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ABSTRACT Deep learning has attracted wide attention recently because of its excellent feature
representation ability and end-to-end automatic learning method. Especially in clinical medical imaging
diagnosis, the semi-supervised deep learning model is favored and widely used because it can make
maximum use of a limited number of labeled data and combine it with a large number of unlabeled data
to extract more information and knowledge from it. However, the scarcity of medical image data, the vast
image size, and the instability of image quality directly affect the model’s robustness, generalization, and
image classification performance. Therefore, this paper proposes a new semi-supervised learning model,
which uses quadratic neurons instead of traditional neurons, aiming to use quadratic convolution instead
of the conventional convolution layer to improve the feature extraction ability of the model. In addition,
we introduce two Dropout layers and two fully connected layers at the end of the model to enhance the
nonlinear fitting ability of the network. Experiments on two large medical public data sets - ISIC 2019 and
Retinopathy OCT - show that our method can improve the model’s generalization performance and image
classification accuracy.

INDEX TERMS Quadratic neuron convolution, convolution neural network, semi-supervised learning,
medical image classification.

I. INTRODUCTION industries [8], [12]. With the continuous improvement of deep

Since Hinton and other researchers introduced the concept of
deep learning into machine learning, deep learning has made
remarkable achievements in many fields with its powerful
performance, wide open-source framework, and tools. For
example: image classification and retrieval [1], [2], [3], [4],
natural language processing [5], [6], face recognition [7],
[8], [9], and object detection [10], [11], [12], etc. These
accomplishments have captured widespread attention and
found practical applications in scientific research and various
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learning technology, it has become urgent to deal with the
challenge of obtaining tagged data in specific fields. This has
prompted researchers in related fields to explore algorithms
integrating semi-supervised learning and deep learning [13].
As aresult, exploring novel methodologies at the intersection
of semi-supervised learning and deep learning has become
a focal point in the ongoing evolution of machine learning
technologies.

As we all know, the performance of the traditional fully
supervised medical image classification algorithm is closely
related to the number of available labeled medical images.
However, some factors, such as the complexity of the
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FIGURE 1. (a)The structure of traditional artificial neurons. (b)Quadratic neuron structure is composed of quadratic function and

nonlinear excitation function.

labeling process, the time cost of professional doctors, and
patients’ privacy, limit the amount of data available for
fully supervised model training [14]. With the continuous
progress of medical technology, the amount of unlabeled
medical image data has increased significantly [15]. The
rapid growth of this data volume, combined with the
rapid development of semi-supervised learning technology,
provides a tremendous opportunity to utilize the untapped
potential of unlabeled medical images effectively [16].
By combining semi-supervised learning with deep learning
technology, researchers can effectively tap the potential of
unlabeled medical image data and apply it to various medical
image analysis tasks [17]. This progress shows great medical
imaging potential and provides new opportunities for more
accurate diagnosis, improved treatment strategies, and higher
patient care.

Skin cancer is one of the most common cancers known at
present, which usually occurs in people who have frequent
outdoor activities or are exposed to the sun [18]. In recent
years, the semi-supervised learning method, which skillfully
uses a limited number of labeled and many unlabeled
data, has shown excellent performance in predicting skin
lesions. Specifically, Harangi [19] successfully constructed
a model for the classification of skin lesions by combining
four different deep neural network structures, effectively
solving the challenge of scarce labeled data. Xue et al. [20]
consider that the noise in the labeled data may interfere
with the classifier results. Hence, they designed a sample
mining method based on uncertainty to eliminate the noise
interference in the image. Santos et al. [21] proposed a
semi-automatic approach to cluster the extracted features
and achieved excellent results on multiple skin injury data
sets. In addition, Narayan et al. [22] presented a real-
time deep medical image classification model (Enhance-
Net-Net) to meet medical image classification needs better.
Zhang et al. [23] put forward a semi-supervised learning
framework called BoostMIS, which combines adaptive
pseudo-tagging and active annotation of information to
release the potential of the medical image SSL model fully.
Zhou et al. [24] proposed ReFixMatch-LS by combining
consistency regularization and pseudo-labeling and applied
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it to medical image classification. Zhou et al. [25] pre-
sented false label growth threshold (GTPL) and false label
loss (PLD) and used them to FixMatch and CoMatch to
improve their semi-supervised classification performance
effectively.

Retinopathy is rising gradually in modern life, seriously
threatening people’s quality of life [26]. Using medical
imaging technology to predict advanced lesions can prevent
the further deterioration of retinopathy in time and effectively.
Rasty et al. [27] used a multi-scale convolution mixed
expert model to classify retinopathy. Schlegl et al. [28]
proposed an automatic diagnosis and treatment method for
macular degeneration based on deep learning and achieved
the best results on multiple data sets. Rong et al. [29]
proposed an alternative auxiliary classification method
for automatically classifying retinal OCT images. While
Huang et al. [30] improved the variety of macular diseases
by the hierarchical guided convolutional neural network.
In addition, Sun et al. [31] put forward an automatic
recognition framework of maculopathy based on a 2D feature
map and attention convolution, which achieved a Good
result on public data sets. Arrieta Ramos [32] proposed
a semi-supervised method to detect diabetic retinopathy
through self-supervised pre-training. Then, they supervised
fine-tuning and knowledge distillation with a small group of
labeled images. Wang et al. [33] proposed a novel deep semi-
supervised multi-instance learning framework, which played
a good role in detecting diabetic retinopathy.

Howeyver, after careful observation, it is not difficult to
find that the existing semi-supervised models are relatively
weak in robustness, generalization ability, and classification
performance due to the influence of multiple factors such
as large medical image size, unbalanced number of various
images, and unstable image quality. Therefore, a new semi-
supervised medical image classification model is proposed
in this study, aiming at coping with and alleviating these
problems. Our contributions are as follows:

1) This study improves the DenseNet network and adopts
the quadratic convolution method to enhance the
model’s ability to represent complex data and improve
the model’s ability to extract features.
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FIGURE 2. Detailed architecture of DenseNet network: Densely connected convolutional neural network.

2) In addition, it is worth noting that two new leakage
layers and two fully connected layers are built at the end
of the network structure. This design aims to strengthen
the nonlinear fitting ability of the network.

3) This paper proposes a novel semi-supervised medical
image classification model and compares it with some
classical and state-of-the-art semi-supervised image
classification models. The results indicate a significant
improvement in robustness, generalization capability,
and classification accuracy for this model.

Il. RELATED WORK

A. QUADRATIC NEURON

As shown in Fig 1. (a), the traditional artificial neuron
structure has a linear inner product and nonlinear excitation
function [34]. Specifically, given the input vector x =
(x1,x2, ..., x,,)T, the output f(x) obtained by linear internal
product operation is denoted as:

fe) =D wixi+b (1)
=1

Then, f(x) is processed by a nonlinear excitation function
(sigmoid function). This structure is suitable for separating
two groups of linearly separable inputs. However, single
neurons are prone to classification errors for linearly
inseparable input groups.

Inspired by the diversity of neurons in the biological
nervous system, Fan et al. proposed an innovative quadratic
neuron [35] for extracting features from one-dimensional
bearing fault signals, as illustrated in Fig 1. (b). In this design,
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the input vector goes through a series of transformation steps
before being passed to the nonlinear excitation function,
including two inner product operations and the sum of a norm
term. Its mathematical expression is as follows:

n n n

fx) = (z WirX; + bl) (Z WigXi + bz) +Z WipX> 4-¢
i=1 i=1 i=1

2

The design of this new neuron is inspired by the diversity
of neurons in the biological nervous system, aiming to
simulate and introduce this diversity to improve the model
performance. In fault diagnosis, this method is expected
to enhance the interpretation and classification of one-
dimensional signals [36], especially when dealing with
linear inseparable inputs; traditional techniques are prone
to classification errors. Therefore, we improve this new
neuron and apply it to the two-dimensional convolutional
neural network, aiming to bring more excellent classification
performance and robustness to the semi-supervised medical
image classification model.

B. DENSENET NETWORK

DenseNet(Densely connected convolutional networks) [37],
as a convolutional neural network with a deeper structure, has
a series of remarkable advantages:

o The number of parameters is relatively tiny: Compared
with other convolutional neural networks, DenseNet has
fewer parameters, which helps to reduce the complexity
of the model and the risk of over-fitting.
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FIGURE 3. The general framework of semi-supervised medical image classification model.

o Bypass connection enhances the reuse of features:
DenseNet adopts dense association, which promotes
the comprehensive reuse of features and improves the
model’s efficiency.

o Easy to train and regularization effect: DenseNet’s
architecture makes training more accessible and has a
particular regularization effect.

o Alleviate the problem of gradient disappearance and
model degradation: The characteristics of Dense con-
nection help to alleviate the pain of gradient disappear-
ance, make the network more easily trained in the deep

layer, and prevent model degradation.
Considering the problems of large image size and unstable

image quality in medical image data sets, this paper chooses
DenseNet-121 as the backbone network. This choice ensures
that the model can effectively handle these large-scale data
sets and give full play to the advantages of DenseNet
interconnection architecture.

Fig 2 shows a specific DenseNet structure containing three
Dense blocks and three transition layers. It is not difficult
to see that the layers in the dense block are connected. The
input of each layer comes from the characteristic diagram
of all the layers in front of it, and the output of each layer
is directly connected with the information of all the layers
behind it. This dense connection realizes the efficient reuse
of features and helps to improve performance. The transition
layer includes 1x1 convolution for adjusting the number of
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channels and 2x2 average pooling for reducing the feature
map size. Their main functions are to connect adjacent Dense
blocks, integrate the features of the previous Dense block,
and simultaneously downsample the feature map, reducing
the number of parameters of the model, which is helpful to
the efficiency of training.

Ill. PROPOSED METHOD

A. OVERALL ARCHITECTURE

As shown in Fig 3, the semi-supervised medical image
classification model proposed in this paper utilizes DenseNet
as its backbone network. Notably, we have introduced
quadratic neurons to enhance the convolutional layers in
DenseNet, forming quadratic convolutional layers. Addi-
tionally, two dropouts and two fully connected layers are
incorporated at the network’s end. The model consists of
two parts: supervised training based on labeled samples
and unsupervised training based on unlabeled samples. This
unique architecture allows for better utilization of abundant
unlabeled real-world data, closer to practical application
scenarios, and achieves superior performance in medical
image classification tasks.

Specifically, given a medical image dataset S = S U Sy,
where S;, and Sy represent manually labeled medical images
and unlabeled medical images, respectively, it is noteworthy
that the quantity of Sy, is significantly smaller than that of Sy;.
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The supervised training process based on manually labeled
samples Sy, is as follows:

1) Firstly, the marked image is preprocessed (adding noise
or random cutting, etc.) to make it visually different
from the original image as much as possible.

2) Next, the preprocessed image is sent to the feature
extraction module of the student model to learn the
features in the image that are more valuable to the
current task.

3) Then, the above features are transmitted to the classifier
module and further analyzed to generate pseudo-labels
of the input image.

4) The cross-entropy function is used to calculate
the difference between the pseudo label generated
by the model and the actual label of the image, and
the gradient descent algorithm [38] is used to reduce
the above difference and update the parameters of the

model to classify the medical image more accurately.
Mathematically, the cross-entropy function [39] is defined
as follows:

L = —[ylogy+ (1 —y)log(1 — )] 3

Here, y represents the actual label of the image, and y
represents the probability that the model correctly predicts
the category of the picture. Therefore, the supervision loss of
supervised training with marked samples can be expressed as:

m n
Le=— 3" > (vlog@) + (1~ log(l =) )
j=1 i=1

In the above formula, m is the number of labeled samples
in the medical image dataset, and n is the total number of
categories.

Then, we use the exponential weighted average moving
technology (EMA) [40] to update the trained student model
parameters and construct the teacher model. This process
aims to prepare for the subsequent unsupervised training
based on unlabeled samples. The formula of the exponential
weighted average moving technique is as follows.

@, =ag,_ + (1 —a)g, Q)

In this formula, ¢; and ¢; represent the parameters of the
teacher model and the student model at ¢, respectively, and
a is a superparameter of the smoothing coefficient, which is
used to adjust the update rate of weights. The unsupervised

training steps based on unlabeled samples are as follows:
1) Firstly, each unlabeled image is preprocessed (adding

noise or randomly cutting, etc.) to maximize the
difference between two sub-images of the same image.

2) Next, the above two sub-images are input into the
student and teacher models to learn the potential
features of the two sub-images.

3) Subsequently, the features of the above two sub-
images are passed to the classifier module and assigned
pseudo-labels.

4) Based on the principle of consistent regularization [41],
that is, if a slight disturbance is applied to the same
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unlabeled image, the prediction result should not
change significantly. Finally, the mean square error
function [42] measures the difference between the
pseudo-labels of the two sub-images, and the gradient
descent algorithm updates the parameters of the student
and teacher models.

Unsupervised loss of unmarked samples is expressed as:

u
Ly = ZEn,n’ |
i=1

Here, u represents the total number of unlabeled samples.
n and 5’ represent two different ways of disturbing the same
image. f (x;, ¢, n) and f (xi, o, n ), respectively, represent
the prediction vectors obtained after processing by the student
model and the teacher model. Therefore, the final loss
function of the semi-supervised medical image classification
model can be expressed as:

f (i@ ) —f Gom|s (©)

Loss = Lc + ALy @)

In the above formula, L¢c and Ly respectively represent
the supervised loss of labeled samples in the medical image
data set and the unsupervised loss of unmarked pieces in
the medical image data set, and A is a hyperparameter for
balancing supervised loss and unsupervised loss.

B. QUADRATIC CONVOLUTION

As shown in Fig 3, this study uses Quadratic neurons instead
of traditional ones. This choice means we use quadratic
convolution to replace the conventional convolution in the
DenseNet structure. This quadratic convolution operation can
be divided into two essential parts: autocorrelation inner
product operation and standard convolution operation.

The nonlinear mapping of the standard convolution opera-
tion of traditional neurons mainly depends on the activation
function. However, different from it, the Quadratic neurons
use autocorrelation inner product operation to introduce addi-
tional nonlinear mapping, which is difficult for traditional
neurons to achieve. As we all know, nonlinear mapping can
approximate complex functions more effectively than linear
mapping. Therefore, the quadratic convolution formed by
Quadratic neurons in this paper can significantly enhance
DenseNet’s ability to represent features, which is not due to
the increase in the number of parameters but to the nonlinear
calculation involved.

During the training period, this paper adopts a particular
parameter initialization strategy [36], in which the parameters
of secondary neurons are initialized as w8 = 0, b8 = 1,
wb = 0,c = 0, whilew” and b” are initialized according to the
standard initialization method. Therefore, in the initialization
stage, each secondary neuron in the network behaves like
a traditional neuron. Subsequently, we adopt the normal
learning rate y, for parameter (w", b") and a smaller learning
rate yg 5 for parameter (wg b8, wh, c) in the training process.
This strategy helps the network better adapt to the nonlinear
characteristics of secondary neurons.
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C. DROPOUT LAYER AND FULLY CONNECTED LAYER

As we all know, the fully connected layer plays a crucial
role in the convolutional neural network, which filters the
features captured by the feature extraction module and maps
these abstract “image distributed feature representations’
to the corresponding label space for image classification
tasks. A typical fully connected layer has multiple neurons
to fit the data distribution. However, a single fully connected
layer sometimes makes it difficult to solve the nonlinear
problem well. By increasing the number of fully connected
layers, we can significantly improve the nonlinear fitting
ability of the network [43]. Additionally, dropout layers are
typically introduced before adding the fully connected layers.
This operation randomly excludes some neurons and their
associated connections during the training process, providing
the semi-supervised medical image classification model with
partially incomplete signals, thereby enhancing the model’s
generalization performance.

Specifically, whenever a new input element enters the
model, the dropout layer randomly selects a subset of neurons
and connects these subsets with the shared weights. Specific
neurons or connections do not restrict this operation, so it can
effectively deal with the problem of over-fitting [44], [45].
Introducing the dropout layer into the model helps improve
its generalization performance on various classification
problems.

At the end of this paper’s semi-supervised medical image
classification model, two dropouts and two fully connected
layers are introduced. Specifically, the size of the first fully
connected layer is 100, and the size of the second fully
connected layer is 8. Before these two fully connected
layers, the model performs a dropout operation to ensure that
some data information is incomplete during training, thus
improving the model’s generalization ability.

IV. EXPERIMENT
This paper mainly uses the Python programming language
and PyTorch deep learning framework to build and train
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the network model. The CPU is AMD Ryzen 7 5800X, the
memory is 64G, and the GPU is an NVIDIA RTX 3090 with
24G. To effectively use the GPU, the environment of this
experiment also includes CUDA11.1 and CUDA Deep Neural
Network Library (CUDNN).

Additionally, we conducted experiments on two large-
scale medical datasets, ISIC 2019 and OCT. We compared
our method with traditional classical algorithms [46], [47],
[48] and state-of-the-art frontier algorithms [23], [33], [49]
in several experimental metrics to accurately evaluate the
performance of our approach in medical image classification
tasks.

A. EXPERIMENTAL DETAILS AND EVALUATION
INDICATORS

Because the sizes of the images in the two medical data sets
are not the same, this paper adjusts all the pictures in the data
set to 224 x 224 to meet the training requirements of the
network. The parameters in model training are set as follows:
the total number of training rounds is 200, the batch number
is 64, and the learning rate is set from 0.01 and gradually
decays to 0.001 in the later stage of training. In addition, the
Adam algorithm is used as the choice optimizer to optimize
the semi-supervised model.

This study used five widely recognized indicators, includ-
ing accuracy, sensitivity, specificity, F1-Score, and AUC (area
under the curve), to comprehensively evaluate the effec-
tiveness of the semi-supervised medical image classification
model. This multi-dimensional evaluation system deeply
helps us understand the model’s performance in different
aspects and provides a more comprehensive evaluation and
result analysis for our research.

Accuracy is the percentage of correctly classified samples
to the total number of samples, and its formula is as follows.

R TP + TN "
ccurac =
Y = TP+ FP+ TN+ FN
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TABLE 1. Comparison of AUC indicators of eight categories on ISIC 2019 test set: Different semi-supervised models.

Method Temporal Virtual adversarial Mean Dual Boostmis Automatic Ours
ensembling [42] training [43] teachers [44] Students [45] [23] diagnosis [29]
Labeled 20% 20% 20% 20% 20% 20% 20%
Unlabeled 80% 80% 80% 80% 80% 80% 80%
MEL 84.34 83.27 84.57 85.22 85.64 84.69 86.79
NV 85.26 85.49 86.08 85.38 85.15 86.42 86.57
BCC 84.89 84.79 85.13 84.67 86.37 86.54 86.88
AKIEC 82.54 83.26 82.49 83.12 82.51 83.79 83.37
BKL 83.51 84.23 83.57 83.79 84.17 83.21 85.52
DF 81.23 82.71 82.89 82.68 82.72 83.26 83.77
VASC 80.98 81.26 81.08 82.56 81.25 81.63 82.96
Nee 81.34 82.09 82.85 83.23 83.07 82.96 83.79
Average AUC 83.01 83.38 83.58 83.83 83.80 84.09 84.96
TABLE 2. Accuracy of different semi-supervised models in ISIC 2019 test set.
Method backbone epoch Labeled Unlabeled Accuracy
Upper Bound DenseNet121 200 100% 0% 90.28
Temporal ensembling[42] DenseNet121 200 20% 80% 84.79
Virtual adversarial training[43] DenseNet121 200 20% 80% 85.23
Mean teachers[44] DenseNet121 200 20% 80% 85.02
Dual Students[45] DenseNet121 200 20% 80% 85.74
Boostmis[23] DenseNet121 200 20% 80% 85.63
Automatic diagnosis[29] DenseNet121 200 20% 80% 86.36
Ours DenseNet121 200 20% 80% 87.07
Sensitivity, also known as recall or actual positive rate, The formula is as follows:
refers to the ratio of correctly classified positive samples to
the total number of positive samples in the dataset. In med- Specificity = FPFI:I——NTI\I (10)

ical image classification studies, it signifies the model’s
ability to detect positive cases accurately. The formula is
as follows:

TP

Sensitivity = TP-|——FI\I

C))

Specificity refers to the ratio of correctly classified
negative samples to the total number of negative examples in
the data set, which shows the ability of the model to identify
negative cases accurately. Generally speaking, the higher the
specificity, the lower the misdiagnosis rate of adverse results.
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Fl-score is a metric that combines recall and accuracy
to evaluate the merit of a model and maximizes both by
achieving a balance between the two, as follows:

2 x Recall x Precision
Fl-score =

— (11
Recall 4+ Precision

The definition of AUC refers to the area enclosed by

the receiver operating characteristic curve (ROC) and the

coordinate axis. The range of AUC is [0,1], and the higher

the value, the better the classification effect of the model. The
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TABLE 3. Influence of different percentage of ISIC 2019 labelling data
training on semi-supervised medical image classification model.
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FIGURE 6. Actual samples from each category in the retinopathy OCT

dataset.

Method epoch  Labeled  Unlabeled @ AUC  Accuracy
UpperBound 200 100% 0 87.37 90.28
Ours 200 10% 90% 83.85 85.27
Ours 200 20% 80% 84.96 87.07
Ours 200 30% 70% 85.73 87.81
Ours 200 40% 60% 86.16 88.64
formula is as follows:
Zins Rankiﬂsi— w
AUC = i (12)

M x N

B. ISIC 2019 DATASET

Skin cancer image ISIC2019 data set [50] is divided
into eight categories, comprising 25,331 images. Specifi-
cally, it includes 4,522 melanoma (MEL) samples, 12,875
melanocyte nevus (NV) samples, 3,323 basal cell carci-
noma (BCC) samples, 867 actinic keratosis/Bowen’s disease
(AKIEC) samples, 2,624 benign keratosis (BKL) samples,
and 200 samples. Fig 4 shows each category image in the
ISIC2019 dataset.

Table 1 shows the AUC values of each category of different
semi-supervised image classification methods on the ISIC
2019 test set when 20% labelled data and 80% unlabeled
data are used for training. The results show that our model
performs well on this test set, and the average AUC value
is 84.96%, which is superior to other semi-supervised image
classification methods. More specifically, our model has
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achieved higher results than other semi-supervised models in
seven categories when comparing the AUC values of various
types. This result fully proves the excellent performance
of our model in the semi-supervised skin cancer image
classification task.

According to the results in Table 2, when training with 20%
marked data and 80% unlabeled data, our method achieves
excellent accuracy, reaching 87.07%. This performance
exceeds the existing semi-supervised image classification
model. Specifically, our approach improves the accuracy by
2% to 3% compared with some classical semi-supervised
classification models, and it is also 0.7% to 1.4% higher than
some cutting-edge semi-supervised classification methods.
These results strongly prove the outstanding performance of
our proposed method in the field of semi-supervised image
classification.

To verify the performance of the semi-supervised medical
image classification model proposed in this paper more
comprehensively, we compare different semi-supervised
medical image classification models with three key indica-
tors: specificity, sensitivity, and F1 value, and the specific
results are shown in Fig 5. Encouragingly, our method offers
a noticeable improvement in specificity, sensitivity, and F1
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S. Li et al.: Application of Semi-Supervised Learning in Image Classification

IEEE Access

TABLE 4. Comparison of AUC indicators of four categories on the retinopathy OCT test set: Different semi-supervised models.

Method Temporal Virtual adversarial Mean Dual Boostmis Automatic Ours
ensembling [42] training [43] teachers [44]  Students [45] [23] diagnosis [29]
Labeled 20% 20% 20% 20% 20% 20% 20%
Unlabeled 80% 80% 80% 80% 80% 80% 80%
CNV 91.73 91.93 93.26 91.57 92.43 93.17 93.74
DME 91.08 91.24 90.37 91.99 92.14 91.86 92.57
DRUSEN 89.72 91.19 89.89 90.83 91.65 91.87 92.35
NORMAL 92.34 92.08 91.39 91.93 92.94 92.75 92.42
Average AUC 91.21 91.53 91.23 91.58 92.29 92.41 93.27
TABLE 5. Accuracy of different semi-supervised models in the retinopathy OCT test set.
Method backbone epoch Labeled Unlabeled Accuracy

Upper Bound DenseNet121 200 100% 0% 95.21

Temporal ensembling[42] DenseNet121 200 20% 80% 91.12

Virtual adversarial training[43] DenseNet121 200 20% 80% 91.35

Mean teachers[44] DenseNet121 200 20% 80% 91.27

Dual Students[45] DenseNet121 200 20% 80% 91.24

Boostmis[23] DenseNet121 200 20% 80% 92.43

Automatic diagnosis[29] DenseNet121 200 20% 80% 91.87

Ours DenseNet121 200 20% 80% 92.85

value. Compared with other methods, the improvement range
is 1% to 3%. These data fully prove the superiority of our
approach.

It is worth noting that the performance of the semi-
supervised image classification model is closely related to
the proportion of labeled samples used. Therefore, we have
also profoundly studied the influence of different labeled
data proportions on the model performance, and the specific
results are shown in Table 3. Obviously, with the increase in
the proportion of tag data, we observed that the accuracy and
AUC value of the network on the ISIC 2019 test set gradually
improved. In particular, our network can achieve an accuracy
of 85.27% even if trained with only 10% labeled data.

C. RETINOPATHY OCT DATASET

The OCT dataset [51] of retinopathy contains a total of
108,312 images, which are categorized into four groups:
37,206 Choroidal Neovascularization (CNV) images, 8,617
vitreous photographs (Drusen, DRUSEN), 11,349 Diabetic
Macular Edema (DME) images, and 51,140 Normal retinal
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TABLE 6. Influence of different percentage of retinopathy OCT labelling
data training on semi-supervised medical image classification model.

Method epoch  Labeled Unlabeled AUC  Accuracy
UpperBound 200 100% 0% 95.25 95.21
Ours 200 10% 90% 91.79 92.05
Ours 200 20% 80% 93.27 92.85
Ours 200 30% 70% 93.56 93.18
Ours 200 40% 60% 93.82 93.57

images (NORMAL). Fig 6 displays specific examples of
pathological pictures for each category.

Firstly, this paper compares the AUC values of different
semi-supervised models in each category on the Retinopathy
OCT Dataset, and the results are shown in Table 4.
Specifically, this paper uses 20% labeled samples and 80%
unlabeled samples to train different semi-supervised models.
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FIGURE 7. Performance comparison of different semi-supervised models on the retinopathy OCT test set:

Sensitivity, specificity, and F1 value.

The AUC values of the model in this paper are higher than
those of other semi-supervised models in three categories,
and the best average AUC is obtained. This result proves
that our network has good robustness and generalization
ability.

Secondly, this paper uses 20% labeled samples and 80%
unlabeled samples in the Retinopathy OCT Dataset to
train different semi-supervised image classification models
and compares their accuracy scores, as shown in Table 5.
It is not difficult to see that the method in this paper
has achieved the highest accuracy rate of 92.85%, which
is improved compared with other semi-supervised models,
which emphasizes the advantages of this model in accurately
and effectively classifying various retinal OCT images.

Then, to further demonstrate the advantages of our model,
this paper also uses 20% labeled samples and 80% unlabeled
samples in the Retinopathy OCT Dataset to train different
semi-supervised image classification models and makes
a comprehensive comparison on three indicators, namely
specificity, sensitivity and F1 score, as shown in Fig 7. This
model’s specificity, sensitivity, and F1 scores are 90.57%,
89.34%, and 91.43%, respectively, significantly improved
compared to the previous models. These results again confirm
our model’s effectiveness and superiority in all aspects of
medical image classification.

Finally, as shown in Table 6, we investigated the perfor-
mance impact of using different ratios of labeled samples to
train the semi-supervised medical image classification model.
Its accuracy and AUC values increase with the percentage of
labeled samples in the training samples. Notably, the model
in this paper achieves an AUC value of 91.79% and an
accuracy of 92.05% under the combination of using 10%
labeled samples and 90% unlabeled image data. With limited
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labeled samples, the model in this paper can still achieve
significantly better accuracy and AUC values.

V. DISCUSSION

Nowadays, semi-supervised deep learning is increasingly
used in clinical medical imaging diagnosis. However, in the
medical field, existing models have poor robustness, gen-
eralization ability, and classification performance due to
problems such as lack of image data, large image size, and
low image quality. Therefore, this paper proposes a new semi-
supervised medical image classification model and conducts
many experiments on two major public medical data sets,
ISIC 2019 and retinopathy OCT. By comparing with some
classic and cutting-edge semi-supervised algorithms, our
method has improved to varying degrees in five experimental
indicators, including accuracy, sensitivity, specificity, F1-
Score, and AUC, proving that our method can significantly
improve the model’s generalization performance and image
classification accuracy. However, our method still has some
limitations:

1) While introducing quadratic neurons and additional
layers enhances the model’s performance, it also
creates a more complex structure, potentially resulting
in higher computational costs and longer training times.
Although this paper provides a detailed explanation of
the model’s architecture and principles, there is still a
need for a deeper understanding of its internal workings
and mechanisms. This understanding is crucial for fine-
tuning and optimizing the model and explaining its
prediction process.

This paper primarily validates the model using publicly
available international datasets. However, testing the
model on more diverse and specific datasets in

2)

3)
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real-world medical applications will contribute to a
more comprehensive understanding of its performance
and adaptability.

4) Rare disease datasets are often smaller and exhibit
noticeable class imbalance. However, this paper does
not delve into the model’s performance on datasets
related to rare diseases.

VI. CONCLUSION
With the continuous improvement of computer performance
and the continuous improvement of deep learning technology,
semi-supervised image classification technology is increas-
ingly used in the field of clinical medical image classification.
However, the existing semi-supervised image classification
model has some shortcomings in robustness, generalization
ability, and accuracy due to excessive medical image size,
uneven distribution of various types of images, and low image
quality. This paper proposes a brand-new semi-supervised
learning model to solve the above problems. In short,
this paper improves the DenseNet network by introducing
secondary neurons to enhance the feature extraction ability
of the model. In addition, at the end of the network structure,
we added two Dropout layers and two fully connected
layers to enhance the nonlinear fitting ability of the network.
In this paper, experiments are carried out on two large
medical public data sets, and the results are compared
with some classic and cutting-edge semi-supervised image
classification models. The results show that the semi-
supervised model proposed in this paper has improved
robustness, generalization ability, and classification accuracy.
Our future research work will focus on the following
aspects:

o Optimizing Model Complexity: The model can be
optimized by employing techniques such as model
pruning to reduce complexity without compromising
performance.

« Enhancing Model Interpretability: Delve deeper into the
internal workings of semi-supervised learning models,
striving to improve their interpretability for a more thor-
ough optimization and understanding of their prediction
mechanisms.

o Expanding Testing to Different Datasets: Test and
validate the model on a more diverse dataset, particularly
those related to specific medical conditions or represent-
ing more comprehensive demographic profiles. This is
crucial for genuinely assessing its generalizability and
applicability in real-world scenarios.

« Investigating Model Performance on Rare Disease Data:
Conduct in-depth research on the model’s performance
on rare disease datasets and explore transfer learning
strategies to leverage limited data effectively.

o Continuous Parameter Optimization: Refine model
parameters, including learning rates and initialization
strategies, to adapt to different medical imaging tasks
and improve overall performance.
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