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ABSTRACT Computational biology research faces a formidable challenge in the detection of complexes
within protein-protein interaction (PPI) networks, critical for unraveling cellular processes, predicting
functions of uncharacterized proteins, and diagnosing diseases. While evolutionary algorithms (EAs),
particularly state-of-the-art methods, often partition PPI networks based on graph properties or biological
semantics, their resilience to noisy or missing interactions remains an underexplored territory. In this paper,
we propose a groundbreaking heuristic operator, termed ‘‘strong neighbor-node migration’’, specifically
designed to elevate solution quality during the evolutionary process of our proposed EA. Through
the application of EAs, we systematically evaluate the robustness of three single-objective models and
two multi-objective models dedicated to addressing the complex detection problem. Our comprehensive
assessment spans three well-known PPI networks, including two Saccharomyces cerevisiae datasets and the
Human Protein Reference Database. To challenge the models further, we generate artificial networks by
introducing varying percentages of noise to the original PPI networks. The experimental results showcase
the superiority of the multi-objective model that incorporates our novel heuristic operator, demonstrating
enhanced prediction accuracy compared to state-of-the-art models. Encouragingly, we advocate for the
expansion of this research to integrate biological information, such as gene ontology. We propose the
development of an objective function and heuristic operator based on this biological data, aiming to advance
protein complex detection.

INDEX TERMS Evolutionary algorithm, multi-objective optimization, heuristic operator, protein-protein
interaction network, complex detection.

I. INTRODUCTION
Proteins are a vital part and building blocks of every living
organism. They are composed of amino acids, which make
up a polypeptide chain, and they encode the information
stored in genes. The main functions of a living organism
are carried out or regulated by proteins that interact with
one another within a cell or in vitro [3], [49], [52]. Due
to the growth of bioinformatics, biochemical, and related
fields of study, high-throughput experimental methods such
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as proteomics, metabolomics, and phenomics have become
more prominent in recent decades. As a result of these
methods, massive amounts of experimental data reflecting the
interaction between proteins in complex networks (i.e., cel-
lular networks) on protein-protein interaction (PPI) networks
(i.e., yeast two-hybrid tests, or Y2H) are gathered to describe
different protein structures and how they interact [28], [51].
However, protein interactions so far are still suffering from
spurious interactions, as well as missing interactions [23].
Moreover, interactions with low confidence values may
be discarded in subsequent analyses. However, different
topological metrics and link prediction algorithms [12], [27]
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can be used to score false-negative interactions and contribute
the top-scored ones to PPI networks [38]. There is a general
agreement among biologists that proteins that are closely
located to one another in the PPI network are perform
similar functions, and genes that are regulated by the
same transcription factors likely to have activities that are
substantially similar to one another (genes causing similar
diseases). In this scenario, perturbations in the interactions
may cause the same disease or disease phenotype [8], [39].
In the PPI networks, the detection of protein complexes,

or functional modules, is an ongoing challenge, but it is
crucial for revealing the mechanism of biological functions
and providing a valuable guide for comprehending the
processes controlling cell life. In addition, detecting protein
complexes can be useful for defining the evolutionary
orthology signal, such as for the prediction of protein
functions based on their biological functions that have not
yet been identified, and most crucially, for medical uses
[24], [46]. It is noteworthy to mention that proteins that
interact with one another can be categorized as either ‘‘protein
complexes’’ or ‘‘functional modules,’’ each of which having a
distinct biological significance. Unlike to functionalmodules,
protein complexes are composed of a number of protein
molecules that work in a common location to perform
a certain function. Protein complexes characterized by
large transcription factors, anaphase-promoting complexes,
Ribonucleic Acid (RNA) splicing machinery, protein export
and transport machinery, and others can be identified.
In contrast, a functional module is a collection of proteins that
are involved in a particular cellular compartment and interact
with each other in order to perform a specific biological
function at different times and places (different phases of the
cell cycle, different cellular compartments). There are several
functional modules that can be identified. They include the
cyclin module for determining the progression of a cell cycle,
yeast pheromone response pathways, and Mitogen-Activated
Protein (MAP) signaling pathways.

The protein complex detection problem in PPI networks is
conventionally tackled through the application of clustering
methods. The primary goal of clustering is to unveil the
intricate topology, features, and functions embedded within
PPI networks. However, finding the global optimal solution
to the PPI network clustering problem has shown to be a
non-deterministic polynomial-time hard (NP-hard) problem
[13], [48]. This paper provides a comprehensive overview
of clustering methods applied to PPI networks, categorizing
them into distance-based (topology-free) and topology-based
approaches.
• Distance-Based (Topology-Free) Clustering: This cate-
gory encompasses methods (such as [2], [41]), which
cluster proteins based on their distances from one
another, adopting a topology-free paradigm.

• Topology-Based Clustering: Methods falling under this
category leverage graph-based approaches, considering
the overarching topology of the PPI network, (such
as [4], [6], [17], [20], [47]).

While these clustering methods significantly contribute
to unraveling the complex organization of PPI networks,
the computational challenges associated with NP-hard prob-
lems necessitate innovative approaches. This is where the
importance of evolutionary algorithms (EAs) comes into
play. The utility of EAs in this context becomes evident
when considering the dynamic nature of biological systems
and the need for adaptive strategies. In contrast to static
clustering approaches, EAs are inherently designed to evolve
solutions over multiple iterations, enabling them to adapt and
optimize in response to changing conditions. This dynamic
adaptability is particularly crucial in PPI network analysis,
where the interactions among proteins can vary, and the
completeness of data is often compromised by noise or
missing information. Given that protein complex detection
problem comes into the category of NP-hard problems,
a recent study [9], [31], [47] revealed that metaheuristic
and evolutionary algorithms are very competitive compared
to state-of-the-art methods. Unfortunately, up to now, little
interest has been paid to investigate the robustness of these
state-of-the-art EAs in unraveling PPI networks with noisy or
missing interactions. In this study, the main contribution is to
examine and evaluate the effectiveness of the EA for detecting
protein complexes within PPI networks with spurious and
missing interaction data. To achieve this contribution, both
single and multi-objective EAs are adopted to examine
the robustness of three well-known single objective models
and two multi-objective models that are used to define the
complex detection problem.

A. PRELIMINARY CONCEPTS
In this section, we will explain some principles related to
graphs that are used in PPI networks, and we will explain
these principles using common formal expressions. The
PPI network can be viewed as a complex cellular network
N (P,E), where P is a set of n different proteins, that is,
P =

{
P1,P2, . . . ,Pn

}
, and a set of m mutual interaction

between any pair of proteins inN is composed of undirected
edges (Pi,Pj) in E, i.e., E =

{
E1,E2, . . . ,Em

}
.

In terms of mathematics, N can be expressed as a graph
G(V,E) with a set of nodes V, where V = {V1,V2, . . . ,Vn},
and a set of edges E. In an undirected graph G, an edge
between nodes Vi and Vj can be used in both direction.
Thus, if Vi and Vj are connected, then Vj and Vi are also
connected. Proteins, RNA molecules, and gene sequences
are represented as nodes in a graph V. The graph edges E
describe (physical, biochemical, or functional) interactions.
Any edge E ∈ E can also be expressed as the pair (Vi,Vj),
where Vi, and Vj correspond, respectively, to two interacting
proteins Pi, and Pj in N . The number of interactions
that include a given protein, Pi, is denoted by its degree,
d(Vi) = |(Vi,Vj)|(Vi,Vj) ∈ E|.
The symmetric adjacency matrix, often known as the

connection matrix, A = [aij]n×n, is an example of a common
way to describe an undirected graph (G). This matrix contains
all of the connections between the nodes in the graph, where
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FIGURE 1. Seven proteins form Saccharomyces cerevisiae and their
adjacency matrix.

two protein pairs (Pi and Pj) are adjacent, if they interact with
each other (i.e., aij = 1 and aji = 1). Otherwise, (aij = 0 and
aji = 0). Figure 1 depicts an example of an adjacency matrix
representing a sample of PPI network relationship, where
each element in thematrix is equal to 1, ifPi has an interaction
with Pj; otherwise, it is equal to 0.

B. EA: SINGLE AND MULTI-OBJECTIVE
EAs imitate the mechanism of natural evolution by adopting
heuristic search and optimization techniques. The concepts
of competition, selection, reproduction, and random pertur-
bation in evolution are all referred to in the same way by
both natural evolution and EAs. The main purpose of the
EA is to improve the fitness of a population of possible
solutions. EAs are characterized by the fact that they partition
the search space associated with an optimization problem,
F(X ), into a finite set of points and then operate on a very
tiny arbitrary subset of those points. This subset of points is
referred to as the population of individuals. The population
is described by Iµ = (I1, I2, . . . , Iµ). A fitness function,
F(I ), evaluates different regions in the search space using the
processed population. The composition of the EA’s selection,
recombination, and mutation operators are used to transform
the population, Trans : Iµ → Iµ. Until a stop condition
is reached, transformations are done in a general loop to
generate succeeding populations, ι : Iµ → {true, false}.
The selection operator, 2s, considers individuals from better
regions of the search space. By crossing two elements of the
selected population, the recombination operator (also called
crossover), 2r , produces two new individuals. Last but not
least, the mutation operator, 2m, locates and explores new
regions of search by occasionallymodifying the selected indi-
viduals. The general EA framework is sketched Algorithm 1.
Numerous real-world issues have multiple, commonly

conflicting, objectives, where addressing them needs to be
fair and satisfying at the same time. To this end, several

Algorithm 1 The General Framework of EA
1: Input: µ,2s,2r ,2m, pc, pm, ι
2: Output: optimal I∗;
3: t ← 0;
4: Initialize population Iµ(t)← (I1, I2, . . . , Iµ);
5: for i← i ∈ (1, 2, . . . , µ) do
6: Evaluate F(Ii(t));
7: end for
8: while ι(Iµ(t)) ̸= true) do
9: t ← t + 1;

10: for i← i ∈ (1, 2, . . . , µ) do
11: Ii,1(t)← 2s(Iµ(t − 1))
12: Ii,2(t)← 2s(Iµ(t − 1))
13: I ′i (t)← 2r (Ii,1(t), Ii,2(t), pc);
14: I ′i (t)← 2m(Ii(t), pm);
15: Evaluate F(I ′i (t));
16: end for
17: end while
18: Return I∗(t)

optimization algorithms with multiple objectives (MOOs) are
formulated. Rather than finding a single optimal solution,
a MOO algorithm allows us to obtain many solutions that are
characterized as non-dominant solutions, and this provides
the decision maker with the optimal trade-off solutions
among these contradictory objectives.

Mathematically, suppose that the MOO problem has n
variables drawn from the multi-objective universe �. Let
X = (x1, x2, . . . , xn) ∈ �, where � ∈ Rn, and the
objective functions F(X ) = (f1(x), f2(x), . . . , fk(x)), where
k refers to the number of objective functions, such that F :
� → Rk. The optimization of the objective function F(X )
is accomplished by obtaining a set of solutions, wherein not
any solution is dominated by any other solution in the set.
These non-dominated solutions X∗ = (x∗1 , x

∗

2 , . . . , x
∗
n ) ∈ �

are collected and placed in a repository known as the Pareto
set (PS). To clarify the non-dominated solutions, suppose
there are two vectors, U = (u1, u2, . . . , un) and V =

(v1, v2, . . . , vn), both in�. If neithermathcalU normathcalV
is superior to the other, then the two solutions are said to
be mutually non-dominating, or U and V are assumed to
be equal. Consequently, a decision subspace � within the
universe � that contains solutions that are not dominated
by any other solution can be referred to as a set of non-
dominated solutions. This definition can be used to describe
a non-dominated set of solutions.

In this study, two well-known multi-objective evolu-
tionary algorithms (MOEAs) are adopted. The first is
the non-dominated sorting genetic algorithm (NSGA-II)
proposed by Deb et al. [18]. Consider an MOO problem with
k objective functions formulated in Eq. 1. The definition of
genetic algorithm operators is expanded to take into account
two characteristics. First, based on the non-dominated fitness
assignment, the individuals of the population I are sorted

VOLUME 12, 2024 28875



M. N. Abbas et al.: Evolutionary Algorithm With Heuristic Operator

into fronts. Secondly, maintain the fitness contrast between
individuals of the same non-dominated front.

min F(X ) = f1(X ), f2(X ), . . . , fk(X ) (1)

Themechanism for selecting individuals is done by arrang-
ing the individuals depending on the rank of the individuals
in the Pareto-front, and niching schemes. A distance is
calculated for each individual, which is called the crowding
distance, as all these individuals are ranked depending on the
non-domination. However, all of these non-dominated indi-
viduals are grouped together into a single front and allocated
a dummy maximal fitness. After that, this front of classed
individuals is neglected, and another front of individuals is
taken into consideration for the position of the next front. This
process of classification continues until all the individuals
have been categorized into the proper fronts. During the
phases of selection and population front-classification, mutu-
ally non-dominant solutions are evaluated on the basis of their
contribution to population diversity. However, individuals on
the first front always get more copies since they possess
the highest fitness value. By searching for non-dominated
regions through successive generations t , the population is
converged towards these regions. As a result of NSGA-II,
the non-dominated solution set of individuals is not explicitly
archived. Algorithm 2 describes the framework of NSGA-II.
The decomposition-based MOEA (MOEA/D) algorithm

proposed by Zhang et al. [54] is the second well-known
algorithm that has been effectively applied to a variety of
real-world problems. Assuming that MOEA/D algorithm has
found the optimum solution, which is Z∗i for each objective
i ∈ [1, 2, . . . ,k], then a reference point Z∗ = (z∗1, z

∗

2, . . . , z
∗

k)
can be used to represent a vector of the best possible solutions
for the objectives. In a more formal context, i ∈ [1, 2, . . . ,k]:

z∗i = fi(X∗ ∈ �) :⇔: ∄X ∈ �|fi(X ) < fi(X∗)| � ⊂ � (2)

the population Iµ = (I1, I2, . . . , Iµ) is the notation that is
utilized in order to describe µ distinct scalar optimization
sub-problems. Each point in the search space� is considered
to be a distinct sub-problem for the scalar optimization of k
objectives. In other words, this is to break the MOO problem
down into mu sub-problems using the MOEA/D algorithm.
Each individual Ii|i ∈ [1, 2, . . . , µ] is attached with one
weight vector wi from a collection of µ evenly distributed
weight vectors W = (w1,w2, . . . ,wµ). Recall, the value of
k represents the total number of objective functions for the
MOO problem, and define the weight vector associated with
each Ii as follows: wi = (wi,1,wi,2, . . . ,wi,k)

µ∑
i=1

k∑
j=1

wi,j = 1 (3)

In addition, it is feasible for each individual Ii, 1 <=

i <= µ, to expand utilizing information obtained directly
from the solutions that are located in its immediate neigh-
borhood g. Neighboring solutions to Ii, denoted by Gi =
(I1, I2, . . . , Ii,g), are those g with the closest distance weight

Algorithm 2 The General Framework of NSGA-II
1: Input: µ,2s,2r ,2m, pc, pm, ι
2: Output: Population Iµ with fronts
3: t ← 0;
4: Initialize population Iµ(t)← (I1, I2, . . . , Iµ);
5: for i← i ∈ (1, 2, . . . , µ) do
6: Evaluate F(Ii(t))← (f1(Ii(t)), f2(Ii(t)), . . . , fk(Ii(t));
7: end for
8: for i← i ∈ (1, 2, . . . , µ) do
9: Rank assignment of r(Ii) based on the Pareto rank of

dominance;
10: end for
11: while ι(Iµ(t)) ̸= true) do
12: for i← i ∈ (1, 2, . . . , µ) do
13: Ii,1(t)← 2s(Iµ(t))
14: Ii,2(t)← 2s(Iµ(t))
15: I ′i (t)← 2r (Ii,1(t), Ii,2(t), pc)
16: I ′i (t)← 2m(Ii(t), pm
17: Evaluate F(I ′i (t));
18: end for
19: Iµ(t)← Iµ(t) ∪ I′µ (t)
20: for i← i ∈ (1, 2, . . . , 2µ) do
21: Assign rank r(Ii) based on Pareto dominance sort;
22: end for
23: calculate crowding distance of I in each front
24: Determine which Iµ(t) value to select depending on

rank and crowding distance.
25: t ← t + 1;
26: end while
27: Return I∗(t)

vectors using euclidean distance to wi, as expressed in Eq. 4.
Then, a vector of neighbor solutions to the whole population
Iµ is Gµ

= (G1,G2, . . . ,Gµ).

Ij ∈ Gi : ⇔ ∄(wl ∈ W ∧ Il /∈ Gi)
k∑

x=1

(wi,x − wj,x)2 >
k∑

x=1

(wi,x − wl,x)2 (4)

Dtei (Ii|wi,Z
∗) = min

1<=j<=k
wi,j|fj(Ii)− z∗j | (5)

In addition, if the value of Z∗ is greater than the value
of fj(Ii), then the value of fj(Ii) will be substituted for Z∗ at
the reference point Z∗ = (z∗1, . . . , z

∗

k). Also, the content of the
non-dominated archive I∗ can also be influenced by Ii. This
ensures that all the solutions I∗ that are dominated by Ii are
removed from the archive, and if there is no I∗ in the archive
that dominates Ii, it is finally added to the archive. The general
framework of the MOEA/D algorithm can be expressed in
Algorithm 3.

II. RELATED WORK
With the beginning of the 21st century, numerous researchers
have shown significant interest in the topic of complex
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Algorithm 3 The General Framework of MOEA/D
1: Input: µ,2s,2r ,2m, pc, pm, ι
2: Output: non-dominated I∗
3: InitializeW ← (w1,w2, . . . ,wµ); /* Where
wi = (wi,1,wi,2, . . . ,wi,k) */

4: t ← 0;
5: Initialize population Iµ(t)← (I1, I2, . . . , Iµ);
6: Initialize neighbors Gµ(t)← (G1,G2, . . . ,Gµ); /*

Where Gi = (Ii,1, Ii,2, . . . , Ii,g) */
7: Initialize non-dominated archive I∗(t)← φ;
8: Initialize reference point Z∗← (z∗1, z

∗

2, . . . , z
∗

k);
9: for i← i ∈ (1, 2, . . . , µ) do
10: Evaluate F(Ii(t))← (f1(Ii(t)), f2(Ii(t)), . . . , fk(Ii(t));
11: end for
12: while ι(Iµ(t)) ̸= true) do
13: for i← i ∈ (1, 2, . . . , µ) do
14: Ii,1(t)← 2s(Gi(t))
15: Ii,2(t)← 2s(Gi(t))
16: Ii(t)← 2r (Ii,1(t), Ii,2(t), pc)
17: Ii(t)← 2m(Ii(t), pm)
18: Evaluate F(Ii(t));
19: Update Gi(t);
20: Update I∗(t);
21: Update Z∗;
22: end for
23: t ← t + 1;
24: end while
25: Return I∗(t)

detection in PPI networks. We classify the approaches into
two groups: complex detection based on local heuristic
algorithms and complex detection based on evolutionary
algorithms.

A. COMPLEX DETECTION BASED ON LOCAL HEURISTIC
ALGORITHMS
These methods can be defined as methods that rely mainly on
enhancing the local cost for characterizing protein complexes
by their density in PPI networks. Bader et al. [5] proposed a
molecular complex detection (MCODE) algorithm for find-
ing highly linked nodes in PPI networks. To identify protein
complexes, MCODE uses local graph density. It consists of
three distinct phases: vertex weighting (or node scoring),
complex prediction, and optimal post-processing. First, node
scoring provides each node with a weight representing its
local neighborhood density. Second, the algorithm iteratively
expands outward from the highest-weighted seed node,
encompassing the nodes of a complex whose weight is over
the threshold. The value of this threshold is specified as a
fraction of the seed node’s total weight. Finally, MCODE
identifies the densely connected regions of a molecular inter-
action network using only connectivity information. These
regions are mapped onto identified molecular complexes.

Li et al. [29] proposed the dense-neighborhood extraction
using connectivity and confidence features (DECAFF) algo-
rithm to combine functional information and identify dense
protein complexes. To mine several potentially overlapping
dense subgraphs, a hub-removal technique and a local clique
merging algorithm (LCMA) are applied. To ensure that pro-
teins in predicted protein complexes are interconnected via
strong confidence protein interactions, DECAFF eliminates
potentially spurious protein complexes with low reliability.
In this context, the reliability of a subgraph is calculated using
a probabilistic model for estimating the reliability of edges
within a complex.

The restricted neighborhood search clustering (RNSC)
algorithm proposed by King et al. [26] is a cost-based local
search algorithm that searches for promising solutions while
minimizing a cost function reflecting the total number
of intra-relation and inter-relations. The algorithm assigns
weights to each node in the graph depending on the density
of its nearest neighbors. The algorithm begins with a random
solution and repeatedly shifts nodes between complexes
to reduce total cost. Complexes are formed by repeatedly
adding high-scoring nodes towards the complex around
extremely highly weighted nodes (seed nodes). Finally,
sparse complexes (complexes that cannot be satisfactorily
detected) are weeded out of the final partition.

Nepusz et al. [35] proposed Clustering with Overlapping
Neighborhood Expansion (ClusterOne), which seeks to find
clusters with a high degree of cohesion. It begins from the
seed node with the highest degree. Then, a greedy algorithm
is used to add or eliminate nodes to form clusters with a high
cohesiveness. Adding or removing multiple nodes may fix
overlapping clusters. The algorithm calculates the overlap-
ping score between cluster pairs and combines them when
the score exceeds a predetermined threshold. ClusterOne
considers the dependability of interacting proteins; however,
it only predicts dense clusters and does not consider the
impact of false-negative interactions.

The Core and Peel algorithm [42] peels out the vertices
with the lowest degree while using a strict upper bound
to regulate core decomposition for the detection of quasi-
cliques. The Core and Peel approach aims to increase the
density of the generated clusters. The approach quantifies
the core decomposition of an initial network in which each
node is a part of a fully connected subgraph in which each
node has a degree of at least (k) in the initial phase. Then,
the node with the largest k-core is selected as the seed. The
number of nodes in the induced subgraph of a selected node
and its neighbors, which are a part of the same or a larger
k-core, should be greater than a predefined threshold (q),
and the density should be higher than a specified value (δ).
Once the cluster density is above or equal to the user-
defined (δ) or the number of nodes decreases below the
threshold (q), the peeling process iteratively removes nodes
with a minimum degree. Duplicates and clusters entirely
embedded in other clusters will be removed first before the
final cluster set is obtained. The Core and Peel algorithmmay
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discover overlapping clusters while not considering PPIN
noise.

The Dynamic Core-Attachment (DCA) [50] uses the
three-sigma approach to design a dynamic PPIN that
integrates the inherent organizational structures of protein
complexes and uses an outward expanding strategy to
identify protein complexes that have the core-attachment
structure’s. This approach is based on dynamic PPINs from
gene expression data and PPIN topological characteristics to
identify protein complexes.

The protein complex detection (PROCODE) proposed by
Haque et al. [21] is based on common neighborhood and
belongs to the local neighborhood density search (LD)
technique. In predicting protein complexes, PROCODE
considers the dense regions of a PPIN and the inherent
organization of proteins within a network. After the initial
identification of core proteins, the merging approach is used
to append proteins according to their density value.

Omranian et al. [37] proposed a greedy approximation
algorithm, known as protein complexes from coherent parti-
tion approach (PC2P). It does not require any parameter, and
it frames the problem as partitioning the network into biclique
spanning subgraphs, with the aim of removing the fewest pos-
sible edges. This heuristic approach provides a high search
capability, but it is time-consuming and resource-intensive.

Meng et al. [32] proposed a complex detection approach
using hierarchical compression network embedding and
core-attachment structures. In this approach, topological
information from the PPI network can be preserved both
locally and globally.

An embedding method based on multi-level networks
called (DPCMNE)was proposed byMeng et al. [33] to detect
protein complexes. The topological information of biological
networks can be preserved both locally and globally. In its
first step, DPCMNE recursively compresses the input PPI
network into multiple levels of smaller networks. Next, pro-
tein embeddings of different levels of granularity are learned
using a network embedding method. All PPI embeddings
from the compressed networks are concatenated to produce
the final embeddings for the input protein network. Last but
not least, based on pairwise similarity of protein embeddings,
a core-attachment based strategy is adopted to detect protein
complexes.

The complex prediction algorithm based on network motif
(CPNM) was proposed by Patra et al. [40] to predict protein
complexes. It consists of two main steps. The first step is to
identify network motifs, followed by defining the role played
by each protein in each motif. PPI networks quantify the
role of proteins by their degree. Consequently, proteins with
similar roles in different network motifs can be considered
similar. The second step in the CPNM procedure uses the
original PPI network, NMVector, and NMWeight as input
arguments to perform neighborhood search predictions for
protein complexes approach. Therefore, by selecting a seed
node, CPNM iteratively adds neighboring nodes based on
three constraints: (1) the attached node should be the neighbor

of the nodes in the complex, (2) the Manhattan distance
between the NMVectors of two adjacent nodes should be the
lowest between all the adjacent nodes, and (3) the average
weight of the complex should not be less than the threshold
set by the node addition.

B. COMPLEX DETECTION BASED ON EVOLUTIONARY
ALGORITHMS
Evolutionary algorithms (EAs) represent recent attempts to
imitate nature, which use prior knowledge to explore a variant
space in search of new data information. In the area of PPI,
Pizzuti et al. [47] were the first to propose a single-objective
EA to address the problem of complex detection in PPI
networks. They relied on the suggestion of many cost
functions to solve the problem. After that, Attea and Abdul-
lah [4] proposed a multi-objective model to detect protein
complexes. They also proposed protein complex attraction
and a repulsion operator to enhance the performance of
single and multi-objective-based EAs. At the complex level,
the proposed operator seems to release inter-connections.
At the protein level, on the other hand, the proposed operator
works as proposed in [7] and [22] to migrate proteins over
complexes such that more intra-connections are detected. c

Abdulateef et al. [1] re-designed the MOEA proposed
in [4] to have another topological-based mutation oper-
ator. This operator is based on the assumption that two
proteins can be split into distinct classes on the basis of
their interactions. Depending on the degree of topological
similarity between two proteins, the proteins are labeled as
intra-delineation pairs or inter-delineation pairs. Proteins are
more likely to create an intra-delineation structure if they
have many similarities in their topologies, but they may also
create inter-delineation pairs. The number of formed intra-
delineation pairs must be considerably higher than that of
inter-delineation pairs across complexes, and high number
of inter-delineation pairs and few intra-delineation pairs
should indicate distinct complexes in the identification of
a superior complex structure. This operator was proved to
leverage the detection capability of a variety of single and
multi-objective EAs.

M’barek et al. [11] proposed a single-objective genetic
algorithm, named label GA-PPI-Net. They suggested a
similarity function to compare genes or proteins, and then
they search for the optimal community by attempting to
maximize the concept of community measure. Reference [6]
proposed a MOEA to optimize three objectives for identi-
fying protein complexes in human PPI networks, and also
to discovering their associations with disease. Consequently,
some performance metrics consistently showed better results
with the predicted complexes.

III. METHOD
A. SINGLE-OBJECTIVE COMPLEX DETECTION MODELS
To solve the problem of complex detection, many researchers
have relied on the topological properties of the PPI network
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TABLE 1. Statistic reporting the addition of spurious interactions to Yeast-D1.

TABLE 2. Statistic reporting the deletion of true interactions from Yeast-D1 dataset.

TABLE 3. Performance evaluation in terms of recall, precision, and F for Yeast-D1, Yeast-D2, and Human.

TABLE 4. Statistical significance (p-value) of the proposed MOCDSNN over the state-of-the-art algorithms using Wilcoxon Signed Rank test.

to detect complexes. These complexes are characterized by
being complexes with proteins densly connected to each
other, but these proteins sparsely connected with proteins that
belong to other complexes. In order to calculate the modular
structure of complex networks, including PPI networks,
this feature is normally computed using modularity-based
methods. An additional crucial step in obtaining optimal or
near-optimal solutions in the context of community detection
is selecting a suitable fitness function, which was initially
presented by [36] using the modularity metric. It is known
that modularity (mathematically denoted as Q) is one of
the most important quality functions when it comes to
understanding and creating community/complex structures.
In complexes, modularity is a single objective function that
reflects the internal structure score. Modularity is defined as:

Q(C) =
K∑
i=1

[
m(Ci)
m
−

(∑
vi∈Ci m(vi)

2m

)2]
(6)

where m(Ci), mi, m, and K describe, respectively, the
number of intra-connections for community Ci, the number
of connections for protein vi, the total number of connections
in the network, and the number of predicted complexes.
In this case, Q is a metric that measures the fraction of

intra-connections that fall within communities as opposed to
the number that would be predicted in an equivalent network
with the same number of communities but even a random
distribution of edges within the communities. Consequently,
Q approaches its minimum, i.e. 0, if the number of intra-
connections, m(Ci), is no better than the random distribu-
tion. Alternatively, Q approaches 1 while meeting strong
community structures. However, modularity encounters a
resolution limit when many small communities remain
undetected even when they are well defined, such as cliques.
Modularity performance is highly impacted by this resolution
problem in many real networks, such as PPI networks.
To avoid the resolution limit of Q, another variant, called
modularity density (QD in Eq. 7), is proposed [16], [30].
Basically, it is based on the average degree or the density of
subgraphs. According to the size of the community,QDmea-
sures the difference between internal and external degrees.

QD(C) =
K∑
i=1

m(Ci)− m(Ci)
| Ci |

(7)

Another well-known model to define complex detection
problem as a single objective is community score of
[44] and [45]. It is proposed here tomaximize the Community
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TABLE 5. Robustness evaluation in terms of recall, precision, and F. False interactions are randomly added to protein pairs.

Score (CS), which can be defined as follows:

Maximize CS(C) =
K∑
i=1

(
2m(Ci)
| Ci |

)r

(8)

As an attempt to increase the weight of the degree of the
internal node within a community, r controls the size of the
communities. Accordingly, CS is calculated as the sum of
local scores for each community.

B. MULTI-OBJECTIVE COMPLEX DETECTION MODELS
For MOO, Bandyopadhyay et al. [6] proposed a model that
relies on topology and biological properties to detect protein
complexes and formulate them as MOO problems. The first
two objectives are formulated as maximization functions
based on the topological properties of the PPI networks.
These are node-to-cluster-contribution, and node-to-cluster
closeness centrality. The third functionmeasures the semantic
similarity.

Another MOO model was proposed by Attea et al. [4],
to formulate the problem with two conflicting, topological-
based objectives. The first objective represents the intra-
topological properties, while the second objective represents
the inter-topological properties. The internal complex score
summarizes the effect of each complex as carried out by dif-
ferent topological properties: volume (Li), cardinality (ni) of
the PPI network, neighborhood nodes that have a significant

relevance (STi), and shortest-path closeness centrality (SCCi).
Both Li and STi were formulated with regard to the
maximization function as in Eq. 9. The SCCi parameter
was formulated as a minimization function. Therefore, NCi
must be negated, by incorporating the effects of all of these
parameters into a minimization function. Consequently, the
formula for the intra-score can be written as:

min Intra(C) =
(
n2 −

K∑
i=1

|Li| + STi
ni

)
+

K∑
i=1

SCCi (9)

Those proteins within one complex have the greatest
degree of interaction with other proteins are represented
by the STi parameter. In other words, the set of proteins
P = {p1, p2, . . . , pn} within complex Ci has the degree of
interactions greater than other sets of proteins, dini (p) >

douti (p) as presented in Eq. 10.

STi =
∑
p∈Ci

dini (p)
dini (p)+ douti (p)

(10)

For complex Ci, the total number of interactions between
inter-complex proteins, douti (p) to the cardinality ni and the
number of proteins in a complex Ci that have the fewest
number of interactions, were combined into one score. After
that, the inter-metric of a whole partial solution C =

{C1,C2, . . . ,CK } was specified as a minimization function
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TABLE 6. Robustness evaluation in terms of recall, precision, and F. False interactions are added to proteins of maximum number of interactions.

as stated in Eq. 11.

min Inter(C) = K ×
K∑
i=1

(∑
p∈Ci douti (p)

ni

)
+

|p ∈ Ci|dini (p)<douti (p) (11)

The Pizzuti method (EAQ, EAQD, and EACS) offers
advantages such as simplicity and the ability to use different
quality functions for fitness. However, it has disadvantages
related to the limited exploration of multiple objectives and
sensitivity to the choice of fitness function. Additionally,
its limitations include a dependency on the validity of
quality functions and potential applicability constraints to
specific network types. On the other hand, Bandyopadhyay
et al method (MOCD1) incorporated both biological and
topological characteristics into their MOO frameworks for
the purpose of identifying protein complexes and, addition-
ally, detecting associations with diseases. In both studies,
two distinct objective functions were defined to represent
topological properties, while another objective function was
specifically designed to address certain biological properties.

C. GENOTYPE ENCODING AND PHENOTYPE DECODING
The chromosome or the individual solution I of a population I
is defined as a collection of n genes in the PPI network.
Each is defined both locus value and allele value. Locus i

identifies a protein pi in the network, while its allele
value j corresponds to the neighbor j that has an actual
interaction with protein pi in the network. Hence, each
gene represents a possible interacted protein pair. This
genotype encoding does not produce infeasible solutions
where disconnected node neighbors, noisy interactions can
occur, A[pi, pj] = 0 |i, j ∈ {1, 2, . . . , n}. By this genotype
encoding, chromosome representation can be expressed as:

I : (I1, I2, . . . , In) = Ii|∀i,1<=i<=n (12)

where Ii refers to the set of all neighbor nodes with node i in
the PPI network. The decoding function, γ , of an individual
I outlines the possible intra and inter structures of a group of
complexes formed by the genotype of this individual. This
means γ (I ) : C = {C}Ki=1. However, K could vary from
one individual to another. The formula for the representation
described by Eq. 12 implicitly determines the number of
detected complexes, K , being encoded in each individual I .

After deciding the representation of the chromosome,
the next step is to collect the structure of a population of
individual solutions. The population can be represented as:
I = (I1, I2, . . . , Iµ). It is important to point out that in any EA-
based algorithm, most of the computation time is governed
by the adopted model. Here, the time complexity depends on
the total number of nodes and their connections. A protein
interaction network with n proteins and, for the worst case,
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TABLE 7. Robustness evaluation in terms of recall, precision, and F. False interactions are added to proteins of minimum number of interactions.

with n − 1 different connections for each protein, yields a
worst time computational complexity equal toO(n×n). Thus,
for a population of µ chromosomes, the estimated worst time
complexity is O(µ× n2).
In Figure 2 an illustrative example of a compact yeast

PPI network is presented, featuring 20 proteins and a total
of 81 interactions. The depiction highlights an individual
solution, showcasing its genotype and phenotype represen-
tations. The revelation of diverse phenotypes is facilitated
by analyzing the allele values within the genotype solution.
The decoding process transforms the genotype into three
distinct complexes. Specifically, the first complex comprises
6 proteins, the second complex consists of 8 proteins, and the
third complex encompasses 6 proteins.

D. EVOLUTIONARY OPERATORS
In the adopted of EAs, iterative evolution ψ maintains two
main data structures: a population of individuals I and a set
of non-dominated solutions PS. Formally, ψ : {I,PS} →
{I′,PS′} with ψ(It ) = It+1, where It and It+1 are the
individuals at iteration t and t+1, respectively. However, that
PS and PS′ are the non-dominated solutions at iteration t and
t + 1, respectively. The population starts with an initial ran-
dom set of solutions, I0, and continues until a predetermined
maximum number of iterations, denoted by the variable
maxt , has been reached. A group of good-quality individuals
are, then, selected and exposed to perturbation operators.

FIGURE 2. Small yeast PPI networks with 20 proteins and a total of
81 interactions are depicted, showcasing an individual solution with
genotype and phenotype representations.

A predetermined value for a chromosome-wise recombina-
tion probability, denoted by Pc, is followed to accomplish the
uniform recombination. For this recombination, consider two
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TABLE 8. Robustness evaluation in terms of recall, precision, and F. True interactions are randomly deleted from protein pairs.

individuals, I1 : (I1,1, I1,2, . . . , I1,n) and I2 : (I2,1, I2,2, . . . ,
I2,n)), as the two participating individuals. By combining the
alleles of the two individuals, a child I ′ can be produced
from them. Figure 3 illustrates the working mechanism of
the uniform crossover, which is mathematically formalized
as follows:

(∀i ∈ {1, 2, . . . , n}) :

I ′i =

{
I1,i if r ≤ 0.5
I2,i otherwise

(13)

where r ∼ [0, 1] is a uniform random value.

E. HEURISTIC MUTATION OPERATOR
The typical purpose of the mutation operator is to make
a tiny shift in the solution’s behavior toward neighboring
regions. Random change mutations, for example, can be used
with probability Pm as a canonical non-heuristic mutation
operator. However, in order to enhance the efficiency of any
EA and ensure its reliability, the design must include the
incorporation of domain knowledge. This concept is adopted
with various formulations to improve the performance of EAs
in different research topics [10], [15], [25].

1) PROTEIN COMPLEX ATTRACTION AND REPULSION
In this paper, we adopted the perturbation operator (2h)
proposed byAttea et al. [4] called (protein complex attraction

FIGURE 3. Two parents with their graph structures and genotypes. The
child is generated by a uniform crossover.

and repulsion). This operator is an extension of the operator
originally proposed in [22]. The extension is specifically
designed to address the complex detection problem in PPI
networks. The core idea of 2h is to fulfill the topological
properties at both complex and protein levels. At the complex
level, this operator attempts to limit the boundary of each
complex with proteins that have dense linkages and to strive
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TABLE 9. Robustness evaluation in terms of recall, precision, and F. True interactions are deleted from proteins of maximum number of interactions.

toward reducing the number of scattered connections that
occur between complexes. At protein level, on the other
hand, the adopted operator works on re-assigning proteins
to complexes such that more intra-relationships are grouped
together.

2) STRONG NEIGHBOR-NODE MIGRATION OPERATOR
In this paper, we propose a heuristic perturbation operator,
referred to as the strong neighbor-node migration (SNN )
operator, to satisfy the topological attributes inherent to the
protein level. The primary focus of the proposed operator is to
deal with proteins being classified as weaker entities (defined
by having fewer internal connections compared to external
connections) within a given complex. These proteins are
subsequently reassigned to one of the complexes of adjacent
protein. Consider an individual I = {I1, I2, . . . , IN } with K
complexes in its complex structure C. For the proposed SNN
operator, each protein is examined using the parameter Pm.
In the context of this framework, the preservation of the
structural integrity of the complex associated with Pi is
imperative, contingent upon its classification as a ‘strong
node’. This classification is predicated on the fulfillment
of the conditions outlined in Eq. 14. In cases where this
condition is not met, the complex of node Pi will assume the
characteristics of one of the adjacent nodes’ complexes. In a
formal context, when considering a set of proteins denoted as
Pi|1 ≤ i ≤ n, if protein Pi within its current complex Ck fails

to meet the criteria specified in Eq. 14, the complex of the
neighboring proteins Pj is assigned to protein Pi. An outline
of the proposed SNN heuristic mutation operator is depicted
in algorithm 4.

Intra(Pi,C) > Inter(Pi,C)|Pi ∈ C (14)

Algorithm 4 General Framework of the Proposed
Heuristic Mutation Operator

1: Initialize the complex structure: C ← γ (I )
2: Initialize protein counter: i = 1
3: while i ≤ N do
4: Set C as the complex of protein Pi
5: if rand <= pm then
6: /* The probability of SNN is satisfied */
7: Calculate Intra(Pi,C) = (dinPi ,C)
8: Calculate Inter(Pi,C) = (doutPi ,C)
9: if Intra(Pi,C) <= Inter(Pi,C) then
10: /* Protein Pi is weak in complex C */
11: Find Pi = argmaxIntra(Pi,C)
12: Set allele value of gene i : Ii← i
13: end if
14: end if
15: Increment protein counter: i = i+ 1
16: Return C ← γ (I );
17: end while
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TABLE 10. Robustness evaluation in terms of recall, precision, and F. True interactions are deleted from proteins of minimum number of interactions.

To elucidate the significant role of this operator in
enhancing both exploration and exploitation facets within our
approach, we provide a detailed exposition:

• Exploration: Our innovative heuristic operator serves
as a catalyst for exploration by seamlessly directing
solutions towards promising domains within the expan-
sive search space. Specifically, the concept of ‘‘strong
neighbor-node migration’’ empowers the algorithm to
traverse diverse solution landscapes, accentuating the
consideration of robust interactions between nodes. This
pivotal attribute enriches the exploration phase, leading
to a more nuanced and comprehensive examination of
potential solutions tailored to the intricate detection
challenges inherent in Protein-Protein Interaction (PPI)
networks.

• Exploitation: In addition to fostering exploration, our
heuristic operator adeptly facilitates exploitation by
steering the evolutionary trajectory towards regions
in the search space where high-quality solutions are
likely to be concentrated. Through a deliberate focus
on potent neighbor-node interactions, the algorithm
adeptly exploits areas that hold promise, enabling
iterative refinement and enhancement of solutions. This
strategic approach ensures a continual convergence of
the algorithm towards optimal or near-optimal solutions,
solidifying its efficacy over time.

In this paper, we introduce a methodical and detailed
framework for evaluating the detection of protein complexes,
as illustrated in Figure 4. This framework is structured
into multiple critical stages, each playing a vital role in
the precise detection and assessment of protein complexes.
By systematically addressing each stage, the methodology
ensures a comprehensive approach to the analysis of protein
complexes.

IV. RESULTS AND DISCUSSION
In this paper, we propose a heuristic perturbation operator
for the complex detection problem in PPI networks. Thus,
we must determine whether these suggestions make sense
by evaluating the quality gain of the generated complexes
as compared to the most recent models. In this section, the
performance evaluations are presented into two successive
competition phases. In the first phase, we will study the
effectiveness of the proposed heuristic operator injected with
multi-objective model against the single and multi-objective
EA models proposed by the state-of-the-art. In the second
phase, we will evaluate the robustness of the proposed
heuristic operator and the adopted single and multi-objective
EAs in unraveling protein complexes from PPI networks
that contain noisy interactions or suffer from missing
true interactions. Three models with single objective EAs
proposed by Pizzuti et al. [47] are evaluated. These models
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TABLE 11. Robustness evaluation in terms of recallN , precisionN , and FN . False interactions are randomly added to protein pairs.

FIGURE 4. A Comprehensive Framework for Evaluating Protein Complex Detection: An Overview of Key Stages and Processes.

are called hereinafter as EAQ, EAQD, and EACS . Further,
the multi-objective EA-based model proposed by [6] and
formulated in Eq. 15 and Eq. 16 is also adopted using the
framework of MOEA/D (referred as MOCD1). The second
multi-objective EA-based model (formulated in Eq. 9 and
Eq. 11) and the heuristic operator proposed by [4] are adopted
using the framework of NSGA-II (referred as MOCD2). The
third multi-objective EA-based model based on our heuristic

operator is used the framework of MOEA/D (referred as
MOCDSNN ).

maxCon(C) =
K∑
i=1

∑
v∈Ci

ini(v)
|lv|

(15)

maxCC(C) =
K∑
i=1

CCi (16)
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TABLE 12. Robustness evaluation in terms of recallN , precisionN , and FN . False interactions are added to proteins of maximum number of interactions.

where CCi is the reciprocal shortest-path distance averaged
over all vertices in cluster Ci.

A. PPI NETWORK DATASETS
To evaluate the performance of the EA models, it is
necessary to rely on datasets that were adopted by the
previous researchers in their study. There are three different
datasets were applied in this study. Two of them are yeast
Saccharomyces cerevisiae, and the third dataset is the human
proteins. Gavin et al. [19] prepared the first dataset called
Yeast-D1 and [53] filtered it. There are n = 990 proteins and
m = 4687 interactions in the filtered version. The second
dataset, Yeast-D2 [53], contains n = 1443 proteins and
m = 6993 interactions. The third dataset, human protein
dataset contains n = 9589 protein and m = 39240 inter-
actions. Figure 5 depicts these three PPI networks.

FIGURE 5. Three different PPI networks. Yeast Saccharomyces cerevisiae
and human datasets are shown from left to right.

Three benchmark datasets for protein complexes (Cmplx-
D1, Cmplx-D2, and human) are used in the evaluation.

These are hand-curated from the Munich Information Center
for Protein Sequence (MIPS) catalog [34], and human
from the Human Protein Reference Database (HPRD) [43].
Cmplx-D1 contains 81 complexes, each complex ranging in
size from 6 to 38 proteins. Cmplx-D2 contains 162 com-
plexes, each complex ranging in size from 4 to 266 proteins.
HPRD complex contain 1318 complexes, each complex
ranging in size from 1 to 31 proteins.

Figure (6) depicts Yeast-D1 containing 990 different
proteins with 4687 interactions (top left). This network is
decomposed into 81 complexes of different sizes (top right).
One of these complexes is selected and enlarged (bottom
right). The selected complex contains 21 proteins with their
internal connections. Further, protein #49 (‘YBR198C’) from
this complex is also depicted (bottom left) to clarify its details
within the complex. It contains internal links (represented in
green color) and three other inter-connections (represented in
red color).

B. EVALUATION MEASURES
1) COMPLEX-LEVEL EVALUATION
There are a variety of metrics that can be used to evaluate the
efficacy of the predicted complexes. For the complex level,
the predicted complexes C = {C1,C2, . . . ,CK } obtained
by the examined model were compared to benchmark gold
complexes C∗ = {C∗1 ,C

∗

2 , . . . ,C
∗
K∗} from theMIPS. In terms
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TABLE 13. Robustness evaluation in terms of recallN , precisionN , and FN . False interactions are added to proteins of minimum number of interactions.

FIGURE 6. Yeast-D1 and protein #49 with its intra-connections (green
edges) and inter-connections (red edges).

of proteins, an overlapping score (OS) indicates the degree
to which a predicted complex Ci in the solution C overlaps
with a benchmark complex C∗j (Eq. 17). If both complexes
(Ci and C∗j ) have an overlapping score (OS) equal to or
greater than a given threshold, σOS, then the predicted

complex Ci is said to match the benchmark complex C∗j .

OS(Ci,C∗j ) =
|Ci ∩ C∗j |

2

|Ci ∪ C∗j |
(17)

match(Ci,C∗j ) =

{
1, if OS(Ci,C∗j ) ≥ σOS
0, otherwise

(18)

The terms of recall, precision, and cumulative F are
determined according to the matching (stated in Eq. 18). The
quality of a prediction is measured by its recall, which is
the fraction of benchmark complexes that are successfully
matched to any predicted complex. On the other hand,
precision refers to the fraction of predicted complexes that are
identical to a given benchmark complex. The F is a harmonic
mean of both recall and precision, as demonstrated in Eq. 20.

Recall =
|C∗i : C

∗
i ∈ C∗ ∧ ∃Cj ∈ C → match(C∗i ,Cj)|

K∗
(19)

Precision =
|Ci : Ci ∈ C ∧ ∃C∗j ∈ C∗→ match(Ci,C∗j )|

K

F =
2× Recall × Precision
Recall + Precision

(20)

2) PROTEIN-LEVEL EVALUATION
In the same manner as recall and precision measure the
overall quality of the prediction at the complex level,
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TABLE 14. Robustness evaluation in terms of recallN , precisionN , and FN . True interactions are randomly deleted from protein pairs.

RecallN and PrecisionN can evaluate the quality of the
prediction, but at the protein level [53]. Based on these
measurements, FN resembles at the protein level.

RecallN =

∑K∗
i=1 |maxCj∈C match(C

∗
i ,Cj)|∑K∗

i=1 |C
∗
i |

(21)

PrecisionN =

∑K
i=1 |maxC∗j ∈C∗ match(Ci,C

∗
j )|∑K

i=1 |Ci|
(22)

FN =
2× RecallN × PrecisionN
RecallN + PrecisionN

(23)

Two additional measures based on the intersection between
true complexes C and detected complexes C∗ can be evaluated
directly without reference to the overlapping score (σOS).
These measures are sensitivity and positive predictive value
PPV.

sensitivity =

∑K
i=1maxK

∗

j=1 Ti,j∑K∗
i=1 ni

(24)

PPV =

∑K
j=1maxK

∗

i=1 Ti,j∑K
j=1

∑K∗
i=1 Ti,j

(25)

where Ti,j in both Eq. 24 and Eq. 25 represents the matched
proteins between the true complexes and the predicted
complexes. Geometric accuracy represents the trade-off

between sensitivity and PPV in Eq. 26.

accuracy =
√
sensitivity× PPV (26)

C. ALGORITHM PARAMETER SETTINGS
All single and multi-objective EA models used in this paper
are set up with the following parameter settings: population
size (µ) is set to 100, and to stop the evolution process,
the maximum number of generations is set to 100. We set
the following control parameters: probability of uniform
crossover, (Pc = 0.8), probability of mutation operator,
(Pm = 0.2), and maximum number of run (MaxRun =
30). Extensive experiments on all EA models were evaluated
over yeast PPI networks and their noisy versions. Noisy PPI
networks were generated using different percentage of noise.
In each percentage, 10 different artificial PPI networks were
generated. Each network is tested with 30 different runs and
the average of the 10 networks over 300 runs is reported in
each test case.

D. ROBUSTNESS AGAINST NEGATIVE CONTROL
The reliability of a PPI network is affected by a major
problem: the high noise rate in high-throughput experiments.
However, the spurious inter-complex interactions refer to the
addition of false positives, whereas removal of interactions
refer to missing protein interactions in a PPI network. Brohee
et al., and Pizzuti et al., [14], [47] have investigated the
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TABLE 15. Robustness evaluation in terms of recallN , precisionN , and FN . True interactions are deleted from proteins of maximum number of interactions.

potential of their algorithms to assess the consistency and
effectiveness of the algorithms in detecting protein complexes
even in the presence of noise in PPI networks. However, the
addition or deletion were performed randomly. In this paper,
the adopted EAs, (EAQ, EAQD, EACS ,MOCD1, andMOCD2)
are tested on PPI networks, artificially generated as:

• Adding interactions to random protein pairs
• Adding interactions to proteins that have the most
number of interactions (highest interaction score)

• Adding interactions to proteins that have the fewest
number of interactions (lowest interaction score)

• Removing interactions from random protein pairs
• Removing interactions from proteins that have the most
number of interactions

• Removing interactions from proteins that have the
fewest number of interactions

In each type of noise, an increasing percentage of
interactions (10%, 20%, 30%, 40% and 50%) are added to
or deleted from Yeast-D1 and Yeast-D2. In each percent-
age, 10 different networks are generated. Interactions are
added/deleted to/from randomly selected proteins, to/from
proteins with the highest number of interactions, or to/from
proteins with fewest number of interactions. Table 1 reports
the statistics of adding spurious interactions. Table 2 reports
the statistics of deleting true interactions from the original PPI
dataset. In both tables, m refers to the number of interactions,

(|n|d=1) refers to the number of proteins that have only
one interaction, and (dAvg) refers to the average number of
interactions per protein.

Figure 7 depicts the Saccharomyces cerevisiae yeast PPI
network, which is represented by the following, the original
Yeast-D1 PPI network shown at the top, which contains
n = 990 proteins with m = 4687 interactions, as the proteins
that contain one interaction is |n|d=1 = 28 proteins, with an
average of this network is davg = 9.4687 interactions for each
protein. In the bottom left, it represents the random addition

FIGURE 7. Yeast-D1 (top) and three artificial PPI networks generated by
adding false interactions to Yeast-D1.
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TABLE 16. Robustness evaluation in terms of recallN , precisionN , and FN . True interactions are deleted from proteins of minimum number of interactions.

of false interactions to protein pairs. The total number of
interactions is increased to m = 5859 after adding the
false interaction, and the protein with one interaction is
reduced to |n|d=1 = 3 proteins, with an average of this
spurious PPI network being davg = 11.8364 interactions
per protein. In the bottom center, it represents the addition
of false interactions to the protein with the highest degree
of interactions. The total number of interactions is increased
to be m = 6520, and the protein with one interaction is
reduced to be |n|d=1 = 5 proteins, with an average of this
spurious PPI network is davg = 13.1727 interactions per
protein. In the right corner, it represents the addition of false
interactions to the protein with least degree of interactions.
The total number of interactions is increased to be m =
6651, and since the addition is to the proteins with the
fewest interactions, hence, |n|d=1 = 0, the average of this
spurious PPI network is davg = 13.4364. On the other hand,
Figure 8 depicts the Saccharomyces cerevisiae yeast PPI
network, which is represented by the original Yeast-D1 PPI
network shown at the top, which contains n = 990 proteins
with m = 4687 interactions, as the proteins that contain
one interaction is |n|d=1 = 28 proteins, with an average
of this network is davg = 9.4687 interactions for each
protein. In the bottom left, it represents the random deletion
of true interactions from protein pairs. The total number
of interactions is decreased to m = 2344 after removing

FIGURE 8. Yeast-D1 (top) and three artificial PPI networks generated by
deleting true interactions from Yeast-D1.

the true interaction, and the protein with one interaction is
increased to |n|d = 1 = 90 proteins, with an average of
this spurious PPI network being davg = 4.7354 interactions
per protein. In the bottom center, it represents the deletion
of true interactions from the protein with highest degree of
interactions. The total number of interactions is decreased to
bem = 3519, and the proteinwith one interaction is increased
to be |n|d=1 = 29 proteins, with an average of this spurious
PPI network is davg = 7.1091 interactions per protein. In the
right corner, it represents the deletion of true interactions from
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TABLE 17. Robustness evaluation in terms of recall, precision, and F. False interactions are randomly added to protein pairs.

the protein with least degree of interactions. The total number
of interactions is decreased to be m = 3476, and since the
addition is to the proteins with the fewest interactions, hence,
|n|d=1 = 207, the average of this spurious PPI network is
davg = 7.0222 interactions per protein. It is worth to note
that all of these additions and deletions are with extremely
high noise percentages of 50%.

The results of the following tables report performance
comparison at both complex and protein levels for both
Yeast-D1 and Yeast-D2 and their synthesized noisy networks.
The overlapping score is fixed to σOS = 0.5. The best results
in each table are highlighted in bold.

Table 3 report recall, precision, and F measures for Yeast-
D1, Yeast-D2, and HPRD datasets. The results point out
that multi-objective based on proposed heuristic operator,
MOCDSNN beats all single and multi-objective state-of-the
art models. Furthermore, Table 4 reports theWilcoxon signed
ranked test for the results reported in the Table 3. The test is
calculated with significance level α = 0.05. The results are
reported as (p−value), where p−valuemeans the probability
that a success of the proposed multi-objective based on
heuristic operator MOCDSNN over the counterpart state-of-
the-art models. The results are given in bold if p− value ≤ α
(means satisfying significance requirement).

Table 17, Table 6, and Table 7 reports the evaluation of
robustness (in terms of Recall, Precision, and F) for both
Yeast-D1 and Yeast-D2 and their synthesized noisy networks,

where noise is added to the original networks. Table 8,
Table 9, and Table 10, on the other hand, report the evaluation
of robustness (in terms of Recall, Precision, and F) for Yeast-
D1 andYeast-D2 and their synthesized noisy networks, where
true interactions are deleted from the networks.

For protein level, Table 11, Table 12, and Table 13
report the evaluation of robustness (in terms of RecallN ,
PrecisionN , and FN ) for both Yeast-D1 and Yeast-D2 and
their synthesized noisy networks, where false interactions
are added to the networks. On the other hand, Table 14,
Table 15, and Table 16 report the evaluation of robustness (in
terms of RecallN , PrecisionN , and FN ) for the two networks
and their synthesized noisy networks where true interactions
are deleted with different percentage (10%, 20%, 30%, 40%
and 50%).

The figures presented in this study (Figure 9, Figure 10,
Figure 11) showcase the impact of three distinct types of
noise on two yeast PPI networks, Yeast-D1 and Yeast-D2.
Each graph consists of two rows, where the first row
details PPV, sensitivity, and accuracy statistics based on
equations (25, 24, and 26) for Yeast-D1. The second
row mirrors the same statistics but for Yeast-D2. These
graphs serve to illustrate the robustness of our proposed
method (MOCDSNN ) against the introduction of spurious
interactions into the original network, with proportions
varying from 0% to 50% as indicated on the x-axis. For each
proportion, we systematically compare the performance of
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FIGURE 9. An evaluation of Yeast-D1 (top) and Yeast-D2 (bottom). False interactions are randomly added.

FIGURE 10. An evaluation of Yeast-D1 (top) and Yeast-D2 (bottom). False interactions are added to highly-connected
proteins.

FIGURE 11. An evaluation of Yeast-D1 (top) and Yeast-D2 (bottom). False interactions are added to minimally-connected
proteins.

state-of-the-art methods alongside our proposed method,
represented by the distinctive blue bar. Significantly, our
proposed method (MOCDSNN ) consistently outperforms all

previous approaches, both in the realm of single-objective
(EAQ, EAQD, EACS ) and multi-objective (MOCD1,MOCD2)
evaluations.
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FIGURE 12. An evaluation of Yeast-D1 (top) and Yeast-D2 (bottom). True interactions are randomly deleted.

FIGURE 13. An evaluation of Yeast-D1 (top) and Yeast-D2 (bottom). True interactions are deleted from highly-connected
proteins.

FIGURE 14. An evaluation of Yeast-D1 (top) and Yeast-D2 (bottom). True interactions are deleted from
minimally-connected proteins.

In contrast, the figures presented in another context
(Figure 12, Figure 13, Figure 14) delve into the repercussions
of three types of noise introduced into two yeast PPI

networks, Yeast-D1 and Yeast-D2. Similar to the previous
scenario, each graph features two rows. The first row
delineates PPV, sensitivity, and accuracy matching statistics
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for Yeast-D1, while the second row mirrors these statistics
for Yeast-D2. These graphs illuminate the robustness of
our proposed method (MOCDSNN ) against the deletion of
true interactions from the original network, with proportions
ranging from 0% to 50% as indicated on the x-axis. As with
the previous experiment, we meticulously compare the
performance of established methods against our proposed
method, symbolized by the consistent blue bar. Remarkably,
our proposed method (MOCDSNN ) continues to outshine all
previous approaches, spanning both single-objective (EAQ,
EAQD, EACS ) and multi-objective (MOCD1, MOCD2).
The overall results reveal the ability of the multi-objective

model based on the proposed heuristic operator to outperform
the detection ability of the state-of-the-art single and multi-
objective models. Further, the definition of the complex
detection problem as a multi-objective model also affects the
performance of the MOEA. In the reported results, we found
that MOCDSNN is even more robust than the counterpart
MOEA, i.e. MOCD1, and MOCD2 in the presence of noisy
interactions or in the absence of true interactions. This is
mainly due to the formula used in the definition ofMOCDSNN
model (Eq. 9 and Eq. 11) and to the effectiveness of the
proposed heuristic mutation operator.

E. COMPLEX DETECTION PERFORMANCE: SNN-BASED
EVOLUTIONARY ALGORITHMS AGAINST
STATE-OF-THE-ART METHODS
The SNN operator, designed to enhance the solution quality
during the evolution of an EA tailored for the complex
detection in PPI networks. The superiority of our proposed
method can be attributed to its ability to address a critical
aspect that has been relatively overlooked in existing state-
of-the-art methods: the robustness of evolutionary algorithms
when dealing with noisy or missing interactions in PPI
networks. While existing methods often focus on partitioning
PPI networks based on graph properties or biological seman-
tics, our SNN operator specifically targets the topological
attributes inherent to the protein level.

To elaborate, the SNN operator focuses on proteins
classified as weaker entities within a given complex, defined
by having fewer internal connections compared to external
connections. These weaker proteins are crucial to the
structural integrity of the complex, and our operator aims
to enhance their placement within the evolving algorithm.
By reassessing the classification of proteins based on
the ‘‘strong node’’ criteria, as outlined in Eq. 14, our
method ensures the preservation of the structural integrity of
complexes. In cases where a protein fails to meet the criteria
of a strong node, the SNN operator dynamically reassigns the
complex of the neighboring proteins to the weak protein. This
adaptability enables our method to handle scenarios where
traditional methods might falter, ensuring a more accurate
representation of the underlying biological reality in the
presence of noise or missing data. Therefore, our proposed
method’s outperform of other state-of-the-art methods lies in
its unique ability to adapt and improve the classification of

weaker proteins within PPI networks, ultimately leading to
more accurate and biologically relevant complex detection.

F. COMPUTATIONAL PARALLELIZATION
Due to their inherently evolutionary nature, EAs can readily
accommodate parallelization across multiple generations.
In our specific implementation, we have observed a signif-
icant performance enhancement, demonstrating a speedup
proportional to the total number of available workers as
opposed to a scenario with only a single worker. For
configurations employing up to 88 cores, the speedup is
computed as the ratio of the time (in seconds) required for
the EA-based complex detection approach to complete its
run when executed serially without any workers, to the time
taken when executed with w cores (where 1 ≤ w ≤ 88). It is
imperative to note that our experimentation and analysis were
conducted in the MATLAB R2022a environment, utilizing
an Intel Xeon CPU E5-2699 v4 (2 sockets CPU’s, each with
44 cores) with a base speed of 2.2GHz and 64 GB of RAM.
Figure 15 illustrates the computational hardware employed
for algorithm implementation.

FIGURE 15. An illustration of the computational hardware utilized in
implementing the algorithms.

V. CONCLUSION
In this paper, we proposed a novel heuristic operator
and employed single and multi-objective EAs to assess
the robustness of three single-objective models and two
multi-objective models in the context of complex detection.
The evaluation was conducted on three widely recognized
datasets, comprising Saccharomyces cerevisiae (yeast) and
human PPI networks, along with three benchmark sets of
complexes. Additionally, we explored the impact of network
perturbations, introducing various levels of noise to the
original PPI network. Our experimental findings distinctly
highlight the superiority of the multi-objective model,
demonstrating a heightened level of prediction accuracy
compared to other models. However, beyond the technical
outcomes, it is imperative to discuss the practical implications
of our work.
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A. PRACTICAL IMPLICATIONS
1) BIOLOGICAL RELEVANCE
The observed success of the multi-objective model suggests
its potential for practical application in understanding the
intricacies of protein complexes. Future research should
consider integrating biological information, such as gene
ontology, to refine the objective function and heuristic
operator. This could lead to the development of more
biologically relevant and accuratemodels for protein complex
detection.

2) BIOMEDICAL RESEARCH AND DRUG DISCOVERY
The accurate identification of protein complexes is crucial in
biomedical research, especially in the context of diseases. Our
findings provide a foundation for enhancing the efficiency
of complex detection algorithms, thereby contributing to the
identification of potential drug targets and understanding
disease mechanisms.

3) NETWORK PERTURBATION STUDIES
The exploration of network perturbations and noise levels
adds a practical dimension to our work. Understanding
how these algorithms perform under varying conditions is
instrumental in developing robust and adaptable models that
can handle real-world biological data, which often contains
inherent noise and uncertainties.

B. FUTURE DIRECTIONS
Encouraging further research to extend our work by incor-
porating biological information and designing objective
functions based on this data will not only enhance the
practical relevance of our findings but also open avenues for
interdisciplinary collaboration between computer science and
biology. In conclusion, our study not only advances the field
of complex detection algorithms but also presents opportuni-
ties for impactful applications in biological and biomedical
research, providing a bridge between computational methods
and real-world biological phenomena.

REFERENCES
[1] A. H. Abdulateef, B. A. Attea, A. N. Rashid, and M. Al-Ani, ‘‘A

new evolutionary algorithm with locally assisted heuristic for complex
detection in protein interaction networks,’’ Appl. Soft Comput., vol. 73,
pp. 1004–1025, Dec. 2018.

[2] V. Arnau, S. Mars, and I. Marín, ‘‘Iterative cluster analysis of protein
interaction data,’’ Bioinformatics, vol. 21, no. 3, pp. 364–378, Feb. 2005.

[3] N. Atias and R. Sharan, ‘‘Comparative analysis of protein networks: Hard
problems, practical solutions,’’ Commun. ACM, vol. 55, no. 5, pp. 88–97,
May 2012.

[4] B. A. Attea and Q. Z. Abdullah, ‘‘Improving the performance of
evolutionary-based complex detection models in protein–protein interac-
tion networks,’’ Soft Comput., vol. 22, no. 11, pp. 3721–3744, Jun. 2018.

[5] G. D. Bader and C. W. Hogue, ‘‘An automated method for finding
molecular complexes in large protein interaction networks,’’ BMC Bioinf.,
vol. 4, no. 1, pp. 1–27, Jan. 2003.

[6] S. Bandyopadhyay, S. Ray, A. Mukhopadhyay, and U. Maulik, ‘‘A
multiobjective approach for identifying protein complexes and studying
their association in multiple disorders,’’ Algorithms Mol. Biol., vol. 10,
no. 1, pp. 1–15, Dec. 2015.

[7] B. A. Attea and H. S. Khoder, ‘‘A new multi-objective evolutionary
framework for community mining in dynamic social networks,’’ Swarm
Evol. Comput., vol. 31, pp. 90–109, Dec. 2016.

[8] A.-L. Barabási and Z. N. Oltvai, ‘‘Network biology: Understanding
the cell’s functional organization,’’ Nature Rev. Genet., vol. 5, no. 2,
pp. 101–113, Feb. 2004.

[9] B. A. Attea, A. D. Abbood, A. A. Hasan, C. Pizzuti,M.Al-Ani, S. Özdemir,
and R. D. Al-Dabbagh, ‘‘A review of heuristics and metaheuristics for
community detection in complex networks: Current usage, emerging
development and future directions,’’ Swarm Evol. Comput., vol. 63,
Jun. 2021, Art. no. 100885.

[10] B. A. Attea, H. M. Rada, M. N. Abbas, and S. Özdemir, ‘‘A new
evolutionary multi-objective community mining algorithm for signed
networks,’’ Appl. Soft Comput., vol. 85, Dec. 2019, Art. no. 105817.

[11] M. B.M’barek, A. Borgi, S. B. Hamida, andM. Rukoz, ‘‘Genetic algorithm
to detect different sizes? Communities from protein–protein interaction
networks,’’ in Proc. 14th Int. Conf. Softw. Technol., Jul. 2019, pp. 359–370.

[12] J. R. Bock and D. A. Gough, ‘‘Predicting protein–protein interactions from
primary structure,’’ Bioinformatics, vol. 17, no. 5, pp. 455–460, May 2001.

[13] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner, ‘‘On modularity clustering,’’ IEEE Trans. Knowl. data
Eng., vol. 20, no. 2, pp. 172–188, Dec. 2007.

[14] S. Brohée and J. van Helden, ‘‘Evaluation of clustering algorithms for
protein–protein interaction networks,’’BMCBioinf., vol. 7, no. 1, pp. 1–19,
Dec. 2006.

[15] H. M. Burhan, B. A. Attea, A. D. Abbood, M. N. Abbas, and M. Al-Ani,
‘‘Evolutionary multi-objective set cover problem for task allocation
in the Internet of Things,’’ Appl. Soft Comput., vol. 102, Apr. 2021,
Art. no. 107097.

[16] M. Chen, K. Kuzmin, and B. K. Szymanski, ‘‘Community detection via
maximization of modularity and its variants,’’ IEEE Trans. Computat.
Social Syst., vol. 1, no. 1, pp. 46–65, Mar. 2014.

[17] Y.-R. Cho, W. Hwang, M. Ramanathan, and A. Zhang, ‘‘Semantic inte-
gration to identify overlapping functional modules in protein interaction
networks,’’ BMC Bioinf., vol. 8, no. 1, pp. 1–13, Dec. 2007.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[19] A.-C. Gavin et al., ‘‘Proteome survey reveals modularity of the yeast cell
machinery,’’ Nature, vol. 440, no. 7084, pp. 631–636, Mar. 2006.

[20] E. Georgii, S. Dietmann, T. Uno, P. Pagel, and K. Tsuda, ‘‘Enumeration
of condition-dependent dense modules in protein interaction networks,’’
Bioinformatics, vol. 25, no. 7, pp. 933–940, Apr. 2009.

[21] M. Haque, R. Sarmah, and D. K. Bhattacharyya, ‘‘A common neighbor
based technique to detect protein complexes in PPI networks,’’ J. Genetic
Eng. Biotechnol., vol. 16, no. 1, pp. 227–238, Jun. 2018.

[22] B. A. Attea, W. A. Hariz, and M. F. Abdulhalim, ‘‘Improving the
performance of evolutionary multi-objective co-clustering models for
community detection in complex social networks,’’ Swarm Evol. Comput.,
vol. 26, pp. 137–156, Feb. 2016.

[23] S. Hashemifar, B. Neyshabur, A. A. Khan, and J. Xu, ‘‘Predicting
protein–protein interactions through sequence-based deep learning,’’
Bioinformatics, vol. 34, no. 17, pp. i802–i810, Sep. 2018.

[24] P. Jancura, E. Mavridou, E. Carrillo-de Santa Pau, and E. Marchiori,
‘‘A methodology for detecting the orthology signal in a PPI network at
a functional complex level,’’ BMC Bioinf., vol. 13, no. S10, pp. 1–13,
Jun. 2012.

[25] E. A. Khalil, S. Ozdemir, and B. A. Attea, ‘‘A new task allocation protocol
for extending stability and operational periods in Internet of Things,’’ IEEE
Internet Things J., vol. 6, no. 4, pp. 7225–7231, Aug. 2019.

[26] A. D. King, N. Pržulj, and I. Jurisica, ‘‘Protein complex prediction via
cost-based clustering,’’ Bioinformatics, vol. 20, no. 17, pp. 3013–3020,
Nov. 2004.

[27] Z. A. King, J. Lu, A. Dräger, P. Miller, S. Federowicz, J. A. Lerman,
A. Ebrahim, B. O. Palsson, and N. E. Lewis, ‘‘BiGG models: A platform
for integrating, standardizing and sharing genome-scale models,’’ Nucleic
Acids Res., vol. 44, no. D1, pp. D515–D522, Jan. 2016.

[28] N. Krogan et al., ‘‘Global landscape of protein complexes in the yeast
Saccharomyces cerevisiae,’’ Nature, vol. 440, no. 7084, pp. 637–643,
Mar. 2006.

[29] X. L. Li, C. S. Foo, and S. K. Ng, ‘‘Discovering protein complexes in
dense reliable neighborhoods of protein interaction networks,’’ Comput.
Syst. Bioinf., vol. 6, pp. 157–168, Jan. 2007.

28896 VOLUME 12, 2024



M. N. Abbas et al.: Evolutionary Algorithm With Heuristic Operator

[30] J. X. Liu, J. C. Zeng, Y. W. Xue, and Y. Wang, ‘‘Quantitative function for
community detection,’’ Adv. Mater. Res., vols. 433–440, pp. 6441–6446,
Jan. 2012.

[31] I. Manipur, M. Giordano, M. Piccirillo, S. Parashuraman, and
L. Maddalena, ‘‘Community detection in protein–protein interaction
networks and applications,’’ IEEE/ACM Trans. Comput. Biol. Bioinf.,
vol. 20, no. 1, pp. 217–237, Jan. 2023.

[32] X.Meng, X. Peng, F.-X.Wu, andM. Li, ‘‘Detecting protein complex based
on hierarchical compressing network embedding,’’ inProc. IEEE Int. Conf.
Bioinf. Biomed. (BIBM), Nov. 2019, pp. 215–218.

[33] X. Meng, J. Xiang, R. Zheng, F.-X. Wu, and M. Li, ‘‘DPCMNE: Detecting
protein complexes from protein–protein interaction networks via multi-
level network embedding,’’ IEEE/ACM Trans. Comput. Biol. Bioinf.,
vol. 19, no. 3, pp. 1592–1602, May 2022.

[34] H. W. Mewes, ‘‘MIPS: A database for genomes and protein sequences,’’
Nucleic Acids Res., vol. 28, no. 1, pp. 37–40, Jan. 2000.

[35] T. Nepusz, H. Yu, and A. Paccanaro, ‘‘Detecting overlapping protein
complexes in protein–protein interaction networks,’’ Nature Methods,
vol. 9, no. 5, pp. 471–472, May 2012.

[36] M. E. J. Newman and M. Girvan, ‘‘Finding and evaluating community
structure in networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 69, no. 2, Feb. 2004, Art. no. 026113.

[37] S. Omranian, A. Angeleska, and Z. Nikoloski, ‘‘PC2P: Parameter-free
network-based prediction of protein complexes,’’ Bioinformatics, vol. 37,
no. 1, pp. 73–81, Apr. 2021.

[38] S. Omranian and Z. Nikoloski, ‘‘CUBCO+: Prediction of protein
complexes based on min-cut network partitioning into biclique spanned
subgraphs,’’ Appl. Netw. Sci., vol. 7, no. 1, p. 71, Oct. 2022.

[39] M. Oti, ‘‘Predicting disease genes using protein–protein interactions,’’
J. Med. Genet., vol. 43, no. 8, pp. 691–698, Aug. 2006.

[40] S. Patra and A. Mohapatra, ‘‘Protein complex prediction in interaction
network based on network motif,’’ Comput. Biol. Chem., vol. 89,
Dec. 2020, Art. no. 107399.

[41] P. Pe and A. Zhang, ‘‘A two-step approach for clustering proteins based
on protein interaction profile,’’ in Proc. 5th IEEE Symp. Bioinf. Bioeng.
(BIBE), Oct. 2005, pp. 201–209.

[42] M. Pellegrini, M. Baglioni, and F. Geraci, ‘‘Protein complex prediction for
large protein protein interaction networks with the core&peel method,’’
BMC Bioinf., vol. 17, no. S12, pp. 37–58, Oct. 2016.

[43] S. Peri, ‘‘Human protein reference database as a discovery resource for
proteomics,’’ Nucleic Acids Res., vol. 32, pp. D497–D501, Jan. 2004.

[44] C. Pizzuti, ‘‘Community detection in social networks with genetic
algorithms,’’ in Proc. 10th Annu. Conf. Genetic Evol. Comput., Jul. 2008,
pp. 1137–1138.

[45] C. Pizzuti, ‘‘Ga-Net: A genetic algorithm for community detection in social
networks,’’ in Proc. Int. Conf. Parallel Problem Solving Nature. Springer,
Sep. 2008, pp. 1081–1090.

[46] C. Pizzuti, ‘‘Computational intelligence for community detection in
complex networks and bio-medical applications,’’ Ph.D. dissertation, 2014.
[Online]. Available: http://hdl.handle.net/2066/129790

[47] C. Pizzuti and S. E. Rombo, ‘‘Algorithms and tools for protein–protein
interaction networks clustering, with a special focus on population-based
stochastic methods,’’ Bioinformatics, vol. 30, no. 10, pp. 1343–1352,
May 2014.

[48] S. E. Schaeffer, ‘‘Graph clustering,’’ Comput. Sci. Rev., vol. 1, no. 1,
pp. 27–64, 2007.

[49] R. Sharan, I. Ulitsky, and R. Shamir, ‘‘Network-based prediction of protein
function,’’Mol. Syst. Biol., vol. 3, no. 1, p. 88, 2007.

[50] X. Shen, L. Yi, X. Jiang, T. He, J. Yang, W. Xie, P. Hu, and X.
Hu, ‘‘Identifying protein complex by integrating characteristic of core-
attachment into dynamic PPI network,’’ PLoS ONE, vol. 12, no. 10,
Oct. 2017, Art. no. e0186134.

[51] C. Von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields,
and P. Bork, ‘‘Comparative assessment of large-scale data sets of protein–
protein interactions,’’ Nature, vol. 417, no. 6887, pp. 399–403, May 2002.

[52] S. Wang, R. Wu, J. Lu, Y. Jiang, T. Huang, and Y. D. Cai, ‘‘Protein–protein
interaction networks as miners of biological discovery,’’ Proteomics,
vol. 22, nos. 15-16, Aug. 2022, Art. no. 2100190.

[53] N. Zaki, J. Berengueres, and D. Efimov, ‘‘Detection of protein complexes
using a protein ranking algorithm,’’ Proteins, Struct. Function, Bioinf.,
vol. 80, no. 10, pp. 2459–2468, Oct. 2012.

[54] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

MUSTAFA N. ABBAS received the B.S. and
M.S. degrees from the Department of Computer
Science, University of Baghdad, Baghdad, Iraq,
in 2014 and 2019, respectively. He is currently
pursuing the Ph.D. degree in computer science
with Otto-von-Guericke-University Magdeburg,
Germany. His research interests include compu-
tational intelligence, multi-objective evolutionary
algorithms, bioinformatics, and wireless sensor
networks.

BARA’A A. ATTEA received the B.S. and M.S.
degrees in computer science from the University
of Baghdad, Baghdad, Iraq, in 1993 and 1996,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Technology, Baghdad,
in 2002. From 2011 to 2013, she was a Visiting
Researcher with Gazi University, Ankara, Turkey.
She is currently a Professor with the Department
of Computer Science, University of Baghdad.
Her main research interests include computational

intelligence, multi-objective evolutionary algorithms, bioinformatics, and
applications of bio-inspired algorithms in solving real-world problems, such
as complex social network analysis and wireless sensor networks.

DAVID BRONESKE received the bachelor’s,
master’s, and Ph.D. degrees in computer science
from Otto-von-Guericke-University Magdeburg.
He is currently the Head of the Department for
Infrastructure and Methods, German Centre for
Higher Education Research and Science Studies
(DZHW), Hannover. His research interests include
main-memory database systems, interdisciplinary
data management, and the application of artificial
intelligence in various domains.

GUNTER SAAKE received the Ph.D. degree
from the Technical University of Braunschweig,
in 1988. He is currently the Head of the Research
Group Databases and Software Engineering, Otto-
von-Guericke-University Magdeburg. He is also a
Full Professor of computer science. His research
interests include database integration, tailor-made
data management, database management on new
hardware, and feature-oriented software product
lines.

VOLUME 12, 2024 28897


