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ABSTRACT Prompt-based learning has demonstrated remarkable success in few-shot text classification,
outperforming the traditional fine-tuning approach. This method transforms a text input into a masked
language modeling prompt using a template, queries a fine-tuned language model to fill in the mask, and then
uses a verbalizer to map the model’s output to a predicted class. Previous prompt-based text classification
approaches were primarily designed formulti-class classification, taking advantage of the fact that the classes
are mutually exclusive and one example belongs to only one class. However, these assumptions do not
hold in the context of multi-label text classification, where labels often exhibit correlations with each other.
Therefore, we propose a Prompt-based Label-Aware framework forMulti-Label text classification (PLAML)
that addresses the challenges. Specifically, PLAML enhances prompt-based learning with three proposed
techniques to improve the overall performance for multi-label classification. The techniques include (i) a
token weighting algorithm that considers the correlations between labels, (ii) a template for augmenting
training samples, making the training process label-aware, and (iii) a dynamic threshold mechanism, refining
the prediction condition of each label. Extensive experiments on few-shot text classification across multiple
datasets with various languages show that our PLAML outperforms other baseline methods. We also
analyzed the effect of each proposed technique to better understand how it is suitable for the multi-label
setting.

INDEX TERMS Few-shot learning, multi-label classification, natural language processing, prompt-based
learning, text classification, verbalizer.

I. INTRODUCTION
Prompt-based learning has received considerable attention in
the field of natural language processing (NLP) in recent years.
So far, a few research papers have presented compelling
results of its effectiveness in multi-label text classification
(MLTC) [1], [2]. This approach fundamentally seeks to
replicate the training process of a language model (LM)
using masked language modeling, which serves to bridge
the gap between the pre-training task and the downstream
task. It diverges from traditional methods that involve training
or fine-tuning with additional parameters when tuning extra
classifiers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei-Yen Hsu .

A common approach to implementing prompt-based
learning involves wrapping a text input with a predefined
template and using a pre-trained or fine-tuned LM to do a
masked language modeling task. For instance, consider a
text input ‘‘I like your optimism!’’ with two distinct labels:
‘‘joy’’ and ‘‘optimism’’. We can prompt a masked LM with
‘‘I like your optimism! It was [MASK].’’ Then, the model
may predict ‘‘peace’’ for the [MASK] token. Next, we use a
function known as a ‘‘verbalizer’’ to map ‘‘peace’’ back to the
original labels ‘‘joy’’ and ‘‘optimism’’.

Extended research in verbalizers for text classification
tasks has been conducted, categorizing them into three
main approaches: a manual verbalizer, which relies on label
names; a discrete verbalizer, which employs algorithms to
identify representative words of each label; and a continuous
verbalizer, which uses algorithms to identify a representative
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vector of each label [3]. However, in the context of
MLTC, most works have focused primarily on the manual
verbalizer [1], [2]. Nonetheless, implementing the manual
verbalizer can pose challenges, given that label names may
not be optimal with respect to the underlying LM. Moreover,
certain label names may not be accurately summarized by a
single token. These challenges become particularly evident
when applying prompt-based learning to a dataset without
having an expert to select and verify the quality of the
manually chosen representative words [4], [5], [6].
To address these challenges, a discrete verbalizer is gaining

preference, as it automatically searches representative tokens
while still providing interpretable outputs similar to a manual
verbalizer. Recent methods in discrete verbalizers aim to
leverage the knowledge of label names, resulting in better
performances compared to a manual verbalizer approach.
This can be accomplished by incorporating external knowl-
edge into discrete verbalize [7], performing an embedding
similarity to the manual label name [5], or including label
names to a verbalizer template [8]. However, these discrete
verbalizers had been primarily experimented with in the
context of multi-class classification. Applying them toMLTC
may not be straightforward due to their assumption that each
token in the vocabulary can only be assigned to at most one
label [4], [8]. This assumption is often considered unrealistic,
as labels in MLTC are frequently closely related, resulting in
some labels lacking good representative tokens.

In this paper, we propose a novel Prompt-based Label-
Aware framework for Multi-Label text classification
(PLAML), a framework that aims to enhance the overall
effectiveness of the prompt-based learning approach for
MLTC in few-shot settings. The main contributions can be
summarized as follows:
• To the best of our knowledge, this paper is the first
attempt to apply a prompt-based learning approach using
discrete verbalizers to MLTC.

• We propose PLAML that consists of three components –
an improved weighting approach for each representative
token based on its label frequency, an upgraded label-
aware template to augment training samples, and a
dynamic threshold mechanism assigning each label with
different prediction thresholds.

• We conduct few-shot classification experiments on three
datasets from three languages. The results show that
PLAML outperforms the baselines in most settings.

• We carry out additional analyses to determine and
improve each of the three components of the proposed
framework.

The rest of this paper is organized as follows. Section II
provides related work on three relevant topics of PLAML–
multi-label text classification, prompt-based learning, and
verbalizers. Section III explains our PLAML framework,
including the problem statement, the framework overview,
and the detailed steps of the framework. Section IV describes
the settings of our experiments. After that, Section V
discusses the results of the whole framework and the effect of

each component of PLAML. Finally, the paper is concluded
in Section VI.

II. RELATED WORK
A. MULTI-LABEL TEXT CLASSIFICATION (MLTC)
MLTC is a task of predicting one or more labels for each
text input. Traditional text classification approaches use
embeddings derived from models such as Word2Vec [9] or
contextual embeddings from pre-trained language models
(PLMs) like Bidirectional Encoder Representations from
Transformers (BERT) [10] and Robustly optimized BERT
approach (RoBERTa) [11]. Subsequently, these embeddings
are fed into a neural network layer, which may comprise
a linear layer or recurrent components such as Long
Short-TermMemory (LSTM) [12], or convolutional elements
like convolutional neural network (CNN) [13]. In the
final neural network layer, a sigmoid activation function
is frequently employed to generate probability outputs
for each label. While this approach effectively captures
semantic relationships between words, it overlooks label
dependencies and correlations in the multi-label setting.
Moreover, additional parameters are introduced when tuning
the classifiers on top of the [CLS] which imposes the
necessity for a larger training dataset to enhance the model’s
performance [14].

More effective approaches involve considering that a label
can be associated with multiple other labels. Yang et al. [15]
proposed a sequence generation model (SGM) that treats
MLTC tasks as a sequence generation problem and uses
a recurrent neural network (RNN) decoder structure to
capture the dependencies among labels. However, sequential
models require an extensive search for the optimal solu-
tion within the potential label space, a process that can
become time-intensive when dealing with a large number
of labels. Meanwhile, Pal et al. [16] proposed a method
called Multi-label Text Classification using Attention-based
Graph Neural NETwork (MAGNET), which embraces Graph
Neural Networks (GNNs) [17] to capture dependencies
among labels using a feature matrix and a correlation matrix
before generating classifiers for the task. On a different front,
Ananiadou [18] proposed a model for casting multi-label
emotion classification as span-prediction (SpanEmo) that
views MLTC as a span prediction task. It combines text
input and labels within a single input for selecting a span of
output labels, to help the PLM learn associations between
labels in a given sentence. The method also introduces a
loss function specifically created to model the presence of
multiple co-existing labels within the input sentence. While
these approaches proved to be effective in full dataset settings,
they have not been tested in few-shot settings.

B. PROMPT-BASED LEARNING
Prompt-based learning has emerged as a preferred approach
when there is a shortage of training data. This is because it
leverages existing tokens that the PLM is already familiar
with, as opposed to the [CLS] token, which would require
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the PLM to tune both [CLS] token and neural network layers
from scratch.

The prompt-based approach consists of three critical
elements: a template, a verbalizer, and a [MASK] token [3].
A template refers to a phrase or sentence that guides the
LM to understand the contextual intention of the prediction.
Additionally, it transforms the text input into a format
suitable for the PLM to generate predictions. A verbalizer is
pivotal in converting the output from the LM into human-
readable labels. Meanwhile, a [MASK] token serves as a
dynamic placeholder for the input text, allowing the LM to
contextually analyze and generate predictions for multiple
labels simultaneously.

Several papers have utilized prompt-based learning in
the context of MLTC. Song et al. [19] proposed Label
Prompt Multi-label Text Classification (LP-MTC), utilizing
a prefix template with special tokens to capture label asso-
ciations through self-attention mechanisms. Wang et al. [2]
adopted a prompt-based methodology for medical text
classification in Chinese, employing discriminative PLMs—
ELECTRA Efficiently Learning an Encoder that Classifies
Token Replacements Accurately) [20] and (ERNIE-Health
(Enhanced Representation from kNowledge IntEgration in
Health) [21]. Additionally, the authors used [UNK] instead
of [MASK] to compel the model discriminator to make
predictions from candidate words. Similarly, Wei et al. [1]
proposed Prompt Tuning for Multi-Label Text Classification
(PTMLTC), a prompt-based strategy using the label name
itself as a verbalizer to establish connections between textual
inputs and knowledge concepts. While the former two
studies conducted experiments on full datasets, the latter
primarily focused on few-shot scenarios. However, these
approaches did not emphasize improving a verbalizer, which
has a strong influence on the performance of prompt-based
learning [7], [22].

C. VERBALIZERS FOR PROMPT-BASED LEARNING
Manually selecting a single token to represent each label,
as in PTMLTC [1] and Pattern Exploiting Training (PET)
[14], is the simplest way to construct a verbalizer. However,
manual selection could be laborious, given that datasets in
MLTC usually havemany labels, and it does not guarantee the
optimal selection of tokens when conditioned on the chosen
LM.

To automate verbalizer construction, Hambardzumyan et al.
[23] introduced trainable continuous tokens to serve as label
representations, known as a continuous verbalizer. Nonethe-
less, the acquired tokens may not correspond to actual
words, making it harder to debug and improve the model.
Ji et al. [24] proposed Hierarchical Verbalizer (HierVerb) that
builds a verbalizer on top of continuous verbalizers designed
specifically for a hierarchical text classification problem.
Meanwhile, other works favor discrete verbalizers because
of their enhanced interpretability. Ji et al. [6] searched for
the best token to represent each label by maximizing the

likelihood of the training data, referred to as PET with
Automatic Labels (PETAL). Schick et al. [4] introduced
Automatic Multi-Label Prompting (AMuLaP), which does
the same but represents each class by multiple tokens instead
to reduce the effects of noise in the data. However, most
automatically generated verbalizers do not perform as well
as manually selected verbalizers [4], [7], [25].
As a result, recent approaches to discrete verbalizers

aim to leverage the knowledge of label names, resulting
in improved effectiveness compared to the manual method.
Hu et al. [26] proposed Knowledgeable Prompt Tuning
(KPT), which incorporates external knowledge bases into dis-
crete verbalizers. However, acquiring external knowledge for
low-resource language datasets has proven to be a formidable
challenge. Zhao et al. [5] proposed NonParametric Prompting
(NPPrompt), which represents each class using a set of tokens
with the highest embedding similarity to the manual label.
Its performance, therefore, heavily relies on the quality of
the LM’s embedding space, which may not be efficacious for
mid-to-low resource languages.

In our previous work, Label-Aware Automatic Verbalizer
(LAAV), we used class labels along with a conjunction
word, ‘‘and’’, to help the PLM generate more relevant
words for the discrete verbalizer. This leads to a better
selection of words compared to using the label name or
other automatic algorithms approaches as in AMuLaP [4]
that only use the text inputs. Furthermore, LAAV was tested
onmultiple low-resource language datasets and demonstrated
greater effectiveness compared to other discrete verbalization
approaches. Nonetheless, it is worth noting that these discrete
verbalizers including LAAV were originally experimented
with the multi-class classification problem [4], [5], [6], [8],
[26]. Therefore, our experiments begin with implementing
the current discrete verbalizers to MLTC by allowing them
to select the same representative token for multiple labels.
Next, we propose PLAML, a new framework that aims
to enhance the overall effectiveness of the prompt-based
learning approach for MLTC in few-shot settings.

III. METHODOLOGY
In this section, we begin with a brief introduction of
the problem statement in Section III-A followed by the
overview of our PLAML framework for few-shot MLTC in
Section III-B. After that, we detail each step of PLAML in
Sections III-C to III-G.

A. PROBLEM STATEMENT
The goal of multi-label text classification is to predict the
labels to which a given input text belongs. Formally, let
L = {l1, l2, . . . , lL} be a set of all possible L labels in this
classification task, and Dtrain = {(x1, y1), . . . , (xn, yn)} be a
training dataset where xi is the ith input text and yi ∈ {0, 1}L

represents the labels of xi. Specifically, yij = 1 if xi has
the label lj; otherwise, 0. Importantly, as each input text can
be associated with multiple labels, this results in multiple
yij = 1 values.
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FIGURE 1. PLAML: a prompt-based learning framework for MLTC comprising three proposed techniques including TS-ILF, LAAVML, and dynamic
threshold mechanism. Solid lines represent operations within either the training or the inference process, while dashed lines connect the
corresponding components between the training and the inference processes.

We aim to train a machine-learning framework that can
output the predicted labels ŷ ∈ {0, 1}L for an unseen input
text x. In this paper, we also assume the availability of the
validation dataset Dval with the same format as Dtrain.

B. FRAMEWORK OVERVIEW
PLAML applies prompt-based learning using an automatic
discrete verbalizer (similar to [4], [5], [26]) for few-shot
MLTC. Figure 1 shows the entirety of PLAML, with high-
lighted areas in yellow representing the major contributions
presented in this paper. The training process of PLAML can
be summarized in four steps.

The first step is verbalizer construction, illustrated in the
light-blue area of Figure 1, where we find a set of tokens that
represent each label and assign an appropriate weight to each
token. In particular, for each label li, this step returns S(li) =
{(vi,1,wi,1), . . . , (vi,k ,wi,k )} where wi,j is the weight of the
token vi,j while k is the number of tokens representing each
label.

The second step is training sample generation, applying
our newly proposed templates to Dtrain to generate actual

samples for prompting. This process is referred to in the top
part of Figure 1 (a) between the training samples and LAAVML
training samples.
The third step is fine-tuning the PLM using the verbalizer

from the first step and the generated samples from the second
step. The LM used in this paper are the masked LM.
Finally, the fourth step is setting label-specific thresholds

using the fine-tuned PLM and the validation dataset Dval ,
as shown on the right-hand side of Figure 1. These thresholds
will be used together with the verbalizer to map the output of
the fine-tuned PLM into predicted labels during inference.
The following subsections describe each of the training

steps and the inference step in detail, while our novel
contributions lie mainly in the verbalizer construction, the
training sample generation, and the threshold mechanism
steps of the training process.

C. VERBALIZER CONSTRUCTION
First, we extend the idea of LAAV [8], as shown in the
light-blue area of Figure 1, to find k representative tokens
of each label. To recap, for each example x with the label
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li, LAAV uses the label-aware template

Tli (x) = [x] It was [li] and [MASK] (1)

to query the probability score of every possible token v from
the PLM. Considering the whole Dtrain, the score of token v
for the label li is

s(v, li) =
∑
x∈Xi

pM ([MASK] = v|Tli (x)) (2)

whereXi is the set of all examples inDtrain that have the label
li and pM is the probability score given by the PLM. LAAV
ensures that each token v can be assigned to only one label.
So, it assigns v to the label li where li = argmaxl∈L s(v, l).
After obtaining the k best tokens for each label, it gives each
of them an equal weight during training and inference.

While LAAV works well for multi-class text classifi-
cation [8], the fact that it assigns one token to at most
one class incurs impracticality in MLTC. This is because
labels in MLTC are often closely related, leading to some
tokens achieving high scores for more than one label.
Assigning such tokens to a single label may make some
labels lose important representative tokens or even have no
informative representative tokens. However, allowing one
token to associate with multiple labels is problematic if we
give every token an equal weight as in LAAV because the
selected tokens may have different levels of importance for
each label. For example, a token v may be related to both
labels l1 and l2 but it is more important for l1 than l2. Hence,
PLAML chooses to allow a token to represent more than one
label and assign an appropriate weight for each token instead
as explained in the framework overview.

To explain, PLAML calculates s(v, li) for every label li
and token v in the vocabulary. Then it keeps only the top k
tokens with the highest scores for each label. Let V(li) denote
the set of representative tokens of li. One obvious way for
weight assignment is using s(v, li) as the weight of the token
v for the label li. Nonetheless, this might not yield optimal
results as tokens with such high scores can be associated with
multiple labels, making them less useful for classification.
Inspired by the information retrieval concept, namely Term
Frequency-Inverse Document Frequency (TF-IDF) [27],
PLAML introduces a new weighting approach that takes
into consideration both the probability score associated with
each token and its occurrence frequency across the set of
labels. Our proposed method, Token Score - Inverse Label
Frequency (TS-ILF), can be explained in two parts.

Token score (TS) of v for li is the s(v, li) normalized so
that the TS of all representative tokens of li sums up to 1.
Mathematically,

TS(v, li) =
s(v, li)∑

v′∈V(li) s(v
′, li)

(3)

Inverse Label Frequency (ILF) is determined by first
identifying the frequency of each token across the set of labels

and then applying the inverse document frequency equation.

ILF(v) = log
L

|{li|v ∈ V(li)}|
(4)

where L is the number of labels and |{li|v ∈ V(li)}| is the
number of labels of which v is one of the representative
tokens.

Now, the weight of token v for the label li is defined as

w(v, li) = TS-ILF(v, li) = TS(v, li)× ILF(v) (5)

Finally, the TS-ILF will be applied to calculate the score
of the label li for a text input xj as follows:

S(li|xj) =
1
k

∑
v∈V(li)

w(v, li)pM ([MASK] = v|T (xj)) (6)

Then S(li|xj) could be converted into the probability of label
li using the sigmoid function.

pji = p(yji = 1|xj) = sigmoid(S(li|xj)) (7)

D. TRAINING SAMPLE GENERATION
LAAV and other previous studies [4], [6], [14] used the
same prompt template during training and testing to prevent
the out-of-distribution problem, which is indicated in the
top section of Figure 1 marked ‘‘Training Batch #2’’.
However, this does not fully capitalize on the known label
words. To enhance this aspect, we propose the Label-
Aware Automatic Verbalizer for Multi-Label template
(LAAVML) to incorporate the label information into the
training process, as illustrated in Figure 2.
First, for each label li, we compute the cosine similarity

score, denoted as cos, between li and the remaining labels
in L. Then we construct SL(li) which is the sequence of the
other labels in L sorted by their cosine similarity scores with
respect to li in ascending order. Based on Figure 2 (a), the
sorted label of ‘‘joy’’ will be ‘‘fear’’, ‘‘optimism’’, and ‘‘love’’
in ascending order, for example.

Second, for each label li of a training input text x, we apply
the following LAAVML template to generate an actual training
sample. Unlike the LAAV template in Equation 1, the
LAAVML template also uses other labels beyond li.

Tli (x) = [x] It was [SL(li|x)] [li] and [MASK] (8)

where SL(li|x) is the sequence SL(li) that contains only the
labels x has. Referring to Figure 2 (b), given the text input
‘‘Make sure it makes you #happy,’’ which can be categorized
into joy, optimism, and love, the text input is augmented into
three additional samples. For the first sample, given li to be
‘‘joy’’, the LAAVML template will be:

Tjoy(x) = [x] It was [optimism love] [joy] and [MASK]

By substituting the input text x, the augmented text becomes
‘‘Make sure it makes you #happy. It was optimism love joy
and [MASK].’’

Finally, during the training phase presented in Figure 2 (c),
the PLM is fine-tuned using two batches of training samples.
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FIGURE 2. LAAVML: a training sample generation process for PLAML.

The first batch contains those generated by the LAAVML
template while the second batch contains those generated
by the standard prompt-based learning template T (x), which
will also be used during inference to prevent the out-of-
distribution problem. The specified training order (batch #1
followed by batch #2) is necessary to help the PLM properly
predict a new text input. During the implementation, the order
of training samples within each batch can be shuffled, but the
shuffling does not extend across the two batches.

E. FINE-TUNING THE PLM
Wefine-tune the PLM using the two training batches from the
previous section. To do so, we obtain the predicted probability
of each label using Equations 6 and 7 and apply the binary
cross-entropy loss, which is more suitable for MLTC than the
categorical-entropy loss [13]. Specifically, the loss associated
to the training example xj ∈ Dtrain is

L(xj) = −
1
L

L∑
i=1

[yji log(pji)+ (1− yji) log(1− pji)] (9)

Then the overall loss is the average of the loss from all
examples in Dtrain.

Loss =
1
n

n∑
j=1

L(xj) (10)

Algorithm 1 Threshold Mechanism
Input: a label li, a validation dataset Dval , and a fine-tuned

PLM model M .
Output: the optimal threshold ti for the label li
1: Tlist ← [ ] // An empty list to store the best thresholds
2: best_F1← 0
3: for t ∈ {0.01, 0.02, . . . 1.00} do
4: F1← COMPUTE_F1(Dval,M , t)
5: if F1 > best_F1 then
6: best_F1← F1
7: Tlist ← [t]
8: else if F1 = best_F1 then
9: Tlist .append(t)
10: end if
11: end for
12: ti← AVERAGE(Tlist )
13: return ti

F. DYNAMIC THRESHOLD MECHANISM
During validation and testing, we apply the template T (x) to a
given input text xj and use the fine-tuned PLM to compute the
probability of each label as in Equations 6 and 7. Generally,
the predicted labels ŷj for an input xj are determined based on
a threshold, t . In particular, ŷji = 1 if pji > t; otherwise, 0.
Many studies utilized a fixed thresholding approach, typically
set at t = 0.5 [18], [19], for predicting each label.Meanwhile,
Wei et al. [1] explored the variability in threshold values
and concluded that the optimal fixed threshold may differ
depending on each specific dataset. Despite this, the author
continued to employ a fixed thresholding approach across all
labels when evaluating the predicted probabilities for a given
text input.

Outlined in Algorithm 1, we propose a dynamic threshold
mechanism, in which distinct thresholds are computed
individually for each label using the validation dataset Dval .
Note that, in our settings, the validation dataset serves
exclusively for the thresholding mechanism, as we train all
models for a fixed number of epochs. For each label in the
classification task, we use a sequential search of threshold
values, ranging from 0.01 to 1.00, and check the resulting F1
scores onDval . Ideally, the threshold value that yields the best
F1 score should be employed. However, in few-shot settings,
where the number of validation samples can be as limited as
two samples per label, multiple threshold values may lead
to identical F1 scores. To address this issue, we propose
using the best thresholds averaging strategy. Specifically,
the optimal threshold of the label is the average value of
the thresholds that yield the highest F1 score of that label.
Finally, we obtain a class-specific threshold ti for each label
li, and the predicted labels are defined using the class-specific
thresholds as follows.

ŷji =

{
1, if pji > ti
0, otherwise

(11)
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G. INFERENCE
Figure 1 (b) illustrates the inference process when applying
our proposed framework. To elaborate, when we receive
a new text input, denoted as x (e.g., ‘‘I personally prefer
being happy.’’), we apply the template T (x), which transforms
the input into ‘‘I personally prefer being happy. It was
[MASK].’’ This input is then tokenized before being fed
into the fine-tuned PLM as described in Section III-E. The
PLM outputs probability scores for all tokens, as defined
in Equation 2. Next, we pass these probability scores to a
verbalizer, which we obtain from Equation 6, and employ
the dynamic threshold mechanism outlined in Section III-F
to determine the labels for the given input.

IV. EXPERIMENTAL SETTINGS
A. DATASETS AND PRE-TRAINED MODELS
Table 1 shows an overview of the templates, labels, and other
essential details for the three multi-label text classification
datasets from the publicly available three languages we
experimented with in this study. These datasets include
SemEval-2018 Task 1: Affect in Tweets (English) [28],
focused on emotion classification; Prachathai67k (Thai)
[29], designed for news classification; and Filipino Dengue
(Tagalog) [30], created for tweet classification. The pre-
trained LMs used in this paper are the base versions of
RoBERTa [11], Tagalog RoBERTa [31], and Wangchan-
BERTa [32] for English, Tagalog, and Thai, respectively.

B. IMPLEMENTATION DETAILS
In the few-shot settings, we randomly selected 2, 4, 8, or
16 samples per label for both the training and validation
splits. For constructing our training and validation datasets,
we employed the minimum-including approach proposed
by Hou et al. [33]. This method ensures that each label
in the original dataset has a minimum of z samples in
both the training and validation datasets, with z representing
the number of shots specified for the particular setting.
As we lack a sizable development dataset for hyperparameter
optimization, we rely on insights from previous research to
guide us in choosing the most suitable hyperparameters. All
text inputs were limited to a maximum of 500 characters.

During the training process, we used Adam optimizer [34]
with a learning rate of 1e-5 to optimize the loss function.
We trained each model with 50 epochs and repeated the
training process three times using different seeds to ensure
robustness. To prevent overfitting, in addition to the Adam
optimizer used for preventing fitting noise in the training
data, we ensured that all three LMs used in our experiments
incorporated dropout layers during each training iteration.
Furthermore, our proposed dynamic threshold mechanism
utilized validation datasets to provide an unbiased estimate
of the thresholds based on unseen data after the training
process.

We implemented our models using the PyTorch [35],
Hugging Face transformers [36], and OpenPrompt [37]

TABLE 1. Details of the datasets along with their templates and labels.

libraries. The training process was conducted on a Tesla P100
PCIe with 16 GB of memory.

C. BASELINES
This subsection provides details of the baseline models used
for comparative analysis. The non-prompt-based learning
baselines include

One-vs-Rest: One-vs-Rest strategy utilizes embeddings
from a PLM and feeds them into separate binary classifiers
dedicated to each label, using a sigmoid activation function
for predictions.

Full Fine-tune: Traditional fine-tuning method involves
inputting the final [CLS] embedding into a classification
layer with a sigmoid activation function to make predictions.

SpanEmo: A span-prediction task method proposed by
Alhuzali and Ananiadou [18] which transforms an input text
by adding label names in front of the text input and introduces
a label-correlation-aware loss. We experimented with it using
its official source code from GitHub.

Meanwhile, for prompted-based learning baselines,
we included PTMLTC, NPPrompt, AMuLaP, and LAAV.
We adapted the last three verbalizers, originally designed
for multi-class classification, to suit MLTC. This adaptation
involved modifying the initial loss function, making it
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comparable to our proposed method. These approaches
include

PTMLTC: Amanual verbalizer proposed byWei et al. [1]
which uses label names as its verbalizer. We implemented
it using the code provided by the OpenPrompt library [37].
Please note that the manual verb adjustment columns in
Table 1 indicate that three label names from two datasets
cannot be represented by a single token, therefore we instead
selected their root words.

DiscreteVAMuLaP: A modified version of AMuLaP [4]
which constructs its discrete verbalizer using only the sample
inputs and permits the verbalizer to select the same tokens
across labels. We modified the verbalizer on top of the
OpenPrompt library [37].
DiscreteVNPPrompt: NPPrompt proposed by [5], which

is a discrete verbalizer that uses embeddings from the PLM
to select the closest words to be representative tokens.
We implemented it using its official source code from
GitHub.

DiscreteVLAAV: A modified version of LAAV [8] which
constructs its discrete verbalizer using sample inputs along
with its label name and permits the verbalizer to select the
same tokens across labels.

V. RESULTS
Within this section, our experiments are divided into four
main parts. Section V-A involves the comparison of our
proposed method with baseline models. This is followed by
Sections (V-B, V-C, V-D), which include ablation studies
to assess each of the three proposed techniques of PLAML
individually. Finally, in Section V-E, we address potential
challenges that may affect the wider use of our proposed
techniques.

A. COMPARISON TO THE BASELINES
Table 2 presents a comprehensive comparison between
the prompt-based learning approach and the traditional
approach across various experimental settings. Notably,
the prompt-based learning methods (PTMLTC, Disc-
reteVNPPrompt, and DiscreteVLAAV) consistently demonstrate
superior performance when compared to the traditional
approach (One-vs-Rest, Full Fine-tune, and SpanEmo) across
all settings, with the performance gap widening as the
number of training samples decreases. When examining
the different baseline methods, it is evident that PTMLTC,
known as a manual verbalizer, performs the best. The
outcome proves that applying discrete verbalizers used in
multi-class classification cannot be transferred to MLTC
without appropriate modifications.

When comparing our proposed method PLAML with the
baseline methods detailed section in Section IV-C, we found
that our proposed approach consistently outperforms other
baseline models across varying sample settings, including 4,
8, and 16 samples per label, across three datasets from
three different languages. On average, our model enhances
Macro-F1 scores by 1.68% absolute when compared to the

TABLE 2. Macro-F1 results along with their standard deviation in the
parentheses comparing the proposed method, PLAML, and the baselines
tested on three datasets. The best results are marked in bold. Indentation
means that the experimental configuration of PLAML does not include
the technique. Please note that the setting with the removal of the
dynamic threshold means it instead uses the fixed threshold at 0.5.

best baseline, PTMLTC, across three datasets. The most
significant improvement is observed in the Prachathai67k
dataset, where our method boosts Macro-F1 scores by 2.39%.
Additionally, PLAML improves the Macro-F1 scores on
average compared to its original DiscreteVLAAV method by
4.26%.

In the context of the SemEval-2018 dataset, our result
reveals that LAAVML and TS-ILF have a comparable impact,
with the removal of either of them yielding nearly identical
outcomes. However, their efficacy diminishes notably when
applying a fixed threshold of 0.5. In the Prachathai67k
dataset, PLAML plays a more critical role in model accuracy,
especially in larger datasets. The dynamic threshold mech-
anism only becomes important when dealing with smaller
datasets, and TS-ILF has the least impact among the three
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components. Lastly, in the Filipino Dengue dataset, TS-ILF
has the most substantial influence on model accuracy, closely
followed by LAAVML .
Figure 3 provides a comprehensive comparison of

Macro-Average ROC AUC scores, evaluating the model’s
ability to discriminate between positive and negative samples
for each label. Among the baseline models (all bars except the
yellow ones), DiscreteVNPPrompt excels in the SemEval-2018
(Figure 3 (a)) and the Filipino Dengue (Figure 3 (c)) datasets,
while no clear winner emerges in the Prachathai67k dataset
(Figure 3 (b)). This suggests that the verbalizers in different
baselines exhibit varying performance on the Prachathai67k
dataset.

As indicated in the yellow bar, our proposed model,
PLAML, outperforms other baselines in both the SemEval-
2018 and Prachathai67k datasets. However, in the Fil-
ipino Dengue dataset, PLAML performs comparably to
DiscreteVNPPrompt and PTMLTC. A plausible explanation is
the lower number of labels in the Filipino Dengue dataset.
Consequently, the model does not have enough samples
obtained from our sample generation process, LAAVML ,
to train effectively. Additionally, DiscreteVNPPrompt suggests
all similar verbalizers to the label names used in PTMLTC,
enabling faster learning under the same training epoch.
Thus, it contributes to higher discriminative scores between
labels, resulting in better Macro-Average ROC AUC scores.
Overall, the results indicate that employing PLAML is
the best option when considering measurement through
Macro-Average ROC AUC score.

Additionally, Table 3 presents the top 8 (out of 32) repre-
sentative tokens for the SemEval-2018 dataset as selected and
ranked by different verbalizers. DiscreteVAMuLaP repeatedly
selects the same words across different labels, including
labels like ‘‘ME,’’ which should not be associated with
any of the labels. DiscreteVAMuLaP consistently chooses
identical words across various labels, including labels like
‘ME,’ which should not be affiliated with any of the given
labels. On the other hand, DiscreteVNPPrompt, which utilizes
embeddings from the PLM to select the closest words,
tends to choose words that are similar to the label names.
However, some selected words can be somewhat repetitive.
For instance, the top 8 tokens of the label ‘‘love’’ are
essentially variations of the word ‘‘love,’’ such as ‘‘LOVE,’’
‘‘loved,’’ and ‘‘loving.’’ In contrast, both DiscreteVLAAV
and PLAML tend to choose words that are closely related
to the label names and carry significant meaning. For
example, in DiscreteVLAAV, the top tokens associated with
the label ‘‘love’’ are ‘‘music’’ and ‘‘sacrifice,’’ while in
PLAML, they correspond to ‘‘laughter’’ and ‘‘forgiveness.’’
Furthermore, these two verbalizers exhibit a more diverse
set of word selections when compared to DiscreteVNPPrompt
andDiscreteVAMuLaP. Notably, PLAMLassignsmore refined
weights to each token in comparison to DiscreteVLAAV. For
example, in DiscreteVLAAV, the labels ‘‘joy’’ and ‘‘love’’
consider the word ‘‘peace’’ as one of their top words, while in
PLAML, ‘‘peace’’ is assigned a low weight since it appears

FIGURE 3. Macro-Average ROC AUC results comparing the proposed
method, PLAML, and the baselines tested on three datasets.

frequently across various labels, resulting in more refined
word choices.

B. EFFECTS OF TS-ILF
In this section, our objective is to examine the impact of
different weight approaches in comparison to our proposed
TS-ILF including ‘‘UniformWeight,’’ which assigns uniform
scores to all labels, and ‘‘Token Probability,’’ which utilizes
probability scores from the PLM.

According to Table 4, our weight-based approach, detailed
in III-F demonstrates superior performance with at least
1.50% increases in Marco-F1 in most settings compared to
the two alternative methods This superiority is particularly
noticeable across all datasets, with the most improvement
observed in the Filipino Dengue dataset.

In Figure 4, we experimented with varying a different
number of tokens to represent each label, denoted as k . This
is because the different values of k affect the token repre-
sentation for verbalizer and the ILF component within the
TS-ILF. The result indicates that a higher number of tokens
used to represent each label is correlated with an increase in
Macro-F1, often reaching its peak value at 32, as indicated
by the yellow bar. As a practical recommendation, when
working with a new dataset, we advise testing a range of
k values, as different k values can lead to variations in
accuracy.
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TABLE 3. Comparison of the verbalizer based on the top 8 tokens having the highest probability scores out of the 32 tokens in the 4-shot setting using
the SemEval-2018 dataset.

C. EFFECTS OF LAAVML
The LAAVML uses a template that comprises label arrange-
ments placed atop a label-aware template, as in Equation 1.
To construct the most effective LAAVML template, we con-
ducted two experiments. The first experiment involved
exploring the order of labels and their influence on the
Macro-F1 score, presented in Table 5. To elaborate on the
‘‘Single Label’’ approach, we first considered the example
from Figure 2: ‘‘Make sure it makes you #happy.’’ In this
approach, this single example will be augmented into three

separate samples which include only ‘‘love’’, ‘‘optimism’’,
and ‘‘joy’’ in the first, second, and third samples, respectively.
For ‘‘Random Ordered’’, we simply randomized the order
of labels without considering their similarity. The results
indicate that our ‘‘Sorted’’ approach, which takes label
similarity into account, yields slightly better results compared
to other methods. One potential explanation is that the sorted
order of labels encapsulates the relationship among the labels
and could help the model better learn the classification
task.

VOLUME 12, 2024 28319



T. Thaminkaew et al.: Prompt-Based Label-Aware Framework for Few-Shot MLTC

TABLE 4. Comparing the effects of different weighting strategies tested
on three datasets, the Macro-F1 results and their standard deviation in
the parentheses are presented. The best results are marked in bold.

FIGURE 4. Macro-F1 results when using PLAML with a different number
of tokens to represent each label varying from 8, 16, 24, 32, and 40.

In Table 6, our second experiment aims to explore other
separators for the given sorted labels. Our choices of
separators include ‘‘and’’, ‘‘or’’, ‘‘ ’’ (single space), and ‘‘,’’
(comma). The result shows that a single space (employed
in PLAML) is the most effective choice achieving the best
results in nine settings and the second best in the remaining
three settings.

D. THRESHOLD MECHANISM
Our proposed dynamic threshold mechanism returns a
different threshold for each label using the validating samples

TABLE 5. Comparing the effect of label ordering approaches used to
construct LAAVML tested on three datasets, the Macro-F1 results, along
with their standard deviation in the parentheses, are presented. The best
results are marked in bold.

TABLE 6. Comparing the effect of different separators used to construct
LAAVML tested on three datasets, the Macro-F1 results, along with their
standard deviation in the parentheses, are presented. The best results are
marked in bold.

as described in Section III-F. To evaluate our proposed
threshold, we conducted another experiment by comparing
it with fixed thresholding approach ranging from 0.1 to
0.5. Based on Figure 5, the dynamic thresholding approach
consistently surpasses the fixed thresholding approach in
most scenarios, as indicated by the yellow bar. In contrast,
the performance of the fixed thresholding approach exhibits
variability when applied to different settings and datasets.
In contrast, our approach adapts its threshold based on the
validating dataset, making it more robust to varying settings.
Notably, setting a fixed threshold at 0.2 yields the best
results for the SemEval-2018 dataset (Figure 5 (a)). The
Prachathai67k dataset (Figure 5 (b)) performs the best with
a fixed threshold of 0.3 while applying a fixed threshold
of 0.5 appears to be most effective on the Filipino Dengue
dataset (Figure 5 (c)).
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FIGURE 5. Macro-F1 results when using PLAML with different threshold
approaches tested on three datasets.

TABLE 7. F1 results, along with their corresponding thresholds in
parentheses, are presented based on the 4-shot setting using the
SemEval-2018 dataset. This comparison evaluates different choices of
thresholding approaches for each label, with the best results highlighted
in bold.

Furthermore, Table 7 shows F1 scores of the SemEval-
2018 dataset under a 4-shot setting, consistent with the
configuration used in Table 3. The dynamic thresholding
approach selects optimal thresholds ranging from 0.04 to
0.6 and achieves better F1 scores across all labels compared
to the fixed threshold at 0.5. This highlights the importance
of adopting the dynamic thresholding approach to few-shot
MLTC because it helps the LM to bemore robust to variations
in label characteristics and label distribution across different
settings.

E. LIMITATIONS
Our primary focus was on enhancing the word selection
process for each label within a predefined prompt template.
The application of a tunable continuous template or mul-
tiple discrete templates, not explored in this work, may
have the potential to reduce input ambiguity and improve
prompt-based learning results. Additionally, due to resource
constraints, we conducted experiments using only the base
version of the PLMs. Experimentation with larger PLMs can
be investigated in the future.

VI. CONCLUSION
In this paper, we proposed PLAML, a framework designed to
improve the overall efficiency of the prompt-based learning
approach for MLTC in few-shot settings. The framework
includes (i) TS-ILF that weights each token within a
verbalizer based on its probability and its corresponding
frequency across label set, (ii) LAAVML that uses the label
name to augment more training samples, and (iii) a dynamic
threshold mechanism that assigns each label with a different
threshold. The experiments demonstrate the effectiveness of
PLAML in few-shot settings across three datasets, including
three distinct languages that vary from low-resource to high-
resource. In the future, we plan to explore the application of
PLAML in more complex natural language processing tasks
and apply the method to multilingual LMs.
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