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ABSTRACT Malicious user recognition for spectrum sensing in Cognitive Radio Networks (CRNs) is a
serious safety feature to safeguard effective and trustworthy process of these systems. Spectrum sensing
permits CRNs to identify and employ accessible spectrum bands. As well as it is available to prospective
interference and mischievous actions. To preserve network integrity, recognition of malicious consumers
is vital. Deep learning (DL) based malicious consumer classification powers advanced neural network
frameworks to recognize and flag possible threats inside a network. By examining numerous amounts of
information, DL techniques can distinguish patterns as well as anomalies that are connected with malicious
user performance plus system intrusions, scams or irregular action. This technique provides flexibility
benefit that permits a network to learn and develop in evolving threats. It also offers an effectual revenue of
improving network security in the difficult and active digital landscape. Therefore, this article develops an
Optimal Deep Learning Empowered Malicious User Detection for Spectrum Sensing (ODL-MUDSS) in the
CRN. The main intention of ODL-MUDSS model focused on automated identification and classification of
MUs in CRN. To accomplish this, the ODL-MUDSS model primarily applies deep belief network (DBN)
methodology for automated and accurate detection of MUs. In addition, recognition performance of DBN
technique can be enhanced by use of sand cat swarm optimization (SCSO) algorithm and thereby improves
the detection results. The performance validation of ODL-MUDSS technique is observed under different
processes. The comprehensive outcomes stated enhanced performance of ODL-MUDSS model over other
existing models with maximum accuracy of 97.75%, precision of 97.75%, recall of 97.75%, and F-score of
97.75%.

INDEX TERMS Cognitive radio networks, communication,spectrum sensing, malicious user detection, deep
learning.

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

I. INTRODUCTION
Cognitive radio is mainly aimed at effective radio spectrum
division employing an extraordinary network in order to
recognize and abuse available radio spectrum deprived of
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intrusions [1]. The refined organization of cognitive radio has
been considered as important spectrum-shortage issue in the
prospect of wireless communication, where more subscribers
rise quickly. In cognitive radio networks (CRNs), hunting
a vacant spectrum is executed by employing a spectrum
detecting procedure that employs nodes called secondary
users (SUs) deprived of authorized licence [2]. To wisdom
and verify the work of an elective spectrum utilized by other
nodes is called primary users (PUs) with authorized licence.
To attain great spectrum detecting acts, distributed and cen-
tralized cooperative networks developed a related solution.
In initial system, SUs collaborate and part their identifying
information with a fusion center (FC) that collects all SUs’
sensing notes to grasp an optimum judgment on PUs’ spec-
trum use [3]. In 2nd network, SUs collaborate as well as
share sensing data among themselves and create concluding
decisions regarding PU spectrum use separately without any
interface with FC. Despite of main advantages of coopera-
tive systems, they are liable to latent attacks by malicious
users (MUs) that cause unwanted intrusions among SUs and
Pus, so decreasing decision exactness of spectrum identifying
procedure [4].

Several existing studies assume that secondary consumers
constantly tell the truth. But, it is well recognized that wire-
less networks cooperated below the switch of malicious
parties. The secondary user of malicious can send false data
and misinform spectrum sensing outcomes to origin crash or
ineffective spectrum usage [5]. For instance, few secondary
users often report presence of the primary user such that they
can conquer spectrum by themselves [6]. Few experimental
techniques in CSS will help to lead an optimum global deci-
sion [7]. A genetic algorithm (GA) is a class of mathematical
techniques driven by growth. This algorithm is effective to
find optimum solution by applying enthused techniques to
given issues. Machine Learning (ML) is an alternative useful
model by learning nearby surroundings [8]. The experiential
nature of ML model inspires by utilizing in CRN. Further-
more, these kinds of methods provide good performance in
spectrum sensing detection. Deep Learning (DL) is a speci-
fied type of ML in the domain of Artificial Intelligence (AI)
that relates to deep artificial neural network (ANN) which
is also known as deep neural networks (DNNs) [9]. These
techniques simulate the procedure of learning by a human
brain. The human brain generally comprises cells which are
denoted to as neurons in neural systems. At the same time,
in a human brain, all cells are linked over axons and dendrites
with link areas called as synapses [10]. These links are found
in ANN that contain weights to act as influences among nerve
cells in the human brain.

This article develops an Optimal Deep Learning Empow-
ered Malicious User Detection for Spectrum Sensing
(ODL-MUDSS) in the CRN. The main intention of
ODL-MUDSS model focused on automated identification
and classification of MUs in CRN. To accomplish this,
ODL-MUDSS technique primarily applies deep belief net-
work (DBN) methodology for automated and accurate

detection of MUs. In addition, recognition performance
of DBN technique can be enhanced by use of sand cat
swarm optimization (SCSO) algorithm and thereby improves
the detection results. The performance validation of the
ODL-MUDSS technique is examined under different mea-
sures. In short, the major contributions of the study is listed
as follows.

• An intelligent ODL-MUDSS technique comprising of
pre-processing, DBN based classification, and SCSO
based hyperparameter tuning has been presented. To the
best of our knowledge, the ODL-MUDSS model has
never presented in the literature.

• Employ DBN model for the identification and classifi-
cation of MUs in the CRN.

• Hyperparameter optimization of the DBN model using
SCSO algorithm using cross-validation helps to boost
the predictive outcome of the ODL-MUDSS model for
unseen data.

The rest of the paper is organized as follows. Section II
provides the related works and section III offers the pro-
posed model. Then, section IV gives the result analysis and
section V concludes the paper.

II. LITERATURE REVIEW
In [11], a support vector machine (SVM) learning technique
is mainly developed to learn performance of malicious con-
sumers and it categorizes genuine as well as mischievous
users. A particle swarm optimization (PSO) model too com-
bined to absorb minimum probable differences malicious
consumer’s energy report deviance from genuine SUs. The
possibility of classification and energy of recognition are used
for evaluating influence of developed model. In [12], the
author recommended ML-based Adaptive Gaussian Mixture
Model (AGMM) for supportive spectrum detecting in cog-
nitive radio systems for design recognition. The author uses
secondary consumers energy level in order to form a feature
vector in designed technique. The training feature vector for
detection is determined through an integration of Gaussian
density tasks that attained by employing presented method.

Nie et al. [13] developed a new cluster-based coop-
erative detecting after-forecast system where a learning
and sensing group are together measured for implement-
ing cooperative forecast as well as sensing proficiently.
This permits to skipping difficult physical detecting to
decrease demands when spectrum accessibility can be just
projected utilizing cooperative forecast. Salameh et al. [14]
projects a safety-aware routing procedure that reflects jam-
ming attack which interfere with cognitive radio programs.
This designed process gives a protected network for every
hop inside an IoT basis destination pair to issue of opti-
mization. However, CRNs are more exposed to attacks
so an Ensemble-based Jamming Behaviour Detection and
Identification (E-JBDI) model is projected as next link of
defence.

In [15], Fruit fly optimisation algorithm (FOA) and DBN
used. DBN has 4 constraints on training stage such as penalty
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parameter, weight decay, learning rate and amount of hidden
units. These constraints must be correctly chosen for suitable
operation of DBN. Modification of these limits occupied
into an optimisation problem and it is considered by FOA.
Tangsen et al. [16] projects Node Evaluation and Scheduling
(NES) and Secure Spectrum Sensing based on Blockchain
(SSSB) model that estimates consistency of detecting nodes
in actual period and attains faith value of a node. The node’s
data kept in Blockchain (BC) administration centre. BC con-
verts node data to safeguard because a node resembles to
individual trust value deprived of any confusion.

In [17], an enhanced ANN-based aggressor detection tech-
nique is developed. The act of ANN upgraded by employing
Immune plasma optimization (IPO) model that is stimulated
by human immune method for a disease of COVID-19. In [8],
BC-based safety improvement as well as spectrum sensing
model projected for dealing with spectrum and recognising
mischievous user in CRN. Spectrum sensing is a vital need for
one that is affected by mischievous consumers in CRN. The
mischievous consumer attacks common signal recognition of
system and interrupts accurateness of network act. The event
of a mischievous consumer in CRN sends wrong sensing data
that reduces system performance. BC-based security as well
as spectrum sensing succeeded in CRN system that authorizes
system performance.

III. THE PROPOSED MODEL
In this study, we focus on design as well as develop-
ment of ODL-MUDSS in the CRN. The main intention of
ODL-MUDSS technique focused on automated identification
and classification of MUs in CRN. Fig. 1 demonstrates work-
flow of ODL-MUDSSmethodology. The figure indicates that
the proposed model comprises three major processes namely
preprocessing, DBN based MUs detection, and SCSO based
hyperparameter tuning process.

A. SYSTEM MODEL
In this proposed model, we supposed CRN system through
N normal CRN consumers and M malicious CRN con-
sumers. For evaluating global decisions, every CRN users
and malicious CRN consumers, primarily conduct local radio
spectrum identifying and then report their detection outcomes
to equivalent FC [18]. The developed system technique
obtains data from AY malicious CRN consumers might
be greater energy level i.e.; suggests active status of PU.
Also, received data from malicious CRN consumers might
have lower energy levels i.e., suggests inactive status of
PU. All CRN consumers containing usual and malicious
CRN users are transferring their sensing outcomes to corre-
sponding FC over fading as well as non-fading atmospheres.
Then, FC splits regular CRN consumers and malicious
CRIoT users depending on developed technique. At FC,
it creates a strong worldwide decision depending on radio
spectrum sensing outcomes of usual CRN consumers only
after splitting regular and mischievous CRN users from CRN
system.

FIGURE 1. Workflow of ODL-MUDSS approach.

B. DBN-BASED MU DETECTION MODEL
To accomplish this, the ODL-MUDSS technique applies
DBNmodel for the automated and accurate detection ofMUs.
DBN overcomes the limitation of backpropagation (BP) via
unsupervised learning for generating a layer of feature detec-
tor that structures arithmetical model of input information
deprived of using any data regarding required output [19].
Then, a high-order feature detector used to grab complex
high-level statistical models in input data predicts the label.
DBNs are powerful device for DL constructed from RBM.
RBM has robust training procedure making it suitable as
basic component for DBN. RBM is probabilistic graphical
model considered as stochastic neural network that could
train distribution prospects over its series of inputs. RBM is
one kind of Boltzmannmachine, with a constraint that neuron
should create a bilateral graph (BG). A BG is a graph whose
vertices (V), are split into dual different sets, V1 (visible unit)
and V2 (hidden unit), and the edge of graph connects V1 into
V2. Both sets may have symmetrical connectivity between
them, and there is no links between nodes within the similar
group.

A typical RBM accept binary value for the hidden and
visible states. This sort of RBM is called Bernoulli-Bernoulli
RBM viz., separate distribution with two potential results
labelled by n = 0 and n = 1. When n = 1 it implies that true
value takes place with P possibility and If n = 0 it implies the
wrong case takes place with possibility q = 1 − p, whereas
0 < p < 1.
RBM is an energy-based mechanism, it includes m hid-

den states and n visible states, the hidden and visible
states are v and h vectors are correspondingly. Assume
a series of states (v, h), the RBM energy is described
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below:

E (v, h)=−

n∑
i=1

aivi−
m∑
j=1

bjhj−
n∑
i=1

m∑
j=1

vjWijhj, (1)

In Eq. (1), the state of ith visible state is vj, and the state of
jth hidden state is hj. Wij is the connection weight of hidden
and visible states. Also, there is offsets (bias weight) ai for
the visible unit and bj for the hidden state.

We can discover joint likelihood distribution of (v, h) for
energy function once the parameter is determined as follows:

P (v, h) =
1
Z
e−E(v,h) (2)

Z =

∑
v,h

e−E(v,h), (3)

Here a normalization constant is Z . The activation of hid-
den state is conditionally independent once the visible state is
given. Then, the activation probability of jth hidden state is:

P
(
hj = 1 | v

)
= σ

bj + ∑
ivi

Wij

 , (4)

where a logistics sigmoid activation function is represented
as σ (x) = 1/

(
1 + e(−x)

)
. Likewise, activation of visible state

is conditionally independent once hidden state, h given and
probability of ith noticeable states of v given h is attained as
follows:

P (vi = 1 | h) = σ

ai + ∑
jhj

Wij

 . (5)

The log-log-probability of training dataset is differentiated
about W is calculated by the following expression:

∂logp(v)
∂1Wij

= ⟨vihj⟩daia − ⟨vihj⟩model, (6)

In Eq. (6), ⟨.⟩data and ⟨.⟩model are predictable values in
model or data distribution. The learning rules for system
weight in log-probability-based training dataset are attained
as follows:

1Wij = ϵ(⟨vihj⟩daia − ⟨vihj⟩model, (7)

In Eq. (7), the learning rate is e. Meanwhile, there is
no straight connection in the HL of RBM, we can eas-
ily obtain an unbiased sample of ⟨vihj⟩daia. Unfortunately,
it is challenging to calculate unbiased samples of ⟨vihj⟩model
meanwhile it needs exponential time. To overcome these
problems, a quick training model named Contrastive Diver-
gence (CD) is introduced. When the state is selected for
hidden unit, a ‘‘reconstruction’’ is generated by setting vi to
1 with possibility shown as follows:

1Wij = ϵ(⟨vihj⟩data − ⟨vihj⟩recon. (8)

where average value over reconstruction and input data
are ⟨vihj⟩recon and ⟨vihj⟩data, it is deliberated as a better
approximation to ⟨vjhj⟩model .

DBN is a NN made up of multiple layers of RBM that
form stacked RBM. Thereby, we can learn a high-order rep-
resentation of input dataset. Hinton et al., newly established
a DBN together with unsupervised greedy learning model
to construct the network consecutively. ANN with system
topology constructed from layer of neuron method but with
deep structure and learning mechanics.

In real-time, the DBN training frequently comprises of two
stages: (1) finetuning and (2) greedy layer-wise pertaining.
Layer-wise relating includes training technique parameter
layer-wise through CD algorithm and unsupervised training.
Firstly, the training begins with the low-level RBM that
receives DBN input and moves slowly in a hierarchy. Lastly,
RBM in top layer comprising DBN output is learned. Thus,
learned feature or output of prior layer is utilized as an input
of succeeding RBM layer.

As a final step, in finetuning, the network is trained in a
supervised way after the training of RBM using BP model to
‘‘finetune’’ the weight. This greedy learning problem-solving
method of DBN is rapid as well as effective. It includes
generating optimum superior at every layer in stacked RBM,
which finds a global optimal value.

C. HYPERPARAMETER TUNING USING SCSO MODEL
Eventually, classification performance of DBN method can
be enhanced by the use of SCSO algorithm. SCSO is a
new and effective swarm optimization approach based on
the hunting behaviors of sand cat herd that has tremendous
strength to dig for prey and could identify lower frequencies
lower than 2 KHz [20]. Global search and attack prey are
two foraging behavior of sand cats in SCSO. The Bi-GRU
hyperparameter is considered as the prey. At the initializa-
tion phase, the population was randomly initialized which
increases issue of unequal distribution that affects quality of
optimum solution. Singer mapping is adopted to an early
populace of sand cat enables to attain regular distribution
probability, which increases possibility of attaining optimum
expression as follows:

zk+1 = µ
(
7.86zk − 23.31z2k + 28.75z3k−13.302875z4k

)
(9)

In Eq. (9), control parameter within the [0, 1] interval is zk .
If µ∈ [0.9, 1.08], then Singer mapping has chaotic behavior.

The prey-exploration formula is defined below:

X⃗ (t + 1) = r⃗
(
X⃗b (t) − rand (0, 1) · X⃗c (t)

)
(10)

r⃗ = r⃗G × rand (0, 1) (11)

r⃗G = sM −

(
sM×iterc
itermax

)
(12)

Here the location vector search agent is X⃗ , amount of
iterations for existing iteration is represented as t , the opti-
mum location of a candidate is X⃗b, the existing location of
search agent is X⃗c, the sensitivity range of sand cat to lower
frequency noise is r⃗ , range of sensitivity that linearly dropped

VOLUME 12, 2024 35303



L. Almuqren et al.: ODL-MUDSS in CRNs

from 2 to 0 is r⃗G, existing iteration is iterc, and greatest
amount of iterations is itermax .
The reduction factor r⃗G in SCSO linearly decreased, which

causes them to slowly converge in later iteration and thereby
descent into local optima. For these reasons, a messy reduc-
tion factor is proposed to prevent potential solutions from
getting trapped in local optima:

r⃗G = sM − sM

(
iterc
itermax

)0.25

+ |hi|
(

iterc
itermax

)0.25

−

(
iterc
itermax

)0.25

hi = 1 − 2(hi−1)2, hi−1 ∈ [0, 1]

(13)

Furthermore, a sand cat can sense frequency lower
than 2 kHz, SM take the value of 2. The sand cat attacks the
prey, and the prey attack strategy for population is shown as
follows:

X⃗rnd =

∣∣∣rand (0, 1) · X⃗b (t) − X⃗c (t)
∣∣∣ (14)

X⃗ (t + 1) = X⃗b (t) − r⃗ · X⃗rnd · cos (θ) (15)

Now a random angle between 0 and 360 is represented as
θ , and a random location produced from the optimum and
the existing location is X⃗rnd . All the members of population
are capable of moving in a circumferential direction Using
this method. Every sand cat selects a random angle. The sand
cat can prevent local optima as it gets closer towards the
prey location. SCSO is used to balance the exploitation and
exploration stages by an adaptive factor, R⃗R = 2 × r⃗G ×

rand(0, 1)−r⃗G, which is the total search stage if I c > 1 and
attack stage if I |R| < 1.
The adaptive t-distribution is proposed for mutating adap-

tive t-distribution for existing optimum global solutions and
upgrading optimum solution to improve populace diversity
at later iterations and enhance global search ability. The
t-distribution probability density function is shown below:

Pt (x) =

0
(
n+1
2

)
√
nπ0

( n
2

) (
1 +

x2

n

)−
n+1
2

, −∞ <x< +∞

(16)

In Eq. (16), the degree of freedom is n. At the initial itera-
tion, the t-distribution tends to be Cauchy distribution that
improves population range and increases the global search
capability due to the comparably small amount of iterations.
At the later iteration, the t-distribution tends to be Gaussian
distribution, which is helpful to search a smaller range and
improves the local convergence capability due to the amount
of iterations being comparatively large. The adaptive parame-
ter ω is introduced to improve populace diversity at an initial
iteration and enhance local exploitation capability at a later
iteration:

ω =

(
1 −

t − 1
T − 1

)
×
T − t
T

(17)

In the equation, ω the adaptive parameter is comparatively
larger at the initial iteration which implies t-distribution can
be used to improve populace diversity. Fig. 2 illustrates the
steps involved in SCSO. In a later iteration, ω adaptive
parameter is slowly decreased to minimize the impact of
t-distribution on the individual position for retaining the opti-
mal individual. The variation probability is set to 0.5 and
when the randomly generated value [0, 1] is lesser than
the variation probability perform the t-distribution change
strategy as follows:

X ti = Xi + Xi × ω×t (t) (18)

In Eq. (18), the location of ith individuals after the update
of t-distribution is X ti · the t-distribution with a degree of
freedom t is t(t) and the existing amount of iterations is t .

FIGURE 2. Steps involved in SCSO algorithm.

The fitness selection is a significant factor influencing per-
formance of SCSO technique. The hyperparameter selection
procedure involves solution encoding model to calculate effi-
ciency of candidate solution. In this research, SCSO model
reflects accuracy as main principle for designing fitness
functions that is expressed below.

Fitness = max (P) (19)

P =
TP

TP+ FP
(20)

From the above equation, TP represents true positive and
FP denotes false positive value.

IV. RESULTS AND DISCUSSION
The MU detection outcomes of ODL-MUDSS technique can
be investigated employing a dataset comprising 4000 sam-
ples. The dataset includes two classes as represented in
Table 1.

Fig. 3 exhibits confusion matrices created by
ODL-MUDSSmodel under 80:20 and 70:30 of TRPH/TSPH.
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TABLE 1. Details on database.

FIGURE 3. Confusion matrices of (a-c) TRPH of 80% and 70% and (b-d)
TSPH of 20% and 30%.

TABLE 2. MU detection outcome of ODL-MUDSS algorithm with 80:20 of
TRPH/TSPH.

The effects designate effectual classification of normal and
malicious user’s samples below all classes.

The MU detection results of the ODL-MUDSS technique
on 80:20 of TRPH/TSPH is reported in Table 2 and Fig. 4.

The experimental values highlighted that ODL-MUDSS
methodology properly recognized the normal and MU
samples. On 80% of TRPH, the ODL-MUDSS model pro-
vides average accuy of 97.75%, precn of 97.75%, recal of
97.75%, and Fscore of 97.75%. Besides, on 20% of TSPH,
ODL-MUDSS model offers average accuy of 97.25%, precn
of 97.26%, recal of 97.25%, and Fscore of 97.25%.

FIGURE 4. Average of ODL-MUDSS algorithm with 80:20 of TRPH/TSPH.

TABLE 3. MU detection outcome of ODL-MUDSS algorithm with 70:30 of
TRPH/TSPH.

FIGURE 5. Average of ODL-MUDSS algorithm with 70:30 of TRPH/TSPH.

The MU detection outcomes of ODL-MUDSS model on
70:30 of TRPH/TSPH is described in Table 3 and Fig. 5. The
experimental values highlighted that ODL-MUDSS approach
correctly known normal and MU samples. On 70% of TRPH,
ODL-MUDSSmethod offers average accuy of 96.14%, precn
of 96.15%, recal of 96.14%, and Fscore of 96.14%. Also,
on 30% of TSPH, ODL-MUDSS method affords average
accuy of 96.75%, precn of 96.76%, recal of 96.75%, and
Fscore of 96.75%.
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FIGURE 6. Accuy curve of ODL-MUDSS algorithm with 80:20 of
TRPH/TSPH.

FIGURE 7. Loss curve of ODL-MUDSS algorithm with 80:20 of TRPH/TSPH.

To calculate efficiency of ODL-MUDSS technique with
80:20 of TRPH/TSPH, we have created accuracy curves for
both TRPH and TSPH, as illustrated in Fig. 6. These curves
provide valuable insights into the model’s learning progress
and its ability to generalize. As we increase the number of
epochs, a noticeable improvement in TR and TS accuracy
curves becomes evident. This improvement indicates model’s
capacity to better identify patterns within both TR and TS
datasets.

Fig. 7 also offers an outline of ODL-MUDSS approach
with 80:20 of TRPH/TSPH, the model’s loss values through-
out TR process. The decreasing trend in TR loss over epochs
indicates that model continually refines its weights to min-
imize prediction errors on both TR and TS data. This loss
curve reflects how well the model fits training data. Partic-
ularly, TR and TS loss consistently decrease, representing
the model’s effective learning of patterns present in both
datasets. Moreover, it shows model’s adaptation in diminish-
ing discrepancies between predictions and original TR labels.

The precision-recall curve of ODL-MUDSS approach with
80:20 of TRPH/TSPH, we plots precision against recall
revealing that our model achieves higher precision-recall
values across all classes, as defined in Fig. 8. This graph
illustrates the model’s ability to recognize various class

FIGURE 8. PR curve of ODL-MUDSS algorithm with 80:20 of TRPH/TSPH.

FIGURE 9. ROC curve of ODL-MUDSS algorithm with 80:20 of TRPH/TSPH.

labels, particularly excelling in correctly identifying positive
samples while minimizing false positives.

Fig. 9 also includes ROC curves of ODL-MUDSS tech-
nique with 80:20 of TRPH/TSPH, which showcase the
model’s ability to discriminate between class labels. These
curves provide valuable insights into the trade-off among true
positive rate (TPR) and false positive rate (FPR) across dis-
similar classification thresholds and epochs. They highlight
the model’s accurate predictive performance across various
classes, further emphasizing its classification capabilities.

In Table 4 and Fig. 10, the overall classification per-
formance of ODL-MUDSS technique with recent models
are given [21]. The results indicate that the SVM model
offers poor performance whereas the LR, NB, and stack-
ing techniques attain slightly boosted outcomes. However,
ODL-MUDSS model offers maximum performance with
accuy of 97.75%, precn of 97.75%, recal of 97.75%, and
Fscore of 97.75%.

The comparative computation time (CT) results of
ODL-MUDSS methodology with current approaches are
given in Table 5 and Fig. 11. The outcomes demonstrate
that ODL-MUDSS method gains better performance with
minimal CT of 2.63min. On the other hand, the SVM, LR,
NB, and stacking models offer increased CT values. Thus,
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TABLE 4. Comparative outcome of ODL-MUDSS algorithm with recent
systems.

FIGURE 10. Comparative outcome of ODL-MUDSS algorithm with recent
systems.

TABLE 5. CT outcome of ODL-MUDSS algorithm with recent systems.

FIGURE 11. CT outcome of ODL-MUDSS algorithm with recent systems.

the ODL-MUDSS technique can be employed for automated
MU detection process.

Table 6 illustrates comparative outcome of ODL-MUDSS
technique with other approaches under varying malicious

TABLE 6. AR and IR outcome of ODL-MUDSS algorithm with other
methods under varying malicious users.

FIGURE 12. AR outcome of ODL-MUDSS approach under varying MUs.

FIGURE 13. IR outcome of ODL-MUDSS approach under varying Mus.

users in terms of authentication rate (AR) and intrusion rate
(IR). Fig. 12 demonstrates the AR outcome of ODL-MUDSS
algorithm with recent systems under varying malicious
users (MUs). The outcomes stated that the ODL-MUDSS
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algorithm has gain optimum performances. On 10% of
MUs, the ODL-MUDSS algorithm has obtains higher AR of
99.23%, while the SVM, LR, NB, and stacking models offer
lesser AR values of 71.30%, 95.41%, 97.79%, and 96.49%,
respectively. In addition, on 50% of MUs, ODL-MUDSS
techniques has attains greater AR of 99.44%, while SVM,
LR, NB, and stacking method provide smaller AR values of
77.92%, 97.57%, 98.65%, and 98.36%, correspondingly.

Fig. 13 exhibits IR result of ODL-MUDSS technique
with current systems under varying MUs. The outcomes
stated that ODL-MUDSS model has gain optimum perfor-
mances. On 10% of MUs, ODL-MUDSS method has attains
greater IR of 0.135, while SVM, LR, NB, and stacking tech-
niques provide lesser IR values of 0.090, 0.048, 0.100, and
0.027, separately. Moreover, on 50% of MUs, ODL-MUDSS
methodology obtains higher IR of 0.198, while SVM, LR,
NB, and stacking models offer lesser IR values of 0.192,
0.119, 0.175, and 0.056, correspondingly. Thus, the pro-
posed model can be employed for automated MU detection
performance

V. CONCLUSION
In this article, we focus on designs and development of
ODL-MUDSS in the CRN. The main intention of the
ODL-MUDSS model focused on the automated identifi-
cation and classification of MUs in CRN. To accomplish
this, ODL-MUDSS model primarily applies DBN model
for the automated and accurate detection of MUs. In addi-
tion, recognize performance of DBN technique can be
enhanced by use of SCSO algorithm thereby improv-
ing the detection results. The performance validation of
ODL-MUDSS approach is studied under different measures.
The comprehensive outcomes stated greater performance of
ODL-MUDSS approaches over other current methods in
terms of distinct metrics. Future work can focus on the design
of hybrid metaheuristics and ensemble voting classifier
model for enhanced MU detection performance on the CRN.
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