroid nodules in all 478 images using the
Thyroid Imaging Reporting and Data System (TI-RADS).
TI-RADS employs a numerical scoring system based on the
attributes observed within five ultrasound categories [26]
found in a thyroid nodule. Suspicious characteristics are
allocated extra points, and the total TI-RADS score is
determined by the sum of these feature points. The TI-RADS
scores range from Benign (2) to probably benign (3), Low
suspicion of malignancy (4a), Intermediate suspicion of
malignancy (4b), Moderate Suspicion of malignancy (4c),
and High suspicion of malignancy (5). These classifications
are visually illustrated in Figure 2. An overview of the
dataset’s statistics is presented in Figure 3.
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FIGURE 1. Visual Representation of Tumor Classification for Ultrasound
Images in the Dataset.

FIGURE 2. Visual Representation of TI-RADS Classification for Ultrasound
Images in the Dataset.

optimal division into a 4-channel configuration by the quan-
tum kernel. Following resizing, normalization techniques,
specifically mean subtraction and standard deviation scaling,
were employed to normalize the pixel values of the images.

These initial preprocessing steps are applied to both
datasets and are subsequently divided into training and testing
sets using an 80-20 split. Recognizing the limited size of
our dataset, we incorporated data augmentation strategies
on the training set that include zooming in and out within
a range of 0.99 to 1.01, brightness adjustments with a
range of 0.8 to 1.2, and horizontal flipping. Additionally,
in order to tackle the issue of class imbalance in the dataset,
we utilized the Synthetic Minority Over-sampling Technique
(SMOTE) [27]. SMOTE generates synthetic instances for
the underrepresented class by interpolating between existing
samples, ensuring equitable and precise predictions across all
classes. The class counts before and after the preprocessing
pipeline are presented in Table 1 and Table 2.

TABLE 1. Tumor class distribution in the training dataset before and after
preprocessing, and in the unprocessed test dataset.

Train Train dataset Test
Classes
dataset after Preprocessing dataset
Benign 102 1848 39
Malignant 231 1216 88
Total 333 3064 127

TABLE 2. Suspicious level class distribution in the training dataset before
and after preprocessing, and in the unprocessed test dataset.

108 127

FIGURE 3. Two- level Distribution of Class Instances in the DDTI.

IV. PREPROCESSING

In order to ensure the uniformity and compatibility of the
image data for quantum filters, we have implemented a
comprehensive preprocessing pipeline encompassing four
key steps: resizing, normalization, data augmentation, and
oversampling. Initially, the raw input images were resized
to a consistent dimension of 128 x 128 pixels to facilitate

27832

Classes Train Train dataset Test
dataset after Preprocessing dataset
- 2 74 1184 19
\ 19 608 5
\ 4a 101 1616 2%
' 4b 84 1344 o
Benign A 34 4c 62 992 7
> 40 980 T
Total 380 6724 08

V. METHODOLOGY
In this current work, we have employed a quantum convolu-
tion neural network or a Quanvolutional neural network [28],
which falls in the category of Classic-quantum computation.
This model is an enhancement of the classical CNNs with
an added quanovlutional filter. Quanvolutional filters utilize
random quantum circuits to extract features from input data
by transforming specific localized spatial subsegments of the
data. These circuits can exhibit either structured or random
configurations.

In our study, we deliberately adopted random quantum
circuits over circuits with specific structural characteristics.
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FIGURE 4. Semantic Representation of the Quantum Filter Transformation Process: A Three-Stage Conversion from Input Image to 4-Channel

Output.

This strategic choice was guided by considerations of
computational simplicity, a rationale stemming from the
relatively modest size of our dataset. Furthermore, the
utilization of random quantum circuits has yielded notable
benefits in terms of accelerated training. At a broader con-
ceptual level, quanvolutional filters serve as a transformative
intermediary that takes input data and produces an output
scalar value through the manipulation of a 2D matrix of scalar
elements using a universal quantum computing circuit. This
transformation involves a three-stage process encompassing
encoding, the application of a quantum random circuit, and
decoding.

A. ENCODING

During the encoding phase, the generation of quantum data is
initiated by transforming classical data, marking a pivotal step
in the computational process. In our research, we utilized the
R,(®) gate, a single-qubit rotation gate that rotates around
the x-axis by an angle of ® radians. Notably, the x-axis on
the Bloch sphere corresponds to the Pauli X gate [29], which
toggles the qubit between the |0) and |1) states. For each
filter, it assigns a specific encoding function denoted as En.
This encoding function is applied to the 2-dimensional sub-
segment, A, obtained from the input image through the filter.
Consequently, the initial quantum state, I, is formulated as,

I, = En(Ay) (D

B. QUANTUM RANDOM CIRCUITS

In the subsequent step, the encoded quantum state I, derived
from the encoding process is subjected to a quantum circuit
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to fully harness the capabilities of quantum computing. This
circuit, denoted as the unitary operator U, is instrumental
in carrying out quantum computations and can be generated
through a trainable variational quantum circuit, or through
the utilization of a random circuit (Q).We have opted for the
use of a random circuit denoted as Q, primarily due to its
computational suitability for the relatively modest size of our
dataset.The outcome of this computational process results in
the quantum output state, Oy, which can be expressed as,

Ox = Q(Ix) = O(En(Ayx)) @)

C. DECODING

The culminating step in our quantum data processing pipeline
involves the transformation of the quantum state into a scalar
output. The prominent method for this decoding process is
quantum measurement. During measurement, the quantum
state collapses into one of its fundamental states determined
by the associated probability distribution. This ensures the
consistency and reliability of the quanvolutional filter output.
To achieve this, we employ a decoding function (De), which
allows us to obtain the Terminal decoded state (7). This
decoded state represents a scalar value and can be expressed
as,

Tx = De(Ox) = De(Q(En(Ay))) 3)

The comprehensive three-stage process known as Quantum
Filter Transformation (QFT), as illustrated in Figure 4, can
be formally defined as follows,

T, = QFT(Ay, En, Q, De) “4)
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In the implementation the initial input of 128 x 128 pixels
image is divided into segments of 2 x 2 pixels, and each
segment is processed by the QFT. The obtained 4 expectation
values after the QFT is mapped into four different channels.
Each channel finally forms a 64 x 64 pixel image. This
process would resemble a classical CNN correspond to a
convolution with a 2 x2 kernel and a stride equal to two.

The QFT down samples the resolution and introduces local
distortion in the image, while preserving the global shape.
This downsampling operation enables the model to effec-
tively focus on capturing essential patterns and structures at
various perspective levels, thereby facilitating the extraction
of global features from the input. This distinctive approach
contrasts with classical CNNs, which yield a singular output
from each convolutional operation. The incorporation of QFT
provides QuCNet with a performance edge, augmenting its
ability to achieve precise image classification.

[
1
’

{ Dataset

Quantum || Preprocessing |«—
[ Filter Pipeline
o
L
A Benign
L —| 7 —
T Malignant
§
4
N/

FIGURE 5. Comprehensive Workflow of the QuCNet Architecture for
Tumor Classification.

D. MODEL

For the proposed classification tasks, we have developed
two distinct models, both sharing a common QuCNet
framework but differing in complexity. The initial step in both
classification tasks involves applying the QFT operation to a
subsection of the pre-processed image as

Zqi ") = QFT (A1), En, Qx, De) Q)

This computation, represented by (5), is performed for all
subsegments of the image within a region determined by
the filter size (k). The quantum-computed segments are then
organized into k respective channels, as illustrated in (6).

Channely, = [qu(l’l), Zgi 12 .. .qu(m,n)] (6)

Here, the variables m and n range from 1 to the height/k
and width/k, respectively, for the first channels. The resulting
channelled state given in (7), represents the final computed
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state of all sub-segments in their corresponding channels.

Zchanelled = [Channely, Channely, Channels, Channely)
(7

These operations are consistent for both classification
tasks, with the subsequent architecture exhibiting different
complexities.

The tumour classification model, responsible for distin-
guishing between Benign and Malignant classes, adheres
to a simple structure as presented in Figure 5. This model
comprises the following architectural elements: Input layer
for image ingestion, QFT generating a 4-channel output,
concatenation, and flattening of these channels, and finally,
a dense layer for output generation. The Z-channelled state,
as represented in (7), undergoes flattening before being
passed to a dense layer.

Zﬂattened =ﬂall€}’l€d (ZE'NN) (8)
Zdlense =f1 (Wl 'Zﬂattened + bl) O]

2 1 2 1 2
Zdense =f (W 'Zdense +b ) (10)

Here, W and b represent the weights and biases in the
network, respectively, serving as trainable parameters that are
updated with each training epoch. The f! denotes the ReLU
activation function, Subsequent to the aforementioned steps,
(11) describes the output layer (Y) with f2 as the SoftMax
activation function. Y contains the probability distribution for
Benign and Malignant classes.

Y =f2 (W23, +1°) (11)

On the other hand, the suspicious classification model
is more intricate, featuring a design characterized by the
following components: Input layer for image input, QFT for
4-channel output, two pairs of Conv2D (convolutional) and
MaxPool (max-pooling) layers, a flattening layer, and two
dense layers for class prediction. This architecture is designed
to handle multi-class classification tasks and is depicted in
Figure 6.

Similar to the tumor classification model, the initial step
involves applying QFT to the input image.The Zpannelied
state obtained from (7) serves as input for two sets of
convolutional and pooling layers. These layers, as depicted
in (12) and (13), perform convolutional and max-pooling
operations, respectively. This design enables the extraction of
features and reduction of spatial dimensions, enhancing the
model’s ability to discern intricate patterns.

Zey = max_poll (Conv2D(Zepanelied)) (12)
Z2yy = max_poll (Conv2D(ZéNN)) (13)
Here,
Yy z
Com2D((Xp)) =f | DD Wz Xigy-1jz1+b
y=1 z=1
(14)
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FIGURE 6. Comprehensive Workflow of the QuCNet Architecture for
Suspicious Level Classification.

Here, y and z represent the dimensions of convolutional
filters. f serves as the activation function, W stands for the
weight, and X corresponds to the input image. Following
these operations, the architecture of the suspicious level
classification aligns with the tumor classification model.

max — poll (X,',j) = max;;]maxlex(/_l)pﬂ,(/_l)pﬂ (15)

Here, p is the pooling window size.

The output from the Z.,, is flattened and processed
through two dense layers to provide the final class prediction.
This process is encapsulated in (8), (9), (10), and (11),
representing the subsequent steps in the model’s architecture
for suspicious classification. These dense layers, akin to those
in tumor classification, contribute to determining the level of
suspicion associated with the image.

VI. EXPERIMENT ANALYSIS

In consideration of the current limitations of the avail-
ability of efficient and dependable quantum computers,
we have pragmatically harnessed the Qiskit library, provided
by IBM [30], to simulate quantum circuits on classical
computing devices. Every experiment was conducted on a
consistent computing environment utilizing a Tesla P100
Graphics Processing Unit, supported by a 25 GB RAM
memory capacity.

The quantum processing is characterized by a random
quantum circuit, where the initial stage consists of an
embedding layer comprising local rotations scaled by a
factor of m. In our experimental setup, we opted for a
conservative approach by configuring the kernel size of the
quantum convolutional filter to 2. This choice was made
to manage computational complexity, which was increasing
exponentially with increase in kernel size. The number of
layers (n_layers) of quantum circuit repeated in quantum
phase is set to 2, corresponding to the results of its variation
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TABLE 3. Impact of the (n_layers) parameter on performance metrics of
tumor classification.

n_layers Accuracy Precision Recall F1 Score
1 0.9528 0.9526 0.9528 0.9524
2 0.9764 0.9772 0.9764 0.9761
3 0.9449 0.9449 0.9449 0.9442
4 0.9370 0.9366 0.9370 0.9365

TABLE 4. Impact of the (n_layers) parameter on performance metrics of
suspicious level classification.

n_layers Accuracy Precision Recall F1 Score
1 0.8776 0.9050 0.8776 0.8697
2 0.9387 0.9458 0.9388 0.9329
3 0.9082 0.9235 0.9082 0.8964
4 0.8469 0.8894 0.8469 0.8306

represented in Table 3 and 4. The model’s performance,
especially for the suspicion level classifier, has deteriorated
with an increase in the number of layers. In the classical
computation phase, both the models compiled using Adam
optimizer [31]. Throughout the training process, the binary
cross-entropy loss function and categorical cross-entropy
loss function was employed on tumour classification and
suspicious classification respectively, to quantify the dissim-
ilarity between the true class labels and the predicted class
probabilities, with the overarching objective of minimizing
this dissimilarity. The binary cross-entropy loss function is
given by.

BCE (a,a) = — (a - log (a) + (1 — a) - log (1 —a)) (16)

In (16) a is actual label, representing the label O or 1 cor-
responding to benign and malignant and a is the predicted
probability. The categorical cross-entropy loss function is
given by,

n—1
CCE (a, 21) = — Zai -log (di) 17
i=0

In (17) a is a one-hot encoded vector representing true
classes of the suspicion scale, a is the predicted probability
distribution and n is the number of classes.

The internal layers of both models were furnished with
the Rectified Linear Unit (ReLU) [32] activation function.
The (18) gives the mathematical representation of ReLU.
The incorporation of ReLLU served the essential purpose of
introducing non-linearity into the models, thus effectively
mitigating the vanishing gradient problem.

RELU (x) = max (0, x) (18)

In the output layer, the Softmax activation function was
employed to transform the real-valued vector obtained from
the penultimate layer into a probability vector. (19) illustrates
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FIGURE 7. Accuracy plot of Tumor Classification over 50 epochs.

Training Loss
Validation Loss

Epochs

FIGURE 8. Loss plot of Tumor Classification over 50 epochs.

the normalization process applied, guaranteeing that the
resulting values fall within the range of O and 1.

exp (yi)
2 exp (i)
Moreover, to facilitate dynamic adjustments in the learning
rate and mitigate the risk of overfitting, the “ReduceL-
ROnPlateau” callback function along with “EarlyStopping™
was incorporated into the training regimen. Specifically,
in instances where the loss metric demonstrated no dis-
cernible improvement over a consecutive span of four epochs,
a reduction factor of 0.5 was applied to the learning rate.
This adjustment ensured that the learning rate did not descend
below the predefined minimum threshold of 107°. The
“EarlyStopping”” mechanism was configured with a patience
parameter set to three, coupled with the implementation
of model checkpointing to save the best weights during
the training process. These hyperparameter settings were
consistently applied to both the classification models.

The tumour classifier underwent a 50-epoch training
regimen, and early stopping was employed to save the
optimal model weights at the 26th epoch. The training

Sy i= 19)
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FIGURE 9. Accuracy plot of Suspicious Level Classification over
100 epochs.
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FIGURE 10. Loss plot of Suspicious Level Classification over 100 epochs.

process for this model took approximately 8.15 hours.
In contrast, the suspicion classification model underwent an
extended training period of 100 epochs, with early stopping
ensuring the preservation of the best model at the 73rd
epoch. This extended training duration took approximately
16 hours. Comprehensive training and validation plots for
both classifiers on the augmented datasets are depicted in
Figure 7, 8, 9 and 10.

VII. RESULT AND DISCUSSION

This section evaluates the effectiveness of both the classifiers
by presenting their results on the test set and making a
comparative analysis with the established pretrained CNN
models.

A. PERFORMANCE METRICS

Evaluating the effectiveness of a machine learning model is
a crucial step in its development. This involves assessing
the model’s performance using various metrics and pro-
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vide insights into the model’s quality by making accurate
predictions based on the given data. In the context of our
Thyroid Nodule Classification, we employed a range of
performance metrics to evaluate the predictions made by
our model. These metrics serve as critical gauges, allowing
us to gauge how well the model is functioning and to
make informed assessments about its overall performance.
This section provides a concise overview of all the metrics
employed in this evaluation process.

1) CONFUSION MATRIX

A classification model’s performance on test data is visually
summarized through a confusion matrix, which displays
accurate and inaccurate predictions. This matrix evaluates
metrics such as Recall, Precision, Accuracy, and F1_score.
The essential components include correctly predicted pos-
itives (True Positives), correctly predicted negatives (True
Negatives), inaccurately predicted positives (False Positives),
and inaccurately predicted negatives (False Negatives).

[ Multi class
100 + [ Binary
97.63 97.15 97.63 97.61
95 93.87 94.57
. 93.85 93.291
)
—
[=]
Q
©»2 90
85 4
80
Accuracy Precision Recall F1 score
Metric

FIGURE 11. Performance Metric Results for Tumor Classifier and
Suspicious Level Classifier.

2) VALIDATION LOSS AND ACCURACY

Validation loss and accuracy are crucial metrics assessing
a model’s generalization. Like standard loss and accuracy,
they are evaluated after each epoch using a validation set.
Validation loss measures the disparity between predicted
and actual values, aiming for minimal error, while accuracy
emphasizes the correct classification percentage on new
data. This meticulous evaluation ensures a comprehensive
understanding of the model’s effectiveness beyond its training
data.

3) PRECISION

Precision is employed to overcome the limitations of Accu-
racy by determining the accuracy of positive predictions. This
metric is computed as the ratio of True Positives to the total
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TABLE 5. Detailed analysis of tumor classifier performance across
different classes.

Class Precision Recall F1 Score
Benign 1.00 0.92 0.9
Malignant 0.97 1.00 0.98

TABLE 6. Detailed analysis of suspicious level classifier performance
across different classes.

Class Precision Recall F1 Score
2 1.00 0.95 0.97
3 1.00 0.40 0.57
4a 0.90 1.00 0.95
4b 0.88 1.00 1.00
4c 1.00 1.00 1.00
5 1.00 0.82 0.90
positive predictions.
Precision(P) = L (20)
TP + FP

4) RECALL

Much like the Precision metric, Recall seeks to measure the
portion of actual positives correctly identified. It is computed
as the division of True Positives by the total number of
positives, encompassing both correct positive predictions and
inaccurately identified negatives (False Negatives).

TP
RecallR) = —— (21)
TP + FN
5) F1_SCORE
The F1_score evaluates a model’s predictive ability by
analyzing its class-wise performance, focusing on True
Positives and False Negatives. The metric ranges from O to 1,
where a value of 1 signifies perfect Precision and Recall,
and a value of O indicates either zero Precision or Recall.
The score is calculated by dividing True Positives by Total
Positives.
P xR
P+R

Figure 7 and Figure 8 provide a comprehensive overview of
the tumour classification model’s learning process, indicating
a discernible improvement in accuracy up to the 26th epoch,
followed by stabilization of curve. The model’s optimal
configuration, discerned through rigorous training, has been
checkpointed, and its efficacy is evaluated on a previously
unseen test-set comprising 127 images. Specifically, these
images have not been exposed to the model during any phase
of training, ensuring a proper evaluation scenario.

The overall performance metric scores of the Tumour
classifier are illustrated in Figure 11, demonstrating a

F1_Score =2 x (22)
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TABLE 7. Performance metrics of various models on benign and malignant image classification, including precision, recall, and F1 score. The ‘Support’

column represents the number of instances in each class.

Models _ Benign _ Malignant
Precision Recall F1 Score Precision Recall F1 Score
Densnet121 0.88 0.74 0.81 0.89 0.95 0.92
Resnet50 0.74 0.67 0.70 0.86 0.90 0.88
InceptionV3 0.57 0.54 0.55 0.68 0.68 0.68
Vggl6 0.40 0.46 0.43 0.74 0.69 0.72
Proposed Model 1.00 0.92 0.96 0.97 1.00 0.98
Support 39 88
TABLE 8. Comparative performance evaluation of proposed model and
baseline cnn architectures for tumour classification. 100
97.63
Models Accuracy | Precision | Recall | F1-Score 06 osi1
Densenet121 0.8673 0.8642 0.8673 0.8600
Resnet50 0.8571 08236 | 08571 | 0.8367 0 J 2236
InceptionV3 0.7143 0.6802 0.7143 0.6950 g s
Vggl6 0.6327 0.6081 0.6327 | 0.6167 § 81 o 87.27
Propopsed Model 0.9387 0.9458 0.9388 0.9329 < o
80 -
commendable accuracy of 97.63% and F-1 score of 97.61%.
These metrics collectively affirm the classifier’s ability to 76 -
consistently differentiate between benign and malignant T T T T T T
classes, underscoring the stability and reliability of its MLN[‘I grj”NC‘ Iif(,TJ B[CII;JN T[[{ZF(;: ‘ Lf’l’;JM [(]f::;z‘f: I
predictions. A more detailed insight into the classifier’s Models

individual class metrics is meticulously outlined in Table 5.
Additionally, the confusion matrix in Figure 13 elucidates
the model’s predictions for each class, offering a granular
perspective on its performance.

Similarly, Figure 9 and Figure 10 depict the learning
process of the suspicious level classification model, demon-
strating a discernible improvement in accuracy up to the 73rd
epoch, followed by stabilization of the curve. The model’s
optimal configuration, established through rigorous training,
is then evaluated on a previously unseen test set comprising
98 images, ensuring a proper evaluation scenario. The overall
performance metric scores of the suspicious level classifier,
as presented in Figure 11, showcase a commendable accuracy
of 93.87% and an F-1 score of 93.29%. These metrics affirm
the classifier’s consistent differentiation between classes,
highlighting the stability and reliability of its predictions.
Table 6 provides a detailed insight into the individual class
metrics of the classifier, while the confusion matrix in
Figure 14 elucidates the model’s predictions for each class,
providing a granular perspective on its performance.

B. COMPARITIVE ANALYSIS AGAINST EXISTING
CLASSIFICATION MODELS

In our comparative analysis of model performance,
we employed four well-established pre-trained benchmark
CNN models: DenseNet121 [33], ResNet50 [34], Incep-
tionV3 [35],and VGG16 [36]. These models underwent train-
ing on both augmented datasets for tumour classification and
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FIGURE 12. Accuracy Comparison of the Proposed QuCNet Model and
Existing Approaches.

suspicious level classification. We maintained a consistent
training and testing environment for these benchmark models,
aligning with the conditions applied to our proposed models.
The pre-trained weights of all models were employed, and
training involved removing the top layer.

The classification performance on both the tasks are in
order, VGG16 < InceptionV3 < ResNet50 < DenseNet121 <
QuCNet. Table 8 and Table 10, represents the detailed overall
performance metrics including Accuracy, Precision, Recall
and F1-Scores of tumour classification and suspicious level
classification respectively. Notably, The DenseNet121 has
provided an accuracy of 88.98% for the tumour classification
and 86.73% for the suspicious level classification. This was
the highest among the four CNN models and the closest
model to the proposed model on the both classification
tasks. In contrast, VGG16 performed poorly for both tasks,
demonstrating a substantial 30% difference in accuracy
compared to the proposed model. InceptionV3 and ResNet50
exhibited mediocre performance on both classification tasks,
lacking notable highlights or drawbacks. = To understand
the low-level details of model performance, the confusion
matrices for tumor classification are presented in Figure 13
and suspicious level classification in Figure 14. Furthermore,
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FIGURE 13. Confusion Matrices of Tumor Classification models: DenseNet121, InceptionV3, ResNet50, VGG16, and QuCNet.
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FIGURE 14. Confusion Matrices of Suspicious Level Classification models: DenseNet121, InceptionV3, ResNet50, VGG16, and QuCNet.

we undertook an exhaustive class-level analysis utilizing pre-
cision, recall, and F-1 score metrics, delineated in Table 7 and
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Table 9. These outcomes reveal the QuCNet model’s robust
performance across individual classes. Notably, precision
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TABLE 9. Performance metrics of various models on suspicious level classification, including precision, recall, and F1 score. The ‘Support’ column

represents the number of instances in each class.

Class Metrics Proposed Densenet121 Resnet50 InceptionV3 Vggl6 Support
Model

2 Precision 1.00 1.00 0.94 0.76 0.75
Recall 0.95 0.95 0.84 0.68 0.63 19

F1 Score 0.97 0.97 0.89 0.72 0.69

3 Precision 1.00 0.50 0.00 0.00 0.00
Recall 0.40 0.20 0.00 0.00 0.00 5

F1 Score 0.57 0.29 0.00 0.00 0.00

4a Precision 0.90 0.77 0.86 0.08 0.58
Recall 1.00 0.88 0.96 0.81 0.73 26

F1 Score 0.95 0.82 091 0.74 0.64

4b Precision 0.88 0.86 0.80 0.74 0.67
Recall 1.00 0.90 0.95 0.81 0.67 21

F1 Score 1.00 0.88 0.87 0.77 0.67

4c Precision 1.00 0.88 0.94 0.75 0.61
Recall 1.00 0.94 1.00 0.75 0.69 16

F1 Score 1.00 0.91 0.97 0.75 0.65

5 Precision 1.00 1.00 0.78 0.64 0.60
Recall 0.82 0.82 0.64 0.64 0.55 11

F1 Score 0.90 0.90 0.70 0.64 0.57

scores for both tumor and suspicious level classifications
surpass 0.88 for all classes, with several achieving a perfect
precision of 1.

From a holistic standpoint, the proposed model demon-
strates efficacy even at the class level, consistently achieving
the maximum value in each row. Despite the modest dataset
size, both models exhibit commendable accuracies exceeding
90%. Noteworthy is the classification of class “3” in the
QuCNet model, which, despite a minimal number of samples,
exhibits a precision and recall of 1.00 and 0.4, respec-
tively. Although there are some incorrect predictions, this
performance is notably superior to the next-best pretrained
benchmark model, which has a precision of 0.5 and recall of
0.2, with no other model achieving correct classifications in
this particular class.

Upon comparison with our proposed model, these bench-
mark models exhibited limitations in accurately classifying
images, largely stemming from the limited size of the
dataset. Despite leveraging image augmentation techniques to
enhance their classification capabilities, these models proved
insufficient in the end for the pretrained CNN’s. Their limita-
tions were attributed to the constrained learning capabilities
of convolution and max-pooling operations, which struggled
to effectively recognize and assign importance to crucial
features. Our proposed QuCNet addresses these limitations
by transforming the image into four separate input channels,
offering heightened attention to various regions within the
image. Furthermore, the results solidifies that the QuCNet
model is very effective with the low data classification
and has enhanced performance compared to the other
models.
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TABLE 10. Comparative performance evaluation of proposed model and
baseline CNN architectures for suspicious level classification.

Models Accuracy | Precision | Recall | F1-Score
Densenet121 0.8673 0.8642 0.8673 0.8600
Resnet50 0.8571 0.8236 0.8571 0.8367
InceptionV3 0.7143 0.6802 0.7143 0.6950
Vggl6 0.6327 0.6081 0.6327 0.6167
Propopsed Model 0.9387 0.9458 0.9388 0.9329

Limited attention has been devoted to suspicion level
classification, in contrast to the plethora of established works
focusing on tumor classifications. In Figure 12, we present
a comprehensive comparative analysis of the QuCNet model
alongside recent existing works. The findings reveal that DST
and ResNet incorporated MLN achieved modest accuracies
of 87.27% and 86.34%, respectively. Conversely, the BCNN,
TRFE+, and LGAM models exhibited slight improvements
with accuracies of 90.34%, 92.56%, and 95.16%, respec-
tively. Notably, the proposed QuCNet achieved maximum
performance, boasting an accuracy of 97.63%. The results
presented in Table 9 and Figure 12 collectively suggest
that leveraging quantum computation in conjunction with
classical data yields notable benefits, particularly when
dealing with limited data. In order to assess the robustness
of our tumor classification model, we conducted evaluations
using a small-scale dataset titled as the Algerian Ultrasound
Images Thyroid Dataset (AUITD) [37]. This dataset is
sourced from hospitals in Setif city, Algeria, consists of
352 images meticulously labelled by medical professionals.

VOLUME 12, 2024



G. Swathi et al.: QuCNet: Quantum-Inspired Convolutional Neural Networks

IEEE Access

250
Benign - 56 4
200
]
= - 150
(']
2
=
- 100
Malignant 11
r 50

T
Benign Malignant
Predicted label

FIGURE 15. Confusion matrix of Proposed Tumor Classifier on AUITD.

AUITD comprises 60 images categorized as Benign class and
292 as Malignant class. Notably, the dataset lacks a Suspi-
cions level classification, prompting our evaluation to solely
focus on the Tumour classification model. The proposed
QuCNet-based Tumor classification model demonstrated
notable performance, achieving an accuracy of 95.74%,
Precision of 96.04%, Recall of 95.74%, and F1_Score
of 95.83%. The confusion matrix obtained by the testing
process is presented in Figure 15. These outcomes serve
as a testament to the robustness of the proposed classifier,
highlighting its potential applicability in real-world medical
analysis scenarios. While the QuCNet exhibits commendable
performance in classification tasks, a bottleneck arises from
the internal challenges associated with quantum operations
in the architecture. The current limitation lies in the unavail-
ability of reliable quantum computers, leading to prolonged
computation times when employing hybrid computing for
training purposes. Acknowledging the swift advancements in
quantum computing technology, the proposed model stands
poised to serve as a foundational in the quantum applications.

VIil. CONCLUSION

In conclusion, the classification of Thyroid nodules stands
as a pivotal undertaking within the realm of medical
image analysis. This study has pioneered the application of
quantum-inspired Convolutional Neural Networks to effec-
tively categorize thyroid nodules into benign and malignant
classes, as well as assign them to distinct stages of suspicion
across six classes. Despite the constraints of a limited
dataset, the integration of quantum filter transformation has
significantly enhanced the precision of image classification,
resulting in accuracy rates of 97.63% and 93.87% for
tumour and suspicious level classification, respectively.
These achievements surpass the performance of established
models like DenseNetl121, ResNet50, InceptionV3 and
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VGG16 in the field, underscoring the efficacy of the proposed
approach.

The distinctive feature extraction capabilities of our model
enable a new level of precision in diagnosing thyroid abnor-
malities even with the limited data. In practical applications,
this precision serves as a helping hand for doctors, aiding
them in confidently characterizing the nature of tumors.
In the real-world scenario, the continuous evolution of
technology and the growing volume of medical images pose
a challenge that demands extensive computational power.
Quantum computing, renowned for its high computation
speed, holds promise in addressing these challenges once
a reliable quantum machine is successfully developed. This
study serves as a foundational step towards the utilization of
quantum-based approaches in thyroid nodule detection.

Looking ahead, future research should explore the inte-
gration of 3D imaging techniques to provide a more com-
prehensive representation of nodule structure. Furthermore,
leveraging advanced quantum computers could significantly
reduce the computational costs and time required for model
training, leading to faster results and more efficient training
processes. Additionally, investigating object segmentation
techniques is essential for achieving a clearer and more
nuanced understanding of thyroid nodules. By addressing
these avenues for improvement, the potential for even more
refined and accurate classification models becomes evident.
This research contributes to the current understanding of
thyroid nodule classification and lays the foundation for
further advancements in Quantum medical image analysis,
ultimately enhancing the diagnostic capabilities of thyroid
pathology.
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