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ABSTRACT Distributed energy generation disrupts traditional energy markets by blurring the line between
producers and consumers and enabling the emerging prosumers to trade energy in per-to-peer transactions.
Blockchain technology automates peer-to-peer energy trades in a distributed database architecture that
achieves security and cost-effectiveness using cryptographic hashing and consensus-based verification.
Before its deployment, an energy blockchain trading application needs to be tested in a virtual environment
that is analogous to the real-world setting to ensure correct implementation and identify potential obstacles
and opportunities. This study suggests executing such a testing within a framework that integrates a
Geographic Information System (GIS) environment with an Agent-Based Modeling (ABM) simulation
platform. The application of this testing framework to a case study of solar Photovoltaic (PV) energy trade
among household peers in in Doha, Qatar, shows how the integration of the GIS environment offers a
detailed analysis of transactions in local housing community markets. The ABM simulation reveals that
population density, energy market prices, and household proximity significantly influence residential PV
energy trading in Qatar. The ensuing simulation environment provides a decision-support platform for
designing and implementing decentralized trading systems based on blockchain technology, and high-
performance computing can enhance model performance for scalable energy blockchain analysis in Qatar
and beyond.

INDEX TERMS Spatial temporal access, social simulation, power grid, artificial intelligence, solar energy,
blockchain technology, agent based modelling, energy marketplace.

I. INTRODUCTION
By blurring the traditional distinctions between energy pro-
ducers and consumers, the emergence of distributed energy
generation, particularly through residential and commercial
photovoltaic (PV) applications, has altered the energy land-
scape giving rise to the prosumer as a new player in the energy
market (Fig. 1). Blockchain technology presents a promising
option to enable prosumers to join the energy market in a
secure and cost-effective manner. The blockchain makes it
possible for consumers, prosumers, and utilities to partici-
pate in effective energy trading by automating direct energy
transactions within a distributed database architecture based
on cryptographic hashing and consensus-based verification.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yifan Zhou.

To guarantee the correct utilization of blockchain-empowered
energy exchanging frameworks, it is fundamental to test them
in a virtual environment that reenacts realistic circumstances.
In this study, a testing framework is proposed that integrates
agent-based modelling with Geographic Information System
(GIS) technology [1]. The framework aims to simulate and
analyze the behavior of prosumers, utilities, and other energy
market players in a virtual environment. This will allow for
the identification and testing of potential issues and chal-
lenges that may arise in the implementation of blockchain-
enabled energy trading systems.

The traditional energy market has always been character-
ized by a clear distinction between energy producers and
consumers. Producers, such as power plants, generate elec-
tricity and sell it to consumers through utilities, who act as
intermediaries. However, with the emergence of distributed
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energy generation, particularly through residential and com-
mercial photovoltaic (PV) applications, this traditional model
is being disrupted. Distributed energy generation refers to
the production of electricity by small-scale systems, such
as rooftop solar panels, that are installed on or near the
premises of consumers. This has given rise to the concept of
the ‘prosumer’ - a hybrid of producer and consumer - who
is both a producer and a consumer of energy. Prosumers are
able to generate their own electricity and also sell any excess
energy back to the grid. This blurring of the lines between
producers and consumers has altered the energy landscape,
giving prosumers a new role in the energy market. As a
result, there is a need for new technologies that can facilitate
the participation of prosumers in the energy market in a
secure and cost-effective manner. This is where blockchain
technology comes into play.

Blockchain technology, which was originally developed
for the cryptocurrency Bitcoin, is a decentralized, distributed
ledger that records transactions in a secure and transparent
manner. It has the potential to revolutionize the energy mar-
ket by enabling direct energy trading between prosumers,
consumers, and utilities without the need for intermediaries.
By automating direct energy transactions within a distributed
database architecture based on cryptographic hashing and
consensus-based verification, blockchain technology makes
it possible for consumers, prosumers, and utilities to par-
ticipate in effective energy trading. This not only reduces
transaction costs but also increases the efficiency and trans-
parency of the energy market. However, to ensure the correct
utilization of blockchain-enabled energy trading systems, it is
essential to test them in a virtual environment that simulates
realistic scenarios. This is where the proposed testing frame-
work, which integrates agent-based modelling with Geo-
graphic Information System (GIS) technology, comes into
play.

Agent-based modelling is a computational technique that
simulates the behavior of individual agents within a system,
while GIS technology allows for the visualization and analy-
sis of spatial data. By integrating these two technologies, the
testing framework aims to simulate and analyze the behavior
of prosumers, utilities, and other energy market players in a
virtual environment. The testing framework will allow for the
identification and testing of potential issues and challenges
that may arise in the implementation of blockchain-enabled
energy trading systems. For example, it can simulate the
behavior of prosumers who may try to manipulate the system
for their own benefit, or the impact of sudden changes in
energy demand or supply.

Furthermore, the framework can also be used to ana-
lyze the potential benefits and drawbacks of implement-
ing blockchain technology in different regions with varying
energy market structures. This will provide valuable insights
for policymakers and energy market stakeholders to make
informed decisions about the adoption of blockchain technol-
ogy. There have been several studies that have successfully

integrated ABM and GIS in energy trading analysis. One of
the earliest studies that integrated ABM and GIS in analyzing
blockchain-enabled energy trading systems was conducted
by [2]. The authors developed a framework that combines
ABM, GIS, and blockchain technology to simulate and ana-
lyze the behavior of prosumers and utilities in a decen-
tralized energy market. The framework considered various
factors such as geographical location, energy demand and
supply, and peer-to-peer energy trading among prosumers.
The results of the study showed that the use of blockchain
technology in energy trading can lead to a more efficient and
transparent market, with reduced costs for consumers. The
integration of ABMandGIS allowed for amore detailed anal-
ysis of the market, taking into account the spatial and behav-
ioral aspects of energy trading. Similarly, in [3] proposed a
similar framework that utilized ABM and GIS to simulate
a blockchain-enabled energy market. The study focused on
the impact of different energy policies on the behavior of
prosumers and utilities, such as feed-in tariffs and carbon
taxes. The results showed that blockchain technology can
facilitate the integration of renewable energy sources into the
grid and promote a more sustainable energy market.

For example, a study by [4] used this approach to analyze
the impact of renewable energy integration on electricity
markets. The study found that incorporating spatial factors
into ABM can improve the accuracy of market forecasts and
enable the identification of potential market inefficiencies.
Another study by [5] used ABM and GIS to analyze the
impact of spatial factors on the trading behavior of wind farm
operators. The study found that spatial factors, such as prox-
imity to transmission lines and wind resource availability,
significantly influenced the behavior of these operators. This
information can be used to develop strategies to improve the
efficiency of wind energy trading. In addition to these studies,
several software tools have been developed that integrate
ABM and GIS for energy market analysis. For example,
the Energy Market Agent-Based Model (EMMA) developed
by the National Renewable Energy Laboratory (NREL) is a
powerful tool for simulating energy markets and analyzing
the impacts of policies and technologies.

Despite their potential, ABM and GIS have certain limita-
tions that hinder their effectiveness in energy market analysis.
One of the main challenges is the lack of data availability and
quality. ABM requires detailed data on individual agents and
their behavior, which may not be readily available. Similarly,
GIS requires accurate and up-to-date spatial data, which may
be lacking in some regions. This can lead to biased and
inaccurate results.Moreover, ABMandGIS are computation-
ally intensive and time-consuming. Developing and running
complex simulation models can be a daunting task, and it
may take a long time to get results. This can be a barrier for
policymakers who require timely and actionable information
to make decisions.

To overcome these limitations, we propose a new approach
that integratesMachine Learning (ML) techniques with ABM
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and GIS. ML is a subset of Artificial Intelligence that focuses
on developing algorithms and statistical models that can learn
from data and make predictions or decisions. By incorpo-
rating ML techniques, we can address the data availability
and quality issues of ABM and GIS. ML algorithms can
analyze large datasets and identify patterns and trends that
may not be visible to human analysts. This can provide a
more comprehensive understanding of energy markets and
their dynamics.

A case study involving the power network of the Educa-
tion City Community Housing (ECHH) Complex in Doha,
Qatar (Fig. 2), demonstrates the functionality of this testing
environment. The testing environment enables stakeholders
to analyze day-to-day energy use and generation by sim-
ulating the spatiotemporal trading characteristics of local
energy markets. This fosters a deeper comprehension of mar-
ket dynamics that supports the development of decentralized
energy markets.

FIGURE 1. Education City Community Housing (ECCH) lot#1 (top) and
lot#2 (bottom). The ECCH involves two closes by bundles, with an amount
of 623 homes. One principal substation supplies 15 auxiliary substations
that give capacity to the ECCH homes through the power network [1].

The paper is structured as follows. Section II provides
background information data on power markets, microgrids,
blockchain innovation, local area sunlight based, and energy
blockchain systems. Themethodology, including the data and
models used, is outlined in Section III. In Section IV, the
results of the experiments are discussed, and in Section V,
the conclusion is made. Table 1 contains a list of the terms
utilized in the paper.

II. BACKGROUND
A. POWER TRADING MARKETS
Ordinarily, energy trade ocurrs through the intervention of
mediators, e.g. utilities [2], [3]. This practice adds unnec-
essary costs and complexity to the energy trading process.
Decentralized energy markets (Fig. 3) offer eminent benefits,
such as a likely 40% expansion in effectiveness and versatility
compared to traditional trading frameworks [6]. Prosumers
can either consume the energy they produce or sell it in the
energy market that integrate regulatory frameworks such as
the feed-in tariff and net metering [3].

FIGURE 2. Education City Community Housing (ECCH) lot#1 (top) and
lot#2 (bottom). The ECCH involves two closes by bundles, with an amount
of 623 homes. One principal substation supplies 15 auxiliary substations
that give capacity to the ECCH homes through the power network [1].

TABLE 1. Terminologies used in the paper [1].

B. MICROGRIDS
As demonstrated in Fig. 4, the decentralization of energy
systems is driven by the integration of renewable energy,
energy storage, and demand response in local power systems
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FIGURE 3. Decentralized exchange marketplace based on blockchain.

known as microgrids [7]. Aging power networks in urban
areas struggle to meet the increasing demand, making infras-
tructure enhancement through cable and substation replace-
ment costly and complex. Urban microgrids provide a
cost-effective solution by meeting rising demand without
compromising power quality and network reliability. Urban
microgrids centrally manage Distributed Energy Resources
(DER) like solar PV, small wind turbines, and conventional
generators using controllers [8]. These controllers ensure
secure and optimal power dispatch from diverse sources by
managing local demand effectively. The addition of DER
assets enables microgrids to handle increasing power demand
while maintaining efficiency and reliability.

FIGURE 4. Cost-effective multiuser microgrids.

Operational microgrids include the Marcus Garvey Vil-
lage,1 University of Texas at Austin,2 Brooklyn,3 Milford,
and Borrego Springs in the United States,4 and the Power
Matching City in the Netherlands.5 Monitoring and control
systems optimize power production, consumption, and min-
imize costs and emissions, as demonstrated by the Borrego

1Marcus Garvey Village | Enel X.
2Microgrid | Center for Electromechanics (utexas.edu).
3Brooklyn Microgrid | Community Powered Energy.
4Borrego Springs: California’s First Renewable Energy- Based Commu-

nity Microgrid | California Energy Commission.
5Power Matching City – Smart Circle (smart-circle.org).

Springs microgrid [1]. Accurate load, renewable resources,
and storage forecasts aid in resource utilization and cost
reduction.

Larger microgrids with enhanced monitoring and con-
trol systems achieve better optimization outcomes. Micro-
grid sizes vary, ranging from single building nano grids
to groups of buildings in campuses, neighborhoods, and
commercial/government structures. Multiple microgrids can
coexist in an urban area, each with its power demand
and supply. A multiuser microgrid configuration enhances
resource utilization through expanded power exchange. For
example, employing Combined Heat/Cooling and Power
systems achieves 80% efficiency by matching peak loads
with demand [8]. Exporting excess power to neighboring
microgrids during peak periods maximizes efficiency. Micro-
grids with storage capabilities can benefit from purchasing
power at reduced prices during abundant generation from
neighboring microgrids. Proximity minimizes power transfer
losses, yielding efficient and cost-effective multiuser micro-
grids [14].

C. ENERGY BLOCKCHAIN
Electricity markets traditionally operate through daily or
short-term auctions, where all energy is sold at a uni-
form market-clearing price, regardless of varying offers and
bids [9]. The emergence of blockchain technology offers
new opportunities for cost-effective energy trading, remov-
ing intermediaries and enhancing security and resiliency.
The blockchain enables peer-to-peer energy trading using
a distributed consensus algorithm, eliminating the need for
a central governing entity. Transaction data is stored in a
decentralized, time-stamped, and encrypted digital database
called a blockchain. Cryptographic hashing ensures privacy
and transaction integrity, while distributed databases enhance
resistance to hacking. Consensus mechanisms like proof of
work [10], [11] or proof of stake prevent denial of ser-
vice attacks and enable fault tolerance. Transactions in the
blockchain are associated with ‘‘smart contract’’ code, defin-
ing the transaction terms. Transactions are grouped into
blocks, and each block contains a hash linking it to the
previous block.

To join the blockchain, a block’s transactions must be
confirmed by a computer node, verifying time, amount, and
participants through a consensus algorithm. Proof of work
(PoW) and proof of stake (PoS) are the two most widely
used consensus algorithms in blockchains [10], [11], [12].
In PoW, a computer node competes to solve a numerical
problem associated with adding a block to the blockchain,
and the first node to find a solution receives a reward. In PoS,
the validating node is selected from a pool based on random
selection, wealth, or seniority.

Peer-to-peer energy transactions that are both secure
and automated are made possible using blockchain tech-
nology in energy applications. As a result, there will be
less friction and the price of electricity trading will go

27468 VOLUME 12, 2024



A. Boumaiza, A. Sanfilippo: Testing Framework for Blockchain-Based Energy Trade Microgrids Applications

down. Effective blockchain microgrid pilots exist in the US
and Australia, with projects being worked on in Thailand,
Malaysia, Japan, Turkey, Italy, Slovenia and Germany. The
Brooklyn Microgrid is a notable real-world application of
energy blockchain [6]. It establishes a local energy market-
place using a private blockchain and smart meters called
TAG-e G2. The project aims to enable automatic transactions
between local energy producers and consumers, driven by
rooftop solar installations.

While these initiatives demonstrate the successful imple-
mentation of local energy markets with blockchain, chal-
lenges remain. The existing solutions have yet to fully address
physical grid constraints and ensure data integrity in trans-
active energy marketplaces. Further development and refine-
ment are needed to overcome these issues and realize the full
potential of blockchain in energy systems. Existing energy
blockchain solutions lack efficient market solutions, overlook
grid properties affecting transaction costs and power stability,
lack in-ledger transaction verification, and lack interoperabil-
ity with IoT protocols. The proposed framework in this paper
addresses these issues by modeling the electricity network,
forecasting supply and demand, considering power loss [1],
and adopting an industrial IoT architecture with standardized
interconnection between energy blockchain platforms using
protocols like LwM2M and CoAP.

D. COMMUNITY SOLAR
Energy blockchain solutions are essential for promoting the
development of community solar business models, particu-
larly in countries like Qatar that have been slow in adopting
distributed renewable energy (Fig. 5). Community solar, also
known as shared solar, involves solar energy installations
collectively owned by community members and third parties,
enabling multiple consumers to share the generated electric-
ity. Community solar has emerged as an alternative model
for residential and commercial PV adoption, addressing con-
cerns about utility revenues, PV ownership costs, and equi-
table deployment subsidies [1]. In the United States, com-
munity solar installations reached 1,523 MW in 2018, expe-
riencing a compound annual growth rate of 200% between
2015 and 2017 [7]. The Rocky Mountain Institute projects
that community-scale solar power could reach a capacity
of 30 GW by 2020 [15].
In countries like Qatar, where a majority of the population

consists of expatriates without long-term residency, and citi-
zens enjoy free electricity, community solar presents an ideal
solution for residential PV adoption. This study focuses on
the ongoing development of a Blockchain Community Solar
Ecosystem within Qatar’s Education City Community Hous-
ing (ECCH) complex. It aims to achieve technical objectives
in four key areas: microgrid infrastructure, IoT architecture,
energy blockchain application, and regulatory framework.
The microgrid infrastructure component involves the design
and implementation of a computational microgrid model with
integrated hardware for the ECCH complex’s power system.

FIGURE 5. Simplified community solar paradigm.

It includes smart meters, residential solar PV systems with
energy storage (based on a 5 kW PV system with 10 kW stor-
age), a solar cadaster for estimating rooftop PV potential in
Education City (Fig. 6), and EV charging stations connected
to the microgrid’s monitoring and control system.

Interconnectivity inside the energy blockchain environ-
ment is laid out through the plan and execution of an IoT
reference engineering, taking on industry guidelines like
LwM2M and CoAP [16]. By fostering the concept of a
Blockchain Community Solar Ecosystem, this study ushers
a novel way to produce and consume solar energy in Qatar
through the creation of a secure, decentralized energy market
where households in Community Solar neighborhoods can
sell or purchase solar energy from one other. This system
could also be used to improve the efficiency of energy produc-
tion and consumption in Qatar. This could also help to reduce
energy costs in the country, as producers and consumers
would be able to access cheaper solar energy from each other.

FIGURE 6. Sample output of solar cadaster application for education city.

E. MODELLING ENERGY BLOCKCHAIN ECOSYSTEMS
The primary contribution of this study is the development
of a virtual environment that utilizes a Complex Adaptive
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FIGURE 7. Proposed blockchain-enabled distributed P2P energy trading framework.

System (CAS) approach to test and validate the secure and
fair trading of energy within a blockchain community solar
ecosystems. The collective behavior of semi-autonomous
agents that evolve and adapt to a changing environment is
modeled as a CAS [13]. ABM simulations implement CASs
by modeling the interaction of individual agents to explore
their evolving behaviors.

Decentralized electricity markets have been studied with
the help of equilibrium models [14], game theory [7], [10],
human-subject research [9], and agent-based models [10].
Traditional supply and demand principles are based on equi-
librium theory, which may not take into account the com-
plexities of decentralized energy markets that encompass
goals other than economic equilibrium (such as environmen-
tal considerations). Decentralized electricity markets may not
be adequately described by game theory, which focuses on
zero-sum games. Human-subject experiments provide behav-
ioral insights, but they consume a lot of resources. ABM
addresses these limitations by allowing automated simula-
tions of autonomous agents with multifaceted utility func-
tions that take into account a variety of constraints and make
it easier for new traits to emerge.

In recent years, ABM has gained popularity for modeling
decentralized energy markets. For instance, [10] used agent
interactions and ABM to predict the behavior of energy
market ecosystems, which are complex adaptive systems.
[1] utilized smart contracts to implement a similar strategy
for trading locally produced energy. Reference [11] used
ABM to model a blockchain-and-Byzantine fault tolerance

consensus-based financial market ecosystem. The proposed
approach utilizes ABM to establish a versatile environment
for testing the feasibility of an energy blockchain ecosys-
tem inside Qatar’s social, financial, and environmental set-
ting [17].

ABM offers greater flexibility in representation, allowing
agents to represent individuals or aggregate structures within
the reference system across different spatial scales and time
horizons. This choice depends on the level of abstraction used
by the modeler [18], [19], [20]. However, most agent-based
models of decentralized energy markets do not fully utilize
the capabilities offered by ABM. For example, they often
employ simplistic and discrete located agents without ref-
erence to realistic geospatial mapping strategies. To address
these limitations, we propose a simulation methodology that
combines a powerful Geographic Information System (GIS)
approach with data mining to create explicit and multilevel
spatial models within the ABM framework.

F. DISCUSSION
Traditional GIS models are based on centralized databases,
where a single authority controls the data. Thismodel has lim-
itations in terms of data quality, as the data may be outdated,
incomplete, or inaccurate. It also raises concerns about data
security, as a single point of failure can compromise the entire
system. Moreover, traditional GIS models lack transparency,
as the data is controlled by a single entity, making it difficult
for users to verify the authenticity of the data. To overcome
these limitations, various blockchain-based GIS models have
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been proposed. One such model is the Distributed Ledger
Technology (DLT) GIS, which uses a decentralized database
to store and manage spatial data. This model offers improved
data quality, as the data is continuously updated and verified
by multiple nodes in the network. It also provides enhanced
security, as the data is distributed across the network, making
it difficult for hackers to manipulate.

However, DLT GIS models have their own set of limita-
tions. The use of consensus algorithms to validate and add
data to the blockchain can be time-consuming and resource
intensive. This can result in slower transaction speeds and
higher costs, making it less feasible for real-time applications.
Moreover, DLTGISmodels still lack transparency, as the data
is controlled by a limited number of nodes, making it difficult
for users to verify the data. To address these limitations,
we propose an ABM GIS and blockchain-based approach.
ABM is a modeling technique that simulates the actions and
interactions of individual agents to understand the behavior
of a system. In this approach, each agent represents a unique
data point, and the interactions between agents result in the
emergence of complex patterns and behaviors. By combining
ABMwith blockchain technology, we can create a decentral-
ized and self-organizing system, where agents can interact
and exchange data in a peer-to-peer manner. One of the main
advantages of our proposed model is improved data quality.
As the data is continuously updated and validated by multiple
agents, the accuracy and completeness of the data are greatly
enhanced. Moreover, the use of ABM reduces the need for
costly and time-consuming consensus algorithms, resulting
in faster transaction speeds and lower costs. Additionally,
the decentralized nature of the model ensures better data
security, as there is no single point of failure. Furthermore,
our proposedmodel also offers improved transparency. As the
data is controlled by multiple agents, users can easily verify
the authenticity of the data. This is particularly useful in
applications such as disaster management, where real-time
and accurate data is crucial for decision making.

This study proposes a novel and distinct use of GIS lay-
ers in the simulation methodology to demonstrate decentral-
ized energy trading in a residential community facilitated
by blockchain technology. Section III describes the used
technique for incorporating geographic vector information
into the agent-based modeling (ABM) system. The capabil-
ities of the validated modeling solutions are highlighted in
Section IV.

III. PROPOSED METHODOLOGY: DATA&MODELS
A. DEVELOPED GIS MODEL
The proposedmodel for the application of a blockchain-based
transactive energy (TE) framework in the ECCH microgrid
utilizing distributed energy resources (DER) is described in
Fig. 8. In the model, each ECCH household is represented
as an independent agent. The probability that an agent will
either ‘‘buy’’ or ‘‘sell’’ excess energy produced by residen-
tial energy systems in the neighborhood is determined by a
convergence of factors including energy demand, availability

and pricing at the time of transaction. Every agent in the
community is associated with a variety of assets, including
electric loads, such as domestic appliances, and power gen-
erating resources, such as solar PV, wind turbines, electric
storage. Some electric loads are flexible, i.e. they can be
shifted from times of peak usage to off-peak time to restore
grid balance. Additionally, the system’s electricity production
and consumption are tracked by means of sensor devices.

This study’s model examines the peer-to-peer trading of
photovoltaic (PV) energy among household agents within
ECCH. The ECCH Energy Blockchain Community Ecosys-
tem (EBCE), depicted in Fig. 7, enables consumers to buy
energy from local or main grid sources through the energy
blockchain application. Trading scenarios are influenced
by market conditions, including population density, con-
sumer and prosumer counts. Agents interact with neighboring
agents, adapting their behavior based on trade history, user
parameters, energy prices, and updates from nearby house-
holds (Fig. 8).

FIGURE 8. Proposed framework and transactions logs stored on
blockchain.

B. DATA
Power transmission, building types, roof photovoltaic (RPV)
efficiency, and hourly power request profiles well defined for
the ECCH complex are integrated with the ABM utilized in
this study. In microgrid scenarios, smart meters, which are
installed in all ECCH units and provide detailed consumption
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data, are used to maximize resource utilization and storage
size. PV capability is estimated through a solar-based cadas-
tre application created in a joint effort coordinated by Qatar
Environment and Energy Research Institute with Mapdwell
Inc. and Qatar’s Ministry of Municipality. The ECCH elec-
trical network’s voltage stability, PV capacity, and real-time
fault detection are all modelled using data from cutting-
edge sensors, such as phasor measurement units (PMUs) and
machine learning methods. A 5 kW PV system with a 20 kW
Li-ion battery installed in one of the homes in ECCH is used
as the reference nano grid. The potential for reverse power
flow and its application are evaluated using power supply data
from the PV system, battery, and main grid.

1) PV GENERATION DATA
All villa accommodations (townhouses) in the model have
a rooftop photovoltaic (RPV) system with 5-kW capacity
similar to the one installed in ECCH. The RPV system either
uses its own power internally or sends it to the grid. Qatar
has an average of 5.8 peak sun hours per month, resulting in
an estimated 811 kWh of power generation. With an average
electricity rate of 4.50375/kWh, a typical two-bedroom villa
can save $36.48 per month, which equates to a total savings of
$437.76 per year. The equivalences below specify how these
calculations were obtained.

• Monthly power generation based on the installed RPV
system and peak sun hours:

Monthly Power Generation = Installed RPV System ∗ Peak
Sun hours.

• Monthly savings for a typical 2-bedroom villa:
Monthly Savings = Monthly Power Generation ∗ Electricity
Tariff.

• Cumulative yearly savings for a typical 2-bedroom villa:
Yearly Cumulative Savings = Monthly Savings ∗12.

2) PV DEMAND DATA
At present, we have demand profile data solely for the 2-
bedroom villa with the installed reference RPV in ECCH.
This data allows us to examine the hourly demand-to-
generation ratio for individual homes. Smart meters have
been installed in the ECCH homes and once operational are
operational, we will have access to demand data for each
home. Hourly demand-to-generation ratio (to be developed
once smart meters are operational) is determined as follows:

• Demand-to-Generation Ratio = Hourly Demand /
Hourly Generation.

C. GIS MODEL
Three parts make up the model used in this study: an
API sublayer, blockchain sub-layers, and GIS data-integrated
ABM simulation environment. The primary objective of the
ABM simulation experiments is to investigate trading pat-
terns among consumer agents. A population of 623 house-
holds/agents (i.e., the number of homes in ECCH) was cre-
ated for the reference energy market. Based on daily energy
use, homes are classified as ‘‘high-energy-consumption’’ or

‘‘low-energy-consumption’’ to make educated guesses about
energy needs [3]. Energy can be bought from peers in the
neighborhood or the grid considering the best available price.

Our developed ABM Platform [3] includes power trans-
mission, network topology, rooftop PV capacity, and hourly
power demand profiles. OpenStreetMap6 was used to model
the geospatial layout of the ECCH compound [3]. Consider-
ing various home configurations and types, the model focuses
on simulating energy trading among neighborhood house-
holds [3]. The proposed GIS model (Fig. 9 (a&b)) includes
various kinds of agents: prosumers, consumers, and utilities.
Prosumers provide electricity at a fixed price per kWh, while
consumers represent household seeking to ‘‘buy’’ or ‘‘sell’’
power.

D. AGENT’S BEHAVIORAL MODEL
The development of a behavioral model to optimize peer-to-
peer transactions for energy consumers and prosumers is a
crucial step towards minimizing energy costs for households.
By analyzing consumer behavior and integrating it with the
peer-to-peer energy trading process, thismodel aims to ensure
that households meet their energy demands while also maxi-
mizing the utilization of available resources. To achieve this
goal, several constraints govern the trading process. These
constraints include prioritizing the fulfillment of each house-
hold’s energy demand before engaging in trading and main-
taining a positive difference between energy production and
consumption. Through the integration of behavioral rules in
the Agent-Based Model, a comprehensive understanding of
consumer behavior and decision-making processes can be
achieved. This understanding will enable the optimization
of energy transactions by considering factors such as energy
demand, availability, and pricing.

1) DEVELOPMENT OF THE BEHAVIORAL MODEL
The behavioral model described in Algorithm 1 in the
Appendix, is designed to optimize peer-to-peer transactions
for energy consumers and prosumers. The primary goal is to
minimize the energy cost for all households, including pro-
sumers and consumers. The energy cost for each household is
determined by the price and amount of energy obtained from
the grid. The model is designed to ensure that each house-
hold meets its energy demand before engaging in trading,
while also maintaining a positive difference between energy
production and consumption. Additionally, the prosumer’s
trading energy price cannot surpass the grid energy price.

Developing agent behavioral models for energy trading
involves several important steps.

• Collecting Data: The first step in developing an agent
behavioral model for energy trading is to collect relevant
data. This data includes information on energy demand
and production, as well as any other factors that may
influence energy trading decisions.

6OpenStreetMap.
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FIGURE 9. (a) Representation of ECCH lots #1 and #2 from node
shapefiles. Each building is associated with geographic coordinates as
shown in (b). (c) Electrical scheme of the ECCH grid.

• Data Analysis: Once the data is collected, it needs to be
analyzed to identify patterns and trends. This data anal-
ysis step involves using various statistical and machine
learning techniques to extract meaningful insights from
the data.

• Creating a Behavioral Model: Based on the insights
gathered from data analysis, a behavioral model needs to
be developed that can simulate the decision-making pro-
cess of energy consumers and prosumers during energy
trading transactions. This model should consider factors
such as energy demand, production, and cost, as well
as any constraints or regulations that govern the trading
process.

• Model Validation: Once developed, the behavioral
model needs to be validated to ensure its accuracy and
reliability. This involves comparing the model’s predic-
tions with real-world data or conducting simulations to
test its performance in different scenarios.

• Optimization and Performance Evaluation: Once the
behavioral model is validated, it can be used to optimize
peer-to-peer transactions for energy consumers and pro-
sumers to minimize energy costs for all households.

2) CONSTRAINTS OF THE TRADING PROCESS
The trading process described in Algorithm. 1 is governed by
several constraints (as shown in Fig. 10):

• Each household must meet its energy demand before
engaging in trading. This ensures that the households are
not trading energy that is needed in situ.

• The prosumer’s trading energy price cannot surpass the
grid energy price. This prevents the prosumer from sell-
ing energy to other households at an unfairly high price.

• There must be a positive difference between energy
production and consumption. This ensures that the pro-
sumer’s energy needs are satisfied before the prosumer
engages in energy selling activities.

The energy marketplace involves different actors that work
together to facilitate the exchange of energy. These actors
include energy market participants, an authentication system,
a trade process model, and a business management mod-
ule. Energy market participants play a crucial role in the
energy marketplace as they are the key actors involved in
buying and selling energy. Market participants operate under
known energy market identities and are authenticated using a
certificate-based authentication method before they can par-
ticipate in the trade process model. The authentication system
plays a crucial role in ensuring the security and legitimacy
of the participants [1]. By using a certificate-based authen-
tication method, the system verifies the identities of energy
market participants before they can take part in the trading
process. This authentication process helps to establish trust
between parties and ensures that only authorized participants
can engage in energy trading.

Once the energymarket participants are authenticated, they
can then engage in the trade process model. This trade pro-
cess model involves the decision-making of participants, who
have specific interests and objectives. After a smart contract
has been deployed, the Network Administrator (NA) notifies
blockchain network participants of the market’s availability.
Customers then bid on energy services available from pro-
sumers and owners of renewable energy sources. Consumers
examine various offers from sellers before finally settling on
one. Once the market is closed by the NA, the appropriate
supplier is then able to provide electricity.

Smart contracts also enable the Network Administra-
tor (NA) to automate the bidding process for energy ser-
vices. The NA creates a market, and buyers and sellers can
post bids and offers for energy services. With smart con-
tracts, all transactions are transparent and auditable, and all
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communications are securely recorded on the blockchain.
This facilitates the monitoring of bids and offers, eliminates
any discrepancies between the two parties, and ensures that
the right amount of energy is supplied to the customer. Addi-
tionally, smart contracts reduce the time and costs associated
with the transaction, allowing the NA to close the market
faster and more efficiently. The implementation of smart
contracts has enabled the NA to facilitate a more efficient and
secure market for energy services.

The immutable and transparent nature of blockchain tech-
nology enables the NA to easily monitor and audit all trans-
actions. The use of smart contracts also helps reduce the
time and cost associated with energy services. This, in turn,
allows customers to get the energy they need faster and more
efficiently. As technology continues to evolve, it is expected
that smart contracts will become even more efficient and
secure, enabling the NA to further improve the energy ser-
vices market.

FIGURE 10. Proposed trading process and data flow among the
marketplace’s actors.

3) INTEGRATING THE BEHAVIORAL MODEL WITH THE ABM
The behavioral model is integrated with the ABM to allow for
more efficient energy trading amongst households. By inte-
grating the two models, it is possible to determine the optimal
energy trading strategies for the of household agents in the
model. Additionally, the integration of the two models allows
for the simulation of more complex energy trading scenarios,
such as those involving renewable energy sources.

E. FINANCIAL MODEL
1) THE MID-MARKET RATE METHOD
P2P investing prices, represented by the ATOMp2p equation
below, are determined using the Mid-Market Rate (MRR)
approach (Fig. 11). This approach takes into consideration
the utility grid electricity purchase price and the utility grid

energy sale price and calculates a value that falls in the
middle, hence the term ‘‘Mid-Market Rate.’’ This pricing
approach is applied to both parties involved in the microgrid,
ensuring fairness and transparency in P2P energy trading.
Building on the results of the forecasted energy, the bedrock
of the P2P energy trading market is an efficient auction and
pricing mechanism [21].

The MRR approach takes the value in the middle
between the utility grid electricity purchase price (ATOM-
ubuy) and the utility grid energy sale price (ATOMusell).
It applies to both parties in the microgrid. Based on the
formula in equation (1), the MMR technique estimates that
the investing energy swapping cost is the average of these
two values. Within a dynamic pricing of electricity such as
Time-of-Use, the daily fluctuations in supply and demand
in each area determine the purchasing and selling prices.
However, dynamic pricing has its limitations. In a microgrid
where the load-generation balance needs to be maintained,
the dynamic pricing approach can be a significant drawback.
This is because when the local demand and generation are
unequal, the excess electricity is sold to or drawn from the
utility grid. The microgrid must therefore be able to both
generate and store energy.

ATOMp2p =
ATOMubuy+ ATOMusell

2
(1)

2) USING THE SDR AND PRICE ELASTICITY MODEL
Before deciding on a set price for energy, the Price Elasticity
and Supply Demand Ratio (SDR) technique consider three
fundamental economic principles [10]:

a. Internal pricing should be capped between rewards
rates for prosumers (net metering or net/gross billing)
and power costs from the utility grid.

b. A fundamental premise of economics is that the price
and the SDR are inversely related.

c. For microgrid energy sharing, there must always be a
monetary equilibrium.

In microgrids, consumers buy power when it is less expen-
sive from local prosumers than from the grid, while pro-
sumers with a surplus may profitably offload their excess
power. So, the P2P selling price should be somewhere in the
middle between the purchasing and selling prices on the grid.
Everyone stands to gain from P2P pricing systems. The actual
cost of power is calculated by comparing local production to
total demand.

The SDR is defined in terms of the net load and production
profiles of prosumers and the microgrid [21].

Net Load Profile of the Prosumers,

NhL, p =

∑
Pp = 1 (lhp−ghp) , when NhL, p > 0

When NhL, p > 0 = 0, when NhL, p ⩽ 0 (2)

Net Load Profile of the Microgrid,

NhL =

∑
Mm = 1lhm+ NhL, p (3)

Moreover, at the hth hour, the microgrid’s net generation
profile is provided by:
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Net Production Profile of the Prosumers,

Nhg, p =

∑
Pp = 1 (ghp−lhp) ,

when Nhg, p > 0 = 0,

when Nhg, p ⩽ 0 (4)

Net Production Profile of the Microgrid,

NhG =

∑
Rr = 1ghr + Nhg, p (5)

The net load profile, Nh L, and the net production profile,
Nh G, at the hth hour can be used to characterize the relation-
ship between stock and request in a community microgrid.
This leads to the following formulation for the microgrid’s
SDR at instant ’h’:

SDRh =
NhG
NhL

(6)

FIGURE 11. Pricing of energy in intra-day trading between peers.
(adapted from [20]).

3) MOTIVE-BASED PRICING MODELS FOR PRICE-SENSITIVE
LOADS
Modelling the effect of P2P price fluctuations on load is
another objective of this study. The price-sensitive load
responds to any price changes. Here, we will try to estimate
how much of a drop in load occurs when prices on the peer-
to-peer market rise sharply at peak times. Consumers and
prosumers will respond to cost hikes by reducing their usage.

The concept of elasticity describes one’s responsiveness
or sensitivity to changes in another variable. Since there are
numerous consumer loads in a microgrid, the elasticity factor
measures how sensitive consumers are to changes in price.
The elasticity factor (EF) is calculated as in (7),

EF =

1d
d0
1d
p0

(7)

Only by switching on and off specific loads can prices be
adjusted. Self-elasticity (εxx) is defined as a positive number
when changes in load occur at the same time as changes in
price, as in (8),

εxx =

1dx
dx

1px
px

(8)

Power consumption at the x-th period (represented by dox)
is believed to have been adjusted to dx due to fluctuating elec-
tricity rates. This causes the shift in demand to be determined
by equation (9),

1dx = dxdox (9)

Assume that in the xth period, clients are offered an incen-
tive of ‘‘I’’ US$/kWh to cut their usage. As a result, customers
will be more likely to take part in incentive-based demand
response programs as in (10).

I ∗ (1dx) = Ix ∗ (dx − dox) (10)

The equation below determines the adjusted selling and
purchasing prices for peer-to-peer transactions at the busiest
times.

SDRhm = N hG,m/N hL,m (11)

4) DYNAMIC PRICING
The introduction of dynamic pricing in the electricity grid
has been a major game changer in the energy industry. It has
allowed for greater flexibility in the pricing of electricity,
allowing for a more efficient and cost-effective system. This
is especially true in the case of peer-to-peer (P2P) energy
trading, where prosumers can ‘‘buy’’ and ‘‘sell’’ energy to
each other. Typically, electricity prices are higher during
periods of peak consumption, and lower when there is an
excess of energy either due to lower consumption or/and
higher electricity production [12].

5) NONDYNAMIC PRICING
Nondynamic pricing is a pricing model used in power grids to
facilitate energy exchange between consumers and suppliers.
In this model, the retail price of the grid and the feed-in price
remain fixed regardless of the amount of energy exchanged
in real-time. This makes it easier to compare experiments
and evaluate data [12]. In our experiment, we used the utility
grid’s price information as input and employed the trading
strategy described in Algorithm 1 to generate prices and
conduct trading.

IV. CASE STUDY: RESULTS AND DISCUSSION
For ease of exposition, results are reported in three parts.
The first part looks at the decentralized marketplace demon-
strator, the second part examines the error metrics for all
datasets described in section III, and the third part presents
the results of the statistical tests. These tests measure the
significance of the results, and provide an indication of the
reliability of the model. The training strategy and algorithm
were implemented in Python 3.7.3 and run on an Intel(R)
Core (TM) i7-8565U CPU @ 1.80GHz 1.99 GHz computer
with 16 GB RAM. We employed residential use data from
real solar energy prosumers to validate the efficacy of the
strategy presented in Fig. 12. Each prosumer agent in the
model was equipped with a rooftop PV system integrating
an energy storage device, and the model was composed of
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TABLE 2. Units/symbols for the financial model.

623 residential consumer agents. The Power System Net-
work for Education City Community Housing Compounds
(ECCH) served as a testbed to evaluate the potential of the
proposed strategy and its impact on the power grid.

A. PROPOSED FRAMEWORK/DESIGN
The proposed model is based on a decentralized web plat-
form that allows energy producers and consumers to transact
energy directly, without a mediator. The platform is powered
by blockchain and smart contract technology. The model
takes advantage of Internet of Things (IoT) and Internet
of Energy (IoE) technology. IoT allows energy producers
and consumers to communicate and exchange data, and
IoE enables them to trade energy in a secure and efficient
manner.

The proposed model using blockchain, smart contract and
web.3py7 is reported in Fig. 12. The model is composed
of three parts: the front-end, middleware and back-end. The
front-end is a web page that provides information about the
project (shown in Fig. 13 (d)); it uses HTML5 to display
different kinds of data on the screen. The middleware is
an integrated system that allows users to interact with each
other in an open market; it uses Python 3 as its programming
language. The back end is a database that stores all kinds
of information about users, products, and transactions; it
uses MySQL as its database management system (DBMS).
The front-end application reported in Fig. 13 (d) includes
user registration, participant approval or rejection, optimum
power flow (OPF) simulation to set system limits, transac-
tion request broadcasting to the P2P network, and consensus
method validation. HF simulator8 are used to compile and
deploy smart contracts [11].

7web.3py is a Python library for interacting with Ethereum, see
https://web3py.readthedocs.io

8https://trufflesuite.com/ganache

FIGURE 12. Simplified architecture of the proposed decentralized
marketplace blockchain-enabled platform.

1) PEER TO PEER DEVELOPED BLOCKCHAIN-BASED
DEMONSTRATOR/APP
The trading platform, available as web application, show-
cases a simulation of the trading behavior of 623 potential
transacting households in ECCH lots #1 and #2 (Fig. 13).
Leveraging the Hyperledger Fabric blockchain, the platform
tokenizes energy into assets, facilitating energy asset trade
between prosumers and consumers. In addition to reducing
transaction costs through peer-to-peer trade and automated
contracts, the platform also ensures the involvement of utili-
ties as grid infrastructure providers, energy sellers, and buy-
ers. With its analysis, prediction, and optimization capabil-
ities, the platform addresses the present and future energy
market needs.

Controlled by a single organization (KAHRAMAA9 in
Qatar), the private blockchain allows consumers to purchase
energy locally generated by peers or from the main grid.
Smart meters provide local demand and supply data, and trade
information is relayed to the utility company for billing rec-
onciliation. This approach fosters an equitable energy trading
framework for all participants, including utilities, prosumers,
and consumers. The ensuing environment enables the follow-
ing P2P energy trading functions: (1) verification of trading

9Qatar General Electricity &Water Corporation: the local utility company
in Qatar.
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FIGURE 13. (a) Developed GIS Model: representation of ECCH lots #1 and
#2 from node shapefiles. Each building is associated with GIS
coordinates, (b) Virtual Trading ABM developed platform, (c) GIS-ABM
Energy Marketplace front-end application.

between different stakeholders; (2) traceability of prosumer
energy, increasing transparency, and (3) information about

FIGURE 13. (Continued.) (d) Web-based front-end Marketplace APP.

price credit and energy cost, which provide demand response
and energy management incentives. The developed platform
incorporates a blockchain system with a social simulation
platform for energy exchange, whichwill shortly be enhanced
with a carbon trading component.

The experimental setup involves the use of trading agents,
represented by yellow circles in Fig. 13 (a), which simu-
late the actions of ‘‘buyers’’ and ‘‘sellers’’ in the electricity
market by making ‘‘offers’’ and ‘‘bids’’ for electricity. These
trading agents play a pivotal role in the simulations as they
enable the representation of real-world market dynamics. The
power flow between the trading agents is depicted by the
connecting lines in Fig. 13 (b). The power flow in ECCH
simulations illustrates the exchange of electricity between
market participants. This power flow information is crucial in
understanding how electricity is being distributed and utilized
within the market. By analyzing the power flow in ECCH
simulations, market participants can gain insights into the
efficiency and effectiveness of electricity distribution. Fur-
thermore, the power flow information can also highlight any
imbalances or bottlenecks within the electricity market.

The platform user interface shown in Fig. 13 (c&d) inte-
grates a GIS component based on real-world data to enable
precise modeling of medium-to large-scale trading markets.
This allows for the efficient evaluation of energy prices,
geographical proximity, and other market factors that influ-
ence PV trading. The platform is also designed to ensure
the security of the energy trading process. It uses blockchain
technology to store all data related to energy transactions in
an immutable and secure ledger. This ledger is maintained
by a decentralized network of computers, making it virtually
impossible for malicious actors to tamper with the data.

VOLUME 12, 2024 27477



A. Boumaiza, A. Sanfilippo: Testing Framework for Blockchain-Based Energy Trade Microgrids Applications

Furthermore, the platform also uses smart contracts to pro-
vide transparency and trust in the trading process. It incor-
porates power transmission, network topology, rooftop PV
capacity, and hourly power demand profiles across multi-
ple layers. OpenStreetMap10 was used to supply geographic
information, deriving the layout of the for the ECCH com-
pound from shapefiles.

2) ANALYZING MARKETPLACE DYNAMICS: A BLOCKCHAIN
PERSPECTIVES
In the context of decentralized trading systems, analyzing
hourly demand and generation capacity is crucial for effective
market operations. Accuratelymodeling and forecasting elec-
tricity demand is a very important task to support decision-
making in deregulated electricity markets. For the efficient
management of day-to-day operations of a power system,
short-term forecasts are very important. Short-term forecasts
allowmarket participants to effectively plan and allocate their
resources to meet the anticipated demand. By utilizing his-
torical demand recordings and other relevant data, load fore-
casting provides valuable insights into energy consumption
patterns. This information plays a key role in the development
ofmodern electricity networks and ensures the reliable supply
of electricity to consumers.

The Hyperledger Fabric (HF) was used to model a micro-
grid consisting of 10 individual customer profiles reported in
Fig. 14. The energy consumption and surplus of prosumers
were tallied using data from ECCH lot#2 houses. The net-
work was chosen because it is representative of the larger
community of 623 homes. The 10 households were chosen
based on their geographic location, demographic informa-
tion, and energy usage patterns. The 10 households in the
network were monitored for one year. Data was collected
on energy consumption, building characteristics, and occu-
pant behavior. This data was used to generate a forecasting
model for energy consumption in the larger community of
623 homes. Accounts with excess energy made ‘‘bids’’, while
those with energy deficit made ‘‘requests’’. The dynamic grid
price was used to derive the fixed marketing clearing price
using the SDR method (grid selling and buying prices, as in
equation. (6)).

The central grid satisfies unaccepted bids at the
government-mandated price. After 48 hours, the simulation
data was exported to a CSV file and plotted. Each simulation
day is divided into three 8-hour periods, during which offers
are collected and utilized based on their ranking, starting with
the lowest offer (as described in Algorithm 1). The cycles
of the simulations, each lasting approximately 15 minutes,
analyze the errors between demand and supply. This helps
to identify any discrepancies that may exist between the
two. Based on the findings, adjustments to the offers can
be made to ensure that the most cost-effective and reliable
options are used. The graphs presented in Fig. 15 demonstrate
the average intensity of traders’ behaviors over time. Based

10https://www.openstreetmap.org

on this information, the market agent calculates the market
clearing price and determines which bids are accepted and
rejected.

The hourly demand, the hourly demand served, and
the available generating capacity are shown graphically
in Fig. 16. The agent’s status as ‘‘buying,’’ ‘‘selling,’’ or
‘‘energy-shared’’ is updated by the green curves that show
the difference between production and consumption. In this
specific model, all heaps are fulfilled, bringing about an
ideal match among request and supply. The market is effec-
tively stabilized because of the introduction of the ‘‘Pay-as-
Bid’’ mechanism, which significantly reduces price volatil-
ity. Each energy generating residence tries to sell the most
excess energy at the highest price for a given hour. The
purchase price rises as buyer households compete. Energy
demand is first satisfied by self-generation, wherein pro-
sumers use the energy they produce at the lowest cost—
the cost of solar energy. To prevent customers from buying
their energy straight from the market, households generating
excess energy may sell on the market at a price that is some-
what higher than the cost of solar energy but still below the
market price. Prosumers may store surplus energy stored in
lithium-ion batteries to take advantage of the 10% variable
demand which the model anticipates.

The proposedmodel utilizes GIS data to determine the geo-
graphical distribution of trading activities, while the multi-
level characterization allows for the inclusion of a variety of
factors that influence the market. These factors can include
economic, political, and social variables that are used to
identify the potential impacts of market changes. By incorpo-
rating GIS data andmulti-level characterization, the proposed
model is able to accurately depict the current state of the
market and predict how it will evolve over time. Fig. 17 shows
returns from energy sales at different times under dynamic
and nondynamic pricing conditions for the ten prosumers
profiles described in Fig. 14 (assuming no energy storage
equipment).

We analyze the spending and revenue of prosumers in
both Peer To Grid (P2G) and Peer To Peer (P2P) trading
situations. As there is a shortage of energy storage and limited
production ability, a significant surplus of energy generated
during the day is typically sold to the grid at a discounted
rate. From 7:00 PM to 7:00 AM, all power is purchased
from the grid, as expected. P2P energy trading takes place
between 8:00–18:00. During times of weak sunlight, selling
prices are higher due to lower solar energy production, and
the purchased energy is sourced from the prosumers and the
grid. Conversely, when the sun is strong, purchasers have an
advantage over sellers, and the prosumers sell energy to both
the buyers and the grid.

3) QUANTITAVE ASSESSMENT OF THE BLOCKCHAIN
The analysis presented in this section aims to model the
number of energy transactions and associated costs within the
developed blockchain framework, and to explore cost savings
that the proposed solution offers. Data for the modelling of
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FIGURE 14. (a) Initial demands of prosumers, (b) Predicted PV Energy.

the transaction cost was sourced from the ECCH households.
To calculate the number of transactions, the energy balance

FIGURE 15. Average intensity of traders’ behaviours over time: Average
Intensity = (1/Number of Cycles) ∗ Sum (Discrepancies).

FIGURE 16. Energy simulation results: Hourly demand is represented in
blue, available generation capacity in orange, and the difference in green.

FIGURE 17. A comparison of profits and expenses between sellers and
buyers in the Peer-to-Grid (P2G) and Peer-to-Peer (P2P) scenarios. In this
case study, the prosumers are composed of the ten prosumers profiles
reported in Fig. 14 (assuming that the prosumers do not have energy
storage equipment).

between prosumers and consumers must first be determined.
When the purchased energy is higher than the sold energy
demand is higher than supply.

To calculate the number of transactions, the energy balance
between prosumers and consumers needs to be determined.
This balance is determined by comparing the amount of
energy purchased by the prosumer and the amount of energy
sold by the consumer. If the purchased energy is higher than
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the sold energy, then the demand is higher than the supply.
In this case, energy demand must be ranked and matched
with energy supply in ascending order to yield the maximum
number of transactions. This means that the highest energy
demand will be matched with the highest energy supply until
all the energy is used up. This will give the maximum number
of transactions. On the other hand, if the demand is lower
than the supply, then the energy supply must be ranked and
matched with the energy demand in descending order to yield
the minimum number of transactions. This means that the
lowest energy demandwill bematchedwith the lowest energy
supply until all the energy is used up. This will give the min-
imum number of transactions. The minimum and maximum
number of transactions (No. TRX) over the simulated period
can be determined using Eq. 12 and Eq. 13, respectively,
where Rt represents the possible number of transactions,
t represents time slots in a day, and i represent number of day
(in our simulation i =179 days).

minNb.TRX = 6i = 1 : 179minR (12)

maxNb.TRX = 6i = 1 : 179maxR (13)

The probability that a given cell in the agent-based model
geospatial layout will have a higher or lower number of
households is determined by the population density (℘),
which is a crucial model parameter. Households that actively
participate as energy sellers in the examined use case scenar-
ios are designated as ‘‘prosumers’’. Other important parame-
ters that impact peer-to-peer energy trading include the num-
ber of transactions, consumers, and prosumers.

The results reported in Fig. 18 indicate that the number
of transactions rises in tandem with population density (℘).
The number of transactions tends to be higher in larger
‘‘buyer/seller’’ networks. On the other hand, when looking at
the proportion of verified transactions, smaller networks have
a higher proportion. The longer transaction-validation time
found in larger networks is the cause of this phenomenon.

FIGURE 18. Impact of population density f (℘) on the number of
transactions No. TRX.

Fig. 19 shows the verification process in greater detail over
500 seconds, with system updates occurring every 10 sec-
onds. According to the graph, scenarios with a lower pop-
ulation density (℘ = 0.4) have more verified transactions
than those with a higher population density (℘ = 0.8). These
results emphasize the dynamic nature of population density’s

influence on electricity transactions, flows, and market par-
ticipation.

FIGURE 19. Verification process during a period (Fig. 9): Number of
Verified Transactions = f (℘, Time).

We ran a simulation of an energy blockchain network with
623 peers and 50 blockchain miners. The results, displayed in
Fig. 20, validate that the network’s size grows in correlation
with the increase in both the number and density of peers,
or households.

FIGURE 20. Impact of population density on the blockchain size (Fig. 10):
Blockchain Size = f (℘).

4) MULTI CRITERIA ANALYSIS OF MARKETPLACE DYNAMICS
The objective of multi-criteria analysis of marketplace
dynamics is to provide a comprehensive overview of the
forces driving competition in a given market. This type of
analysis is important for businesses to understand the compet-
itive landscape and identify areas of potential growth. It can
be used to make strategic decisions and develop competitive
strategies. The ECCH lot#1 lot#2 compounds’ residents are
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referred to in the model as agents Hi, where 11<i<0, and the
model’s objective is to evaluate household-level PV trading
under different regulatory and financial scenarios based on
market energy prices, local standards, and grid conditions.
According to the present study, the cost price of PV in the
electricity sector now in Qatar significantly promotes resi-
dential PV trading. This trading may be further facilitated
by taking into account the homes’ geolocation in ‘‘bid/ask’’
transactions. Consumers first use the energy they produce.
If their output exceeds their requirements, they will try to sell
the extra energy to other prosumers first by offering a lower
price than the retail price (E(‘‘sell’’)) and send remaining
energy to the grid to be rewarded according to the local
regulatory framework, e.g. net metering, or net/gross billing.
Prosumers will use all the energy they create if they cannot
meet their demands, then they will try to purchase more from
nearby prosumers, and final purchase from the grid to satisfy
their remaining demand.

TABLE 3. Energy trading in neighborhoods: Input parameters for the j
scenarios (0<j<6).

• S1: Baseline scenario considered as the reference point
of the simulation framework, fit with a 2.94 ¢/kWh of
solar energy, a 10-kW rooftop PV installation and where
we remove the storage component.

• S2: Fit with a 10-kW rooftop PV system and 2.98 PV
pricing.

• S3: Scenario 2 + 15 kWh lithium-ion battery for energy
storage.

We describe the results of the market simulations for three
distinct scenarios (Table. 3), with the ‘‘business as usual’’
scenario (S1) acting as the reference point for the baseline
against which the other scenarios are measured. In the second
scenario, S2, no energy was sold to the grid, but the amount
sold to other prosumers surpassed the amount sold under the
first baseline scenario, S1. This points to the significance of
adding batteries in market models to store surplus energy for
potential future sales. The use of batteries in energy market

models allows prosumers to store their excess energy for
future sales. This has the potential to increase the value of
energy sold to other prosumers, as it provides them with an
additional source of clean, renewable energy. Furthermore,
it can also help to reduce the strain on the electricity grid,
as prosumers can use their stored energy when demand on
the grid is high.

As reported in Fig. 21, the capacity of the PV system
was raised to 10 kW for scenario S3, which increased the
amount of energy that could be traded. As the PV potential
was enhanced, more home demand was met, resulting in
more energy being sold to the grid than in S1 and S2 and
less energy being bought from the grid, respectively. Battery
storage made even more energy accessible for trade-in S3,
which led to increased energy sold to prosumers and the grid.
Because of purchasing more energy from other prosumers,
there was an increase in revenue from trading. Compared to
S3, the amount of energy available to be traded did not rise in
S2, but the utility’s increased price per unit of energy resulted
in increased revenues from trading.

FIGURE 21. Energy ‘‘Bought’’ and ‘‘Sold’’ per Household Hi (0<i<9), Profit
per Household Hi (0<i<9) for 3 scenarios Sj (1<j<4).

V. CONCLUSION
The study paper presents an experimental energy trading
ABM model that is based on a real-world data that include
geographic vector data from an integrated GIS compo-
nent. The model provides a testing and validation environ-
ment for an energy blockchain application operating in the
ECCH local power system in Doha, Qatar, which includes
623 household units. The model’s simulation results show
that the ABM model enriched with the GIS component pro-
vides a realistic characterization of market processes and
evolution for medium to large energy trading frameworks.
It offers a decision-making platform that helps stakeholders
observe a transactive energy blockchain in action to plan the
design of decentralized energy trading systems and test their
outcomes.

This work championsCommunity Solar energy ecosystems
that integrate a transactive energy blockchain to foster a cul-
ture of smart, secure, and sustainable exchange of distributed
solar energy in Qatar. By fostering the trade of distributed
solar energy in Qatar, the project contributes to
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Algorithm 1 Decision-Making Process of Energy Con-
sumers and Prosumers During Energy Trading Transactions
Algorithm

Require: for each entry {1, . . . , n} of settlement period (i.e.
5 mins and 30 mins) do
Read ENERGY-IN and ENERGY-OUT for all 623 ECCH
households in that settlement period For each time slot
for each time slot do
Determine the energy demand and supply by comparing
ENERGY-In and ENERGY-OUT
if Total Energy demand ≥ Total Energy Supply
MaxOrder⇐Ranking−Smallest−To−Largest(Energy
Demand) MinOrder⇐Ranking−Largest−To−Smallest
(Energy Demand)
Initial r to 1
end if
end for
for all energy demand at each time slot do
if cumulated MaxOrder[1:r] ≥ Total Energy Supply then
minR=r; rt=t;
break; end if

• Reducing the nation’s dependence on hydrocarbons
to produce energy with ensuing savings of natural
resources, decrease of the national carbon footprint, and
air quality improvements.

• Curtailing power grid infrastructure investments by sup-
porting demand response measures that reduce electric-
ity consumption at peak times without lowering cus-
tomer satisfaction.

• Increasing the security of the national power system by
promoting system modularity to support resiliency in
power outage emergencies.

• Fostering the integration of energy storage technolo-
gies to enable demand response and grid-to-vehicle and
vehicle-to-grid technologies.

In its final form, the full virtual implementation of the
ECCH BCS ecosystem will enable the testing and validation
of the energy blockchain application in its intended con-
text of application. The extensions planned to achieve the
final version of the energy blockchain simulation platform
include the integration of emulated version of the 623 ECCH
household units as nano-grids with real-time averages of
electricity consumption data from smart meters, and estima-
tions of the available PV energy for trade. These estimations
will use as reference a PV system capacity of about 10 kW
per household, based on a sizing estimate obtained with the
PV rooftop estimation platform shown in Fig. 6, and PV
production forecasts for the 10 kW PV systems obtained
through the PV productivity estimation platform such as PV
syst (https://www.pvsyst.com/) with grounds solar radiation
measurements for Education City.

Once the energy blockchain platform is fully tested in its
emulation environment, it will be opened to ECCH house-
holds through a subscription campaign aimed to achieve

maximum household enrollment and realistic engagement
through a reward system to promote true to life trading
behavior. Any needed additional adjustments to the energy
blockchain platform will be made to ensure correct applica-
tion in its real-world ECCH context. The participation of real
household users will provide the ultimate test of the energy
blockchain platform before its implementation with actual
PV systems and a digital currency.

APPENDIX
See Algorithm 1.
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