
Received 30 January 2024, accepted 17 February 2024, date of publication 20 February 2024, date of current version 27 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3367801

ViRAL: Vision Transformer Based Accelerator
for ReAL Time Lineage Assignment of
Viral Pathogens
ZUHER JAHSHAN 1, ESTEBAN GARZÓN 2, (Senior Member, IEEE),
AND LEONID YAVITS 1, (Member, IEEE)
1EnICS Laboratories, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
2Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, 87036 Rende, Italy

Corresponding author: Esteban Garzón (esteban.garzon@unical.it)

This work was supported in part by the European Union’s Horizon Europe Programme for Research and Innovation under
Grant 101047160, in part by the Israeli Ministry of Science and Technology under Lise Meitner Grant for Israeli-Swedish Research
Collaboration under Grant 1001569396, and in part by the Israeli Ministry of Science and Technology Grant for Groundbreaking Research
under Grant 1001702600. The work of Esteban Garzón was supported by the Italian Ministry for Universities and Research (MUR) under
the Call ‘‘Horizon Europe (2021–2027) Programme’’ under Grant H25F21001420001.

ABSTRACT Real-time genome detection, classification and lineage assignment are critical for efficient
tracking of emerging mutations and variants during viral pandemics such as Covid-19. For genomic
surveillance to work effectively, each new viral genome sequence must be quickly and accurately associated
with an existing viral family (lineage). ViRAL is a hardware-accelerated platform for real-time viral genome
lineage assignment based on minhashing and Vision Transformer. Minhashing is a locality sensitive hashing
based technique for finding regions of similarity within sequenced genomes. Vision Transformer is a model
for image classification that employs a Transformer-like architecture over patches of images. In ViRAL,
such image patches are genome fragments extracted from the regions of high similarity. ViRAL is especially
efficient in lineage assignment of extremely low quality (or highly ambiguous) genomic data, i.e. when a
large fraction of DNA bases are missing in an assembled genome. We implement ViRAL on CPU, GPU and
a custom-designed hardware accelerator denoted ACMI. ViRAL assigns newly sequenced SARS-CoV-2
genomes to existing lineages with the top-1 accuracy of 94.2%. The probability of the correct assignment to
be found among the five most likely placements generated by ViRAL (top-5 accuracy) is 99.8%. Accelerated
ViRAL outperforms the fastest state-of-the-art assignment tools by 69.4×. It also outperforms ViRAL GPU
implementation by 19.5×. ViRAL strongly outperforms the state-of-the-art solutions in assigning highly-
ambiguous genomes: while state-of-the-art tools fail to assign lineage to genomes with 50% ambiguity,
ViRAL achieves 77.6% assignment accuracy. We make ViRAL available to the research community through
GitHub.

INDEX TERMS Vision transformer, transformers, viral pathogens, SARS-CoV-2, genome, accelerator.

I. INTRODUCTION
One of the lessons of COVID-19 pandemic is that our
computational infrastructure and bioinformatics tools are
inefficient in tracking quickly mutating viral pathogens,
spread across the entire world [1], [2], [3]. Without a timely

The associate editor coordinating the review of this manuscript and

approving it for publication was Gian Domenico Licciardo .

and accurate understanding of the transmission dynamics
of the pathogen, an efficient control of the pandemic is
impossible. The foremost tasks of such pathogen tracking are
pathogen detection in metagenomic samples (i.e., samples
containing DNA of multiple organisms, such as wastewater
samples), classification into one of the many existing variants
(lineage assignment), and discovery of emerging mutations.
Lineage assignment is different from genome classification,

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 28353

https://orcid.org/0000-0003-4333-1718
https://orcid.org/0000-0002-5862-2246
https://orcid.org/0000-0001-5248-3997
https://orcid.org/0000-0002-1913-4928

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

where an organism is classified into one of very few very
distinct classes of species (such as human vs. virus [4]). Viral
lineage assignment targets hundreds, potentially thousands of
very closely related families, which makes the classification
task much more complex.

Existing diagnostic tools, such as Polymerase Chain
Reaction (PCR) tests, can neither detect new variants
of a quickly mutating virus nor efficiently classify viral
samples [5]. This is because PCR tests require custom (i.e.,
per-variant) ‘‘primers’’ that attach to and amplify specific
regions of DNA/RNA in the target virus’s genome. Each
of such primers must be specifically designed for each new
variant. Therefore, identifying a new viral sample with one
out of hundreds of existing variants using PCR is infeasible.
A practical solution requires DNA sequencing and digital
genome analysis.

Unfortunately, an accurate lineage assignment of a quickly
mutating viral pathogen such as SARS-CoV-2 may have to
deal with hundreds or thousands, and potentially millions of
previously sequenced viral genomes. Existing bioinformatics
tools are either prohibitively slow [6], [7], [8] or use
heuristics to trade accuracy for speed [9]. The underly-
ing computing infrastructure is inefficient in dealing with
problems of such complexity and scale. A new paradigm,
combining new bioinformatics methods that can deal with the
speed of pathogen evolution and abundance of variants, and
new computing platforms to efficiently implement such new
methods, is required to efficiently face the next pandemic.

Deep learning networks emerged as a very powerful
infrastructure for genome and metagenomic classification
tasks. State of the art DNN based solutions use Convolu-
tional Neural Networks (CNN) [10], [11], [12], Recurrent
Neural Networks (RNN) [13], a combination of CNNs
and RNNs [4], [14], [15], a combination of CNN and
LSTM [16], Multilayer Perceptron (MLP) [12], and Trans-
former networks [17] to identify and classify genomic
samples of a wide spectrum, from humans to viruses.

Beyond metagenomic classification, DeepTE [18] classi-
fies transposable elements which constitute a large portion of
many known eukaryotic genomes using CNN. Basset [19]
tool applies CNNs to learn the functional activity of DNA
sequences from genomics data. BERTax [20] is a tool that
uses a transformer network to perform taxonomy classifica-
tion of DNA sequences. fDNN [21] integrates DNN with a
supervised forest feature detector to extract feature represen-
tation for gene expression data classification.

However, unlike metagenomic classification, where
species exhibit significant differences, lineage assignment
of quickly mutating viral pathogens such as SARS-CoV-2
deals with very similar genomes, where the difference is often
limited to several bases [22].

In this work, we make a case for an alternative deep
learning approach to lineage assignment. We introduce
ViRAL (Figure 1), a novel algorithm and accelerated system
for quick and accurate identification, classification, and
lineage assignment of viral genomes. ViRAL is based

on a combination of Vision Transformer (ViT) [23] and
MinHash [24], [25]-like locality sensitive hashing (LSH)
technique. ViT is a deep neural network (DNN) for image
classification, which we modify and amend to enable
extremely fast and accurate lineage assignment of viral
genomes. MinHash identifies the regions of high similarity
in genomes. During the network training, these similarity
regions are learned and embedded by the ViT. During
inference, extracting regions of similarity from a genome
assists the network in identifying such a genome with the
correct lineage with high probability.

Specifically, ViRAL receives a newly sequenced SARS-
CoV-2 genome and outputs a list of the most probable
lineages it might belong to, ordered by their likelihood. One
of the two most probable lineages identified by ViRAL is
the correct one with a probability of 97.9%. Such probability
grows to 99.8% for the five most probable lineages (i.e., the
probability of the correct result being among these five most
probable lineages is 99.8%).

Digital analysis of the sequenced SARS-CoV-2 material
relies on high quality and high coverage1 genome sequenc-
ing [26]. However, low-quality sequencing is ubiquitous in
low-cost field settings, especially in low- and middle-income
countries. As a result, a considerable amount of low-quality
sequence data is found in SARS-CoV-2 databases [27].
Consequently, such low-quality data fragments are typically
ignored or removed during analysis [28]. Such an inability
to use low-quality sequenced data adversely affects the
evolutionary tracking and transmission dynamics of the virus.

ViRAL maintains 94.2% and 77.6% lineage assignment
accuracy when analyzing high quality and low quality (50%
ambiguity2) genomic data, respectively. In that, it strongly
outperforms state-of-the-art tools, which typically require
high-quality ambiguity-free data to perform.

In addition to accurately assigning a lineage to a newly
sequenced SARS-CoV-2 that belongs to one of the existing
lineages, ViRAL can potentially detect a novel SARS-CoV-2
variant or lineage, and provide some initial evolutionary
tracking hints, which may simplify the phylogenetic analysis
of such a new variant or lineage.

A worldwide viral pandemic is not the only looming health
disaster. Antimicrobial resistance is an escalating global
crisis, where the spread of drug resistance is outpacing the
development of new antimicrobials. It already causes at
least 700,000 deaths a year and is expected to cause over
10 million deaths annually by 2050 [29]. To act against
this global threat, fast and accurate tools for antimicrobial
resistance diagnostics are required. DNA sequencing and
computational analysis of bacteria are sufficiently scalable
and enable the discovery of new genes and variants, but
technical and computational difficulties complicate the use of

1Sequencing coverage refers to the average number of times each base in
the genome is read during the sequencing process.

2Ambiguity is the percentage of genome sites not covered by any DNA
read; we further define base ambiguity in Section VI-A1.

28354 VOLUME 12, 2024

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

FIGURE 1. ViRAL: From low-quality DNA sample to high-quality lineage assignment, in real-time. .

genome sequencing and analysis-based approaches in clinical
settings.

ViRAL aspires to enable a rapid and accurate interpretation
of transmission and evolutionary dynamics of pathogens,
presently limited by the inefficiencies and bottlenecks of
von Neumann model [30]. The most efficient solution to
the performance limitations of general-purpose computers is
hardware acceleration [31]. ViRAL is designed to accelerate
pathogen (virus or bacteria) classification and lineage assign-
ment, such that a newly sequenced viral or bacterial genome
can be accurately and rapidly identified and contextualized
within its entire evolutionary history.

We develop three ViRAL solutions: The first is a
baseline software-only CPU implementation. The second
is a GPU-accelerated solution. It achieves 3.53× speedup
over UShER [9], arguably the best performance state-of-the-
art assignment tool, when executed on NVIDIA’s GeForce
RTX 2080 Ti GPU-powered computer. The third solution
is a hardware-accelerated ViRAL implementation that uses
a dedicated ASIC design and achieves 69.4× speedup over
UShER.

We make ViRAL available to the research community
through GitHub [32], as well as at Pango cov-lineages
portal.3

This work makes the following contributions:
1) We propose ViRAL, a new DNN-based pathogen

classification and lineage assignment tool. This is
the first time a Vision Transformer has been applied
to genome identification, specifically to classification
of genomes of the same species, into hundreds of
closely related lineages. It is sufficiently sensitive and
accurate to differentiate between genomes with very
little variations among them.

2) We combine ViT with MinHash, whose role is the
identification of the regions of high similarity within
individual genomes. Those regions are used for training
the network as well as during inference.

3https://cov-lineages.org/resources.html

3) ViRAL achieves high accuracy (above 77%) when
classifying low-quality and ambiguous genomic data
(ambiguity of 50%).

4) We develop a hardware accelerator that enables very
significant speedup over state-of-the-art assignment
tools, and benefits a wide range of bioinformatics
applications, ranging from genome classification to
genome assembly.

II. BACKGROUND AND RELATED WORK
A. DNA SEQUENCING AND GENOME ANALYSIS
DNA is composed of four nucleotides: Adenine (A),
Guanine (G), Cytosine (C), and Thymine (T), which are
frequently referred to as DNA basepairs, bases, or bps.
Accordingly, a DNA data element is a DNA base that can
have one of four values (A, G, C, and T). DNA sequencing
is the process of determining the bases of a DNA chain in
a given biological sample. Contemporary high-throughput
DNA sequencers can sequence multiple biological samples
in parallel [33]. A DNA sequencing process, along with
genome analysis, is carried out in several steps [34]:
(1) sample preparation; (2) DNA sequencing that generates
multiple DNA reads (i.e., sub-sequences of the DNA sample);
and (3) DNA classification, DNA read alignment, genome
assembly, variant analysis, etc.

While variant refers to a single change in a genome (i.e.,
a single base change mutation), lineage is a collection of
variants that help define a specific line of an organism.

B. VISION TRANSFORMER
Transformer is aDNNmodel proposed byVaswani et al. [35].
It became state-of-the-art in many deep learning applications,
such as natural language processing. Vision Transformer
(ViT) is an image classification DNN based on the
transformer model [23]. ViT architecture is presented in
Figure 2. It comprises an encoder and a multilayer perceptron
(MLP) layer with a softmax activation function to perform
predictions (in this paper we will refer to this MLP
layer as MLP head). An encoder receives a sequence of

VOLUME 12, 2024 28355

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

FIGURE 2. The ViT architecture. The encoder is a stack of alternating L multi-head self-attention (MHSA) layers and L MLP blocks. Layer
normalization is applied before every block and a residual connection is employed around each of the sub-layers (i.e., MHSA and MLP).

representations, each of them is of dimensionality dmodel
(i.e., sequence of vectors consisting dmodel elements each),
and outputs a sequence of learned representations of the
same dimensionality. For the sake of clarity, we refer to
the sequence of input representations as ‘‘feature vectors
sequence’’ throughout this section. The transformer encoder
layer is composed of two main sub-layers, namely the Multi
Head Self Attention (MHSA) and the piece-wise MLP. In the
following subsections, we will present the structure and the
purpose of those sub-layers.

1) MULTI HEAD SELF ATTENTION
This sub-layer, depicted in Figure 2 (right) receives as an
input a sequence of feature vectors f1, f2, . . . , fn, each of
dimensionality dmodel . The sub-layer outputs a sequence of
learned representations r1, r2, . . . , rn, a representation per
each feature vector. The output learned representations are
of the same dimensionality as the input.

The following presents the MHSA data flow. First,
each feature vector fj is passed through 3h linear layers
{ql, kl, vl}hl=1, where h denotes the number of heads, and
3 denotes the three types of different representations (i.e.,
query, key, and value). The purpose of those linear layers is to
learn h query representations for fj, h key representations for
fj, and h value representations of fj. Each linear layer defines a
weight matrix as follows:W q

l ∈ Rdmodel×dq ;W k
l ∈ Rdmodel×dk ;

W v
l ∈ Rdmodel×dv . They are used to calculate their respective

representations: ql(fj) = f Tj ·W
q
l ; kl(fj) = f Tj ·W

k
l ; vl(fj) =

f Tj ·W
v
l .

The query and key representations are used to calculate the
degree of attention that the learned output representation, rj,
will give to other feature vectors. The value representations
are used to represent learned properties of the feature vector
that we intend to pass through the network. Formally, this first

step of the MHSA layer is defined as follows:

Alj =
n∑
i=1

similarity(ql(fj), kl(fi)) · vl(fi)

where

similarity(ql(fj), kl(fi)) = softmaxi(
ql(fj)T kl(f1)
√
dk

,

. . . ,
ql(fj)T kl(fn)
√
dk

)

where l refers to the l’th head, and softmaxi is the i’th element
of the softmax function, defined as

softmax(x1, x2, . . . , xn) =
1∑n
i=1 e

xi
(ex1 , ex2 , . . . , exn).

Note that for a given head l, feature vectors with higher
similarity to fj will have a larger dot product with ql(fj)
compared to other feature vectors. This drives the network
to learn, for each representation, rj, on which feature
vectors of the input sequence it should focus its attention to
learn the representations of value. To recap, representations
A1j ,A

2
j . . . ,Ahj depend on feature vectors that receive a high

degree of attention.
Next, these representations are concatenated to a form

Aj = A1j ◦ A
2
j ◦ · · · ◦ A

h
j .

The last step of the MHSA is applying to Aj a linear layer,
to generate the MHSA output representation.
To further explore the design space, we experiment with

a different activation function. Specifically, we replace
softmax by rectified linear unit (ReLU) activation function,

28356 VOLUME 12, 2024

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

as suggested in [36], as follows:

similarity(ql(fj), kl(fi))

=

ReLU (ql (fj)
T kl (f1)
√
dk

, . . . ,
ql (fj)T kl (fn)
√
dk

)

γ
√

n
2

where n is the number of extracted fragments and γ is a hyper
parameter.

2) TRAINABLE WEIGHTS AND HYPER-PARAMETERS
For each head, l ∈ [1, h], we define three weight matrices
W q
l ,W k

l ,W v
l . Additional weight matrix W o

∈ Rh·dv×dmodel is
reserved for the linear layer that processes Aj.
The MHSA hyper-parameters include the number of

heads h, the dimensionality of the query and key repre-
sentation dq = dk , and the dimensionality of the value
representation dv.

3) PIECE-WISE MULTI LAYER PERCEPTRON
The piece-wise MLP receives as an input a sequence of
representations (feature vectors). For each feature vector,
it learns an output representation. Unlike the MHSA, in the
piece-wise MLP layer each learned representation depends
only on its input feature vector and does not depend on
other feature vectors in the sequence. This layer transforms
each input feature vector into an intermediate representation
of dimensionality dff , and learns the output representation
which is of dimensionality dmodel . Formally, to perform this
calculation, we define two weight matricesW ff

∈ Rdmodel×dff

and Wm
∈ Rdff×dmodel . and calculate the representation of f

as follows:

MLP(f) = (ReLU (f T ·W ff))T ·Wm

4) TRAINABLE WEIGHTS AND HYPER-PARAMETERS
There are two weight matricesW ff andWm as defined above.
The only hyper-parameter is dff .

5) LAYER NORMALIZATION
Layer normalization [37] is a method used to normalize the
activities of the neurons of a layer improving the training
speed for neural network models. It directly estimates the
normalization statistics from the summed inputs to the
neurons within a hidden layer.

6) THE TRANSFORMER ENCODER
The Transformer Encoder (TE) comprises a stack of
L identical encoder layers, each comprising an MHSA
sub-layer followed by a piece-wise MLP sub-layer. Layer
normalization is applied before each sub-layer, and a residual
connection is employed around each of the two sub-layers.

7) HYPER-PARAMETERS OF THE TE
The number of encoder layers - L, the dimensionality of the
query and key representations - dq = qk , the dimensionality

of the value representation - dv, and the dimensionality of the
intermediate representation of the piece-wise MLP - dff .

C. GREEDY LAYER-WISE PRETRAINING
Training DNN is challenging due to the vanishing gradient
problem (i.e., the weights in layers close to the input layer
are not updated in response to errors calculated on the
training dataset). The Greedy Layer-Wise Pretraining allows
DNN to be successfully trained, achieving state-of-the-art
performance. Pretraining involves adding a new hidden layer
to a model and refitting, allowing the new model to learn
the inputs from the existing hidden layers, while keeping the
weights for the existing hidden layers fixed and not trainable.
This technique is based on the observation that training a
shallow network is easier than training a deep one [38].

D. REGULARIZATION
To generalize the results of the training set better, we use
several regularization techniques in parallel. We employ
a dropout after each MHSA and MLP sub-layers in the
network. Moreover, we use L2 regularization [39] on the
trainable weights of the network (not including the biases).

E. THE MINHASH SCHEME
A modified MinHash [24], [25] is the second process-
ing component of ViRAL, whose role is extracting the
informative feature vectors from the genome. MinHash,
or the min-wise independent permutations scheme is a
technique for similarity estimation. MinHash is used in many
tasks in computational biology, including genome assembly
[40], [41], metagenomic gene clustering [42], [43] and
genomic distance estimation [44]. MinHash implements the
following sketch function:

Given a set of characters A, a compression factor n, and a
hash function h, the elements of the set A are hashed using
function h to generate the set H (A). Then the elements of
H (A) are sorted and the inputs to the smallest n elements are
returned as described in Algorithm 1.

Algorithm 1 The Sketch Algorithm sketch(A)
Require: set A = {a1, . . . , a|A|}, compression parameter n

and a hash function h
sketch← ∅
H (A)← (h(a1), . . . h(a|A|))
Sort H(A) to get (h(ai1), h(ai2), . . . , h(ai|A|))
return (ai1 , ai2 , . . . , ain)

4

The subset obtained by applying the sketch algorithm
provides a good estimate for the Jaccard index [45], defined
as follows: Given two sets A,B the Jaccard index is

J (A,B) =
|A ∩ B|
|A ∪ B|

.

4These are the genome representative kmers referred to in Section III-A.

VOLUME 12, 2024 28357

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

Formally, given two sets, A and B,

|sketch(A) ∩ sketch(B) ∩ sketch(A ∪ B)|
|sketch(A ∪ B)|

≈ J (A,B).

We use the sketch algorithm to extract feature vectors from a
genome, as presented further.

F. RELATED WORK
1) DNA CLASSIFICATION
The goal of a DNA classifier is to find which organ-
ism(s) a biological sample contains. Several probabilistic
classifiers have been proposed, such as interpolated Markov
model-based Phymm and PhymmBL [46], BLAST-based
models [47], MEGAN [48] and METAPHYLER [49], naive
Bayesian classifier NBC [50], and others. To speed the
DNA classification up, exact pattern matching classifiers
were developed, including CLARK [51], CLARK-S [52],
Kraken [53] and Kraken2 [54].
Several tools apply deep learning techniques to clas-

sification of biological samples. In [55], a convolutional
neural network (CNN) is applied to the classification of
bacterial DNA, focusing on 16S rRNA (a gene that appears in
bacteria and provides species-specific signature) recognition.
In [56], a CNN and a recurrent neural network (RNN)
based solutions for several special cases of bacterial DNA
classification are developed and compared. PACIFIC [4],
a CNN/RNN based solution has been proposed to detect
the presence of SARS-CoV-2 and other common respiratory
RNA viruses in RNA-seq data (RNA-seq is a sequencing
technique to detect and quantify RNA in a biological
sample). Transformer-based tools have been proposed for
gene expression prediction [57], [58].
While state-of-the-art classifiers offer a solution for

detection and classification of species (e.g., detecting
SARS-CoV-2DNA in a biological sample containingDNAof
several different organisms, or classifying different bacteria),
they typically lack the sensitivity to classify variants,
or mutations of the same organism (e.g., Omicron BA.4 and
Omicron BA.5 variants of SARS-CoV-2 virus). This is due to
high similarity between variants of the same organism.

Several recently developed tools aim at resolving the
much more complex problem of lineage and phylogenetic
assignment (i.e., placement of an accession genome on
a phylogenetic tree). EPA-ng [7] computes the optimal
insertion position for an accession in a given reference
phylogenetic tree with respect to its maximum likelihood.
IQ-TREE [6] uses stochastic algorithms for estimating
maximum likelihood phylogeny. UShER [9] uses a maxi-
mum parsimony approach by searching for an assignment
that requires the fewest additional mutations. An apparent
limitation of UShER is that it only supports certain types of
mutations.

State-of-the-art classifiers include hardware-accelerated
solutions as well. SquiggleFilter [5] is a virus detection
framework that analyzes the raw output (raw squiggles) of the
ONTMinION sequencer [59] and filters out all but the target

virus DNA reads. EDAM [60] is an edit distance-tolerant
content addressable memory for approximate search, used for
the DNA detection and classification tasks. GenSLMs [61]
applies large language models to the identification and
classification of viral variants using supercomputers such as
Polaris at the Argonne Leadership Computing Facility and
Selene at NVIDIA, as well as Cerebras CS-2 wafer-scale
cluster.

2) MINHASH ACCELERATORS
Several Minhash acceleration solutions have been proposed.
MetaCache GPU [62] uses MinHash for metagenomic
classification and implements it on GPU. MSIM [63] is a
near-memory MinHash accelerator with a limited energy
consumption reduction (26.4× vs. high-performance GPU),
targeted for high-performance applications. In [64], MinHash
is used for kmer clustering. An FPGA-based solution is
limited to parallel calculation of 15 hash functions (whereas
ViRAL calculates in parallel at least 256 hash functions).
JACK-FPGA [65] uses a cloud FPGA to accelerate MinHash.
Scotch [66] is an FPGA-based locality-sensitive hashing
accelerator with a limited energy consumption gain (5× over
high-performance GPU).

The purpose of MinHash acceleration in ViRAL frame-
work is to balance the MinHash and Vision Transformer
calculations while providing the highest energy efficiency,
preferably sufficient for portable applications.

III. ViRAL ALGORITHM
ViRAL is the platform for a quick and accurate identifica-
tion, classification, and lineage assignment of SARS-CoV-2
variants. It accepts an assembled genome and outputs the
ordered list of most probable lineages such genome belongs
to. If the top probabilities output by ViRAL are similar, this
might indicate that the new genome belongs to an unknown
lineage, creating a new node on the phylogenetic tree.

The top-level overview of ViRAL algorithm is presented
in Figure 3. The input to ViRAL is an assembled genome in
FASTA file format. To convert the genome into a sequence of
feature vectors, we build a pipeline of preprocessing steps,
comprising the feature extractor and the embedding layer.
The feature extractor chooses a set of fragments (i.e., genome
subsequences of fixed length), represents each fragment as a
two-dimensional matrix, and outputs those genome fragment
matrices (GFMs). Each GFM is fed into an embedding layer
that consists of one neuron. This layer converts the GFM into
a genome fragment vector, designated the feature vector. The
feature vectors are fed into the ViT, which outputs the most
likely assignment candidates (by attaching probabilities to
each lineage).

The feature extractor together with the embedding layer
transforms a genome into a sequence of representative
feature vectors, which are the numerical representations of
genome fragments. We implement the feature extractor using
MinHash to preserve similarities in the genome. It allows
the feature extractor to find features in the query genome

28358 VOLUME 12, 2024

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

FIGURE 3. A general overview of the ViRAL algorithm.

that are shared by the known lineages. The embedding layer
is used as a dimensionality reduction step. It allows for the
reduction of ViRAL latency without affecting its assignment
accuracy.

A. FEATURE EXTRACTOR
The first part of the ViRAL pipeline receives the assembled
genome and outputs matrices that represent genome frag-
ments. Feature extractor employs MinHash to find similar
fragments (i.e., features) in different genomes.

Algorithm 2 The Feature Extractor
Require: genome g, compression parameter n, fragment size
f , kmer size k , hash function h
G← {gi ≡ g[i : i+ k]} s.t. i ∈ [0, n− k + 1]
kmers← sketch(G, n, h)
left ← floor(f−k2)
right ← ceil(f−k2)
fragments← {g[i− left, i+ right] : gi ∈ kmers}
return one− hot − encode(fragments)

One hot encoding of a fragment refers to the operation of transforming each

base in the fragment as follows:

A → [1, 0, 0, 0]; C → [0, 1, 0, 0]; G → [0, 0, 1, 0]; T → [0, 0, 0, 1];

N → [0, 0, 0, 0].

For the example please refer to Figure 4(b).

An example is illustrated in Figure 4(a). Input is a genome
sequence g of length N = 19. We generate all possible kmers
(genome sub-sequences of length k) G (where k = 4), and

extract (n = 3) 4mers from the genome using the MinHash
scheme (i.e., sketch(G, n = 3, h)). The next step is to generate
fragments of length f = 8 (by extending each of three 4mers
by f−k

2 =
8−4
2 = 2 bases in each direction). The last step

of this workflow is to encode each basepair of the fragments
using one-hot encoding.

For the genome sequence g of length N , the extractor
first generates a set G of all possible kmers. It then
sketches (i.e., applies MinHash sketch function to) the set of
kmers, G, to extract n representative kmers of the genome
(Algorithm 1). Those kmers are used as anchors to be
expanded to generate fragments. The last part is transforming
a fragment into a numerical matrix where the genome
basepairs A, G, C, and T are encoded using one-hot encoding
as described in Algorithm 2.

B. EMBEDDING LAYER
The input of the embedding layer is a genome fragment
matrix of dimensions f × 4 (i.e., f represents the fragment
length and 4 is the dimensionality of the basepair one-hot
encoding). It outputs a feature vector of size f . The embed-
ding layer consists of one neuron which performs a base-wise
linear transformation. Specifically, the embedding layer
defines 5 learnable parameters, 4 weights wA,wC ,wG,wT ,
and one bias term bN . Given a genome fragment matrix,
we transform each base (represented in one-hot encoding)
to a numerical token as presented in Figure 4(b), which also
contains an example in which we embed a fragmented matrix
of dimensions 8× 4.

VOLUME 12, 2024 28359

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

FIGURE 4. (a): Feature extractor workflow example. (b): Embedding a
fragment matrix of dimensions 8 × 4.

IV. VIRAL BASELINE AND GPU – ACCELERATED
IMPLEMENTATIONS
The purpose of these designs is to implement ViRAL
in conventional server infrastructure. While the preferable
application of ViRAL is in portable field settings or at
clinical points of care, it can also provide a fast and accurate
software solution for pathogen tracking and diagnostics.
We use an 8-core Intel i7-9700K desktop computer, operating
at 3.60GHz, with 32GB of 2,666 MT/s DDR4 RAM,
equipped with NVIDIA’s GeForce RTX 2080 Ti GPUwith an
11GB / 14Gbps GDDR6 frame buffer, running at 1.545GHz.
The latter is used in GPU-accelerated ViRAL.

In this section, we present the dataset used to train, validate
and test the model. We also describe the training process.
In the end, we present ViRAL profiling results which provide
addition motivation for its hardware acceleration.

A. DATASET
We use the COVID-19 Data Portal [67] as a source
of sequenced SARS-CoV-2 genomes. At the time of
ViRAL development, it contained 4,470,553 assembled
SARS-CoV-2 genomes classified into 1,536 distinct lineages.

FIGURE 5. The number of sequenced genomes per lineage histogram.
Most of the lineages (more than 800 out of 1,536) have less than
64 accessions available. The peak in the last bin accounts for all lineages
with more than 960 accessions.

The distribution of genomes across the lineages is highly non-
uniform. For example, 463,426 samples are categorized as
B.1.1.7, while most lineages have only a small number of
samples, as depicted in Figure 5. Such non-uniformity makes
training the network challenging. To mitigate, we select at
most 1024 samples from each lineage and discard the rest
when constructing the dataset. This way we prevent any
potential overfitting towards lineages like B.1.1.7. We also
discard all samples that belong to lineages with fewer than
512 accessions, since such a small number of samples
limits the model’s ability to generalize. These steps form
our dataset, which contains 240,734 samples belonging to
270 different lineage classes.

We divide our dataset into three non-overlapping subsets:
the training set, the validation set, and the test set (which
we designated the existing-lineage test set). The training and
validation sets are used to train and optimize the network. The
test set is applied to evaluate ViRAL’s assignment accuracy
and to compare it with state-of-the-art solutions. Both the
validation and test sets consist of 13,500 genomes randomly
selected from the dataset. The rest of the samples comprise
the training set.

We also define two additional test sets, the novel-
lineage and the non-SARS-CoV-2, as further detailed in
Section VI-A1. The purpose of the former is to evaluate
ViRAL on novel variants of SARS-CoV-2, which presumably
did not exist at the time of (and hence were not used in)
training the network. The purpose of the latter is to evaluate
ViRAL’s on genome material that comes from organisms
other than SARS-CoV-2, for example, different viruses.

Typically SARS-CoV-2 samples that contain ambiguous
data (base ambiguity is defined further in Section VI-A1)
are excluded from genome analysis [68]. To the contrary,
we do not filter out genomes that contain ambiguous bases.

28360 VOLUME 12, 2024

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

TABLE 1. Network training configuration and network size.

On the contrary, we keep base ambiguity in both training and
test sets, to ensure the robustness of our solution and enable
accurate identification and assignment of SARS-CoV-2
genomes with a significant percentage of ambiguous bases.

B. NETWORK TRAINING
We train ViRAL using Adam [69], which is an optimized
gradient descent technique, with β1 = 0.9, β2 = 0.999, batch
size of 1024, and weight decay of 0.0001. We experimentally
arrived at the following set of near-optimal hyper-parameters:
encoder_repeats = 4, dmodel = 256, dv = 96, dk = 96, dff =
1536, h = 18. We also applied a dropout rate of 0.2 after each
sub-layer. As summed up in table 1. The network was trained
to minimize the categorical cross-entropy loss function, using
the Greedy Layer-Wise Pretraining approach. In the variant
of ViRAL where softmax is replaced by ReLU, we set the
hyper parameter γ = 10. We started the pretraining process
with a model consisting of only one TE layer, and gradually
added several TE layers at each pertaining step, fixing the
weights of the old layers, and training only the weights of
the newly added TE layer. After constructing 4 TE layers,
we allowed the training of the weights in all the layers and
trained the model until the validation loss saturated. The
validation loss saturated after 200 epochswhich took 46 hours
using GPU-accelerated framework. The resulting network
size is 5,359,485 weights.

If the model needs to scale up to support newly discovered
lineages, it does not need to be trained from scratch. The
retraining is much shorter, depending on the number of newly
added lineages. Due to our use of transfer learning, it takes
only an hour to add 100 new lineages to the network.

C. PROFILING
To test the performance of our solution, we ran ViRAL in
inference mode, classifying the test set. ViRAL achieved
the speed of 55ms per inference, obtaining 3.53× speedup
over UShER (we address this result further in Section VI-C).
While classifying the test set, we measured the fractions
of time spent executing different stages of the program.
It was found that 95% of the run time is spent in the
feature extraction stage. This presented a clear opportunity
to significantly accelerate the ViRAL execution.

V. ACCELERATED ViRAL
We envision ViRAL as a standalone portable platform, to be
used in conjunction with portable library preparation and
sequencing kit (such as ONT’s VolTRAX and MinION [59]),
that will democratize pathogen identification and lineage
assignment. A portable ViRAL can provide an instant
real-time pathogen detection and identification solution at

clinical points of care, or in a field environment during a viral
pandemic. With a network model easily fitting into an on-
chip SRAM, it does not only provide small clinics and labs
with the ability to quickly detect a viral pathogen such as
SARS-CoV-2, it can also accurately pinpoint its lineage out
of hundreds of existing options. Such application is typically
form-factor and energy budget limited and therefore can
benefit from a dedicated hardware solution.

Furthermore, despite the relatively high performance of
software-only (CPU-based) and GPU-accelerated solutions,
accelerating ViRAL is advantageous in a server / data center
environment as well, especially when facing a problem that
requires a viral or bacterial phylogenetic analysis at scale.
As presented above, MinHash is responsible for 95% of the
execution time, mainly because the conventional computers
are not optimized for operations required by LSH. By further
zooming intoMinHash, we identify several components, such
as signature sorting, whose latency scales as nlog(n) where n
is the genome size, thus further exacerbating the problem for
larger n. If ViRAL needs to be scaled and sped up, MinHash
is an obvious target for acceleration.

GenSLMs [61] provides an additional motivation for
acceleratingViRAL, by setting very challenging performance
goals for viral lineage assignment, targeting supercomputers
and wafer scale integration.

A. ADDITIONAL USE OF THE ACCELERATED SOLUTION
In addition to applications briefly listed in Section II-E,
MinHash is widely used elsewhere in bioinformatics.
MASH [44] uses theMinHash scheme to implement genomic
distance estimation (i.e., given two genomes, MASH eval-
uates their proximity to each other). MetaCache [43] is a
metagenomic classification tool that usesMinHash to classify
metagenomic samples and identify organisms present in a
given sample. MHAP [40], Shasta [41] and other de-novo
genome assembly algorithms apply MinHash to aligning
DNA reads.

Accelerating MinHash using a standalone accelerator
potentially benefits these and other bioinformatics applica-
tions that extensively use the MinHash scheme.

B. SYSTEM ARCHITECTURE
Figure 6 illustrates the system view of the ViRAL platform.
DNA samples are prepared and sequenced. The assembled
genome material is fed into ViRAL, whose main components
are MinHash and ViT accelerators, implemented by ACMI,5

a standalone ACcelerated MInHash ASIC, and NVidia GPU,
respectively.

5Pronounced ‘‘akmee’’.

VOLUME 12, 2024 28361

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

FIGURE 6. System view of the accelerated ViRAL platform featuring
MinHash accelerator ACMI, combined with NVidia GPU.

ACMI is a throughput oriented streaming platform. ACMI
(1) inputs a genome i+1, (2) processes both the previously
received genome i and the genome i+1, and (3) outputs
the genome i related results, in parallel. ACMI inputs the
accession genome one DNA base per cycle (on average).
In the case of SARS-CoV-2 virus whose size is approximately
30K DNA bases, it takes approximately 30K cycles to
upload a single genome. The result of ACMI is a Genome
Fragment Matrix (GFM). Both the compression factor and
the fragment_size are 256, hence the GFM is a 256×256
matrix of 4-byte elements. To balance the pipeline, ACMI
is designed to output 8B/cycle, thus taking approximately
256×256×4 / 8 = 32K cycles to output the GFMs.
Since ACMI operating at 500MHz requires I/O throughput

of less than 5GB/ s to achieve its optimal performance, data
connectivity can be implemented by PCIe 3.0 or higher.

The ACMI architecture is presented in Figure 7. ACMI
comprises the Fragment Memory (FM), the kmer buffer,
the kmer index counter, Hasher, Sorter, and Extender units.
Hasher performs hashing of the input kmer sets using
MurmurHash3, which is a non-cryptographic hash function
suitable for general hash-based lookup. Sorter sorts the
hashed kmers (kmer signatures) and outputs 256 smallest
signatures. Extender extends the signatures into larger DNA
fragments and generates the GFMs.

While Hasher and Sorter process kmers in a pipelined
fashion, ‘‘on the fly’’, the Extender requires access to the
entire genome. Therefore, the Fragment Memory (FM) unit
is organized as a double buffer, comprising buffers FM1 and
FM2, operating in two phases: in phase 1, FM1 receives
genome i, which is subsequently hashed and sorted. At the
end of the phase, FM1 and FM2 are logically swapped.
In phase 2, FM2 receives genome i+1, which is being

FIGURE 7. The top-level architecture.

processed by the Hasher and Sorter. At the same time,
FM1 serves the Extender, which generates the GFMs of the
genome i. At the end of the phase, the buffers are swapped
again, and so on. ACMI pipeline timing is shown in Figure 8.

FIGURE 8. ACMI pipeline timing.

C. KMER BUFFER AND INDEX COUNTER
The kmer buffer converts the DNA base stream received by
ACMI into the stream of kmers (16mers). The index counter
keeps track of the kmer index (the position of the kmer on the
genome sequence).

D. FRAGMENT MEMORY
The FragmentMemory buffers enable parallel write and read.
The write operation occurs at a single-byte granularity. The
read occurs in chunks of 256 bytes. As depicted in Figure 9,
each FM buffer comprises eight 128 × 32 byte SRAM
modules and can store up to 32KB of genomic information.
FM address is composed of the row pointer (7 MS-bits), the
SRAM module pointer (the following 3 bits), and the byte
offset (the byte address within the row, 5 LS-bits). Since the

FIGURE 9. A fragment memory buffer comprising 8 128 × 32 bytes SRAM
modules.

28362 VOLUME 12, 2024

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

read data granularity is 256 bytes, only the 7 MS-bits of the
address are used in read access.

E. SORTER
The Sorter maintains a list of compression factor =
256 lexicographically smallest kmer signatures. It receives
the signatures from the Hasher, along with their indices.
After all kmers of the genome are hashed and sorted,
Sorter transfers the entire list of 256 indices of the smallest
signatures to the Extender (in parallel). At this point, the
FM buffers are swapped, the Extender begins processing the
index data of the recently hashed and sorted genome, while
a new genome is being written to the other FM buffer, and
hashed and sorted by ACMI in a pipeline fashion.

The hashed kmers (signatures) are transferred sequentially
from the Hasher to the Sorter. In each cycle, each comparator
in the chain receives from its left neighbor a tuple comprising
a kmer signature and its index, and compares such signature
with the minimal signature value the comparator stores. If the
new signature is smaller (lexicographically) than the stored
one, the comparator saves the new tuple and outputs the old
tuple, otherwise, it outputs the new tuple. After all, signatures
are processed, the comparator chain retains the 256 smallest
signatures and their indices (which are afterwards transferred
to the Extender).

F. EXTENDER
Extender converts each of the 256 kmers with the smallest
signatures into a 256-base wide DNA fragment, by extending
such kmer left and right. To accomplish that, Extender reads
theDNA fragments directly from one of the FMbuffers, using
the index it receives from the Sorter to calculate the FM row
pointer, as follows.

1) Calculate the fragment position on the genome

sequence frag_idx = ⌊
(kmer_idx−⌊ frag_len−kmer_len2 ⌋)

frag_len ⌋.
2) Read the DNA fragment pointed to by frag_idx.
3) Read the DNA fragment from the next FM buffer row,

addressed by frag_idx + 1.
4) Render the extended DNA fragment by concatenating

the relevant parts of those two consecutive DNA
fragments.

The 256 extended DNA fragments comprise the GFMs that
become the output of ACMI.

An example of extension is shown in Figure 10. Suppose
the kmer length is 4 (a 4-mer), the fragment length is 8, and
the size of the genome is 32. The Extender has to extend the
4-mer with index 9 (i.e., the 4-mer TAAG marked in red in
Figure 10). In this case,

frag_idx = ⌊
(kmer_idx − frag_len−kmer_len

2)

8
⌋

= ⌊
(9− 8−4

2)

8
⌋⌊

7
8
⌋ = 0.

Hence the Extender will read from FM buffer fragments 0
and 1. It will then concatenate the relevant bases using

FIGURE 10. Example of extension. The fragment length is 8, the kmer size
is 4. Each line represents an aligned fragment of the genome. The bases
in pink are the bases of the 4mer at position 9. The extended fragment
includes two bases (marked in green) to the left and to the right of the
original 4mer.

shift operations, render a single 8-base wide DNA fragment,
encode the bases using one-hot encoding, and append the
encoded extended DNA fragment to the GFMs.

VI. EVALUATION
In this section, we define the figures of merit used to evaluate
ViRAL speed and accuracy, and quantitatively compare
ViRAL with state-of-the-art phylogenetic assignment tool
UShER [9], classification tool Kraken2 [54], as well as
popular classification neural networks ResNet50 [70] and
EfficientNet [71]. We also present the results obtained by
a variant of ViRAL where softmax is replaced by RELU
activation function.
Furthermore, we present the results of ACMI synthesis,

and place and route, including the operating frequency, area,
and power consumption of ACMI.

A. SETUP
1) LINEAGE ASSIGNMENT ACCURACY AND ASSIGNMENT
RATE CRITERIA
ViRAL’s ViT is a classification network, which outputs a
vector of probabilities, one per each lineage the network is
trained on. We use the top-n accuracy as ViRAL, as well
as ResNet50 and EfficientNet based classifiers’ assignment
accuracy criterion. Top-n accuracy quantifies the likelihood
of the correct assignment (i.e., the lineage to which the
query genome truly belongs to6) appearing among the nmost
probable results (i.e., n lineages output by the network at
the top of the descending-order probability list). Specifically,
we calculate and present ViRAL’s top-1, top-2 and top-5
accuracy. Such criteria make the comparison to the state-of-
the-art straightforward.

Since the existing-lineage test set includes only genomes
that belong to the lineages the network is trained on,
we calculate the top-1, top-2, and top-5 accuracy as the
percentage of appearances of the correct assignments among
top 1, 2, and 5 highest probability assignments.

The novel-lineage and the non-SARS-CoV-2 test sets are
used to evaluate the ViRAL accuracy in classifying unknown
genome samples, for example, a novel SARS-CoV-2
variant, and genome material different from SARS-CoV-2,

6Since the COVID-19 Data Portal assigns all sequenced genomes in our
dataset to their respective lineages, the correct assignments are known.

VOLUME 12, 2024 28363

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

respectively. The former contains 100 SARS-CoV-2 genomes
belonging to new lineages not used in training. The latter
contains viral genomes different from SARS-CoV-2, such as
Lassa virus.

Since the genome material of the novel-lineage and the
non-SARS-CoV-2 sets did not take part in training, there
are no correct results as in the case of the existing-lineage
test set. We however can study the output probability
distribution to generate several useful insights, as presented
in Section VI-B1.

We define the fraction of ambiguous bases (i.e., R, Y, K,
N, etc.) appearing in an assembled SARS-CoV-2 genomes
as base ambiguity. Typically, base ambiguity is caused by
incomplete genome coverage, which might be the result
of low-quality library preparation and sequencing settings.
N marks the worst ambiguity because it can mean any base
(A, G, C, or T). We further evaluate the accuracy of ViRAL
assignment under different levels of base ambiguity. In our
study, we conservatively use only the worst-case (i.e., N)
ambiguity.

2) LINEAGE ASSIGNMENT RATE
Another criterion we apply in our analysis is the lineage
assignment rate, a fraction of genomes that ViRAL is able
to assign to a lineage (correctly or incorrectly). The reasons
the assignment rate does not reach 100% are base ambiguity
and sequencing errors.

B. VIRAL LINEAGE ASSIGNMENT ACCURACY
1) LINEAGE ASSIGNMENT
UShER uses a maximum parsimony approach where it
searches for an assignment that requires the fewest additional
mutations. UShER, therefore, requires variant information in
variant call format (VCF) stored along with the phylogenetic
tree to track mutation data. In our comparative evaluation,
we use UShER version v0.5.6 and execute UShER software
on the same local computing platform used to implement
ViRAL and the rest of the reference classifiers. The
computing platform comprises Intel i7-9700K 8-core CPU
and NVIDIA’s GeForce RTX 2080 Ti GPU. The same test
set we use for ViRAL, comprising 13,500 genome samples
evenly distributed between the SARS-CoV-2 lineages, is also
used for UShER and the rest of the reference classifiers.

Kraken2 operates directly on the sequenced genome.
ResNet50 and EfficientNet receive the same input as ViRAL.
We use Memory Profiler [72] to measure the memory
consumption and TimeIt [73] to measure the execution time
of the classifiers under evaluation.

UShER achieves 92.1% top-1 accuracy over the test set,
while ViRAL presents a 2.1% increment over UShER in top-1
accuracy performance, achieving 94.2%. Moreover, ViRAL
achieves a top-2 accuracy of 97.9% and top-5 accuracy of
99.8%. ResNet50 and EfficientNet achieve top-1 accuracy of
90.1% and 88.4% respectively, while Kraken2 achieves the
placement accuracy of 51.3%, as summarized in Table 2.

TABLE 2. Accuracy comparison, existing-lineage test set (all tested
genomes come from lineages the network was trained on).

Applying ViRAL to the novel-lineage and the non-
SARS-CoV-2 test sets (containing SARS-CoV-2 genomes of
lineages not used in the network training, and non-SARS-
CoV-2 viral DNA, respectively), we obtain the following
results and conclude as follows:
• The average highest probability output by the network
when classifying data of the non-SARS-CoV-2 set is
0.02 (compared to the average highest probability when
classifying the data of the existing-lineage test set, 0.63).
We therefore can set a probability threshold (for example
at 0.1-0.2), which will allow differentiating between
SARS-CoV-2 and other unrelated organisms.

• The average highest probability output by the network
when classifying the novel-lineage test data is 0.45.
While being lower than the highest probability of the
existing-lineage test data, it still places the genomes
of the novel-lineage test set well above the probability
threshold discussed above.

• The top (i.e. the highest probability) results generated by
the classification of the novel-lineage test set samples
typically include the closest relatives of the genome
we attempt to classify. By accurately and rapidly
identifying such closest relatives, we potentially make
the evolutionary tracking of virus mutation faster and
more efficient.

2) ROBUSTNESS TO BASE AMBIGUITY
Some low-quality SARS-CoV-2 genomes may contain
ambiguous bases, which might be a result of low-quality
sample, low-quality or incomplete sequencing, or low-quality
assembly. It is obviously highly desirable that such genomes
be correctly identified and placed even when the level of
ambiguity is significant. To test the robustness of ViRAL to
base ambiguity, we mask random sites (i.e., replace basepairs
by N) in each SARS-CoV-2 genome of the test set, with
the percentage of ambiguous bases ranging from 0 to 90%.
We then compare ViRAL accuracy and lineage assignment
rate on this ambiguous test set (13,500 genome accessions
with randomly masked sites) against the lineage assignment
rate and accuracy of state of the art reference solutions.
Figure 11 presents the results. At 30% ambiguity, UShER’s
lineage assignment rate is 0.5%, which means UShER is able
to place only 67 accessions out of 13,500. For the rest of

28364 VOLUME 12, 2024

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

TABLE 3. Run-time and memory requirements comparison.

FIGURE 11. (a) Assignment rate and (b) accuracy as a function of the
genome ambiguity, i.e., the fraction of the ambiguous bases in the input
genome. .

accessions, UShER returns ‘‘failed to map’’ message. For
those accessions UShER is able to map, it reaches the top-1
accuracy of 60.5%.

Somewhat similarly, the recently unveiled viral genome
identification accelerator GenSLMs [61] removes the SARS-
CoV-2 genomes with more than 1% base ambiguity from the
datasets.

In contrast, ViRAL maintains a constant 100% lineage
assignment rate throughout this experiment. ResNet50 and
EfficientNet maintain 100% lineage assignment rate as well.
At 30% ambiguity, ViRAL reaches the top-1 accuracy

of 81.1%, while ResNet50’s and EfficientNet top-1 accu-
racy is 77.6% and 66.1% respectively. At 50% ambiguity
ViRAL’s top-1 accuracy stands at 77.6% while ResNet50’s
and EfficientNet top-1 accuracy is limited to 69.3% and
33.1% respectively. ViRAL exhibits such tolerance to base
ambiguity due to its general resilience to errors and
low-quality data.

TABLE 4. ACMI synthesis results.

C. VIRAL PERFORMANCE
We compare the speed and memory usage for three ViRAL
configurations: ACMI-accelerated ViRAL, GPU-accelerated
ViRAL running on NVIDIA’s GeForce RTX 2080 Ti, and
software-only ViRAL running on Intel i7-9700K 8 core CPU,
with those of UShERwhile placing SARS-CoV-2 genomes of
the test set. The results are presented in Table 3.

We also compare ACMI standalone performance with a
popular GPU-optimized LSH package Faiss [74]. TheACMI-
accelerated feature extraction time for a single SARS-CoV-2
genome is 0.12ms, achieving the speedup of 866× over the
software-only feature extraction. ACMI outperforms Faiss’s
LSH executed on NVIDIA’s GeForce RTX 2080 Ti by 25×.

GPU-accelerated ViRAL outperforms UShER by 3.53×,
while CPU-based software-only ViRAL outperforms UShER
by 2.06×.

Overall, the ACMI-accelerated ViRAL takes 2.81ms to
place a single SARS-CoV-2 genome, outperforming UShER
by 69.4× and ViRAL GPU accelerated implementation by
19.5×, respectively.

The memory usage of GPU-accelerated ViRAL is almost
an order of magnitude higher than that of UShER, however,
it is still reasonably modest (around 5GB).

D. ACMI AREA AND POWER
We synthesized ACMI using Cadence Genus 21.12 in a
commercial 16nm process using FinFET and Connected Poly
on gate Oxide and Diffusion Edge technologies. A mix of
standard and low-voltage cell libraries was used. Table 4
shows ACMI synthesized to a 0.168mm2, consuming 35mW,
operated at 500MHz.

With 25× higher throughput, ACMI achieves 167, 800×
better power efficiency than NVIDIA’s GeForce RTX 2080 Ti
GPU. It also achieves 42, 800× better power efficiency
compared to NVIDIA’s edge GPU Jetson TX2.

Placement and Routing were carried out by Cadence
Innovus 21.11, using seven metal layers. Figure 12 shows the
ACMI layout. Approximately 80% of ACMI area is occupied

VOLUME 12, 2024 28365

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

FIGURE 12. ACMI layout. FM is light green. The Hasher logic is magenta.
The Sorter logic is yellow. The extender logic is deep green. Light blue is a
register file (shared by the Sorter and the extender).

by the FM buffers. Most of the remaining space is occupied
by flip-flops belonging to Extender and Sorter register files.

VII. CONCLUSION
ViRAL is inspired by the enormous success of neural
networks in implementing classification functions. For the
first time, a combination of Vision Transformer, a classi-
fication neural network, and MinHash, a locality-sensitive
tool, is applied to accurately assign newly sequenced viral
pathogen genomes to viral lineages in real-time. ViRAL
not only outperforms state-of-the-art tools in accuracy
and latency, by identifying and classifying a SARS-CoV-2
genome in 2.81ms with 94.2% accuracy. It also shows a
strong resilience to extremely low quality and low coverage
genome data (i.e., high ambiguity of the newly sequenced
genomes). ViRAL is able to assign SARS-CoV-2 genomes
with 50% ambiguity with 77.6% accuracy. Furthermore,
ViRAL can be used to help detect novel viral mutations
and variants, by analyzing the distribution of probabilities
generated by the network.

ViRAL is envisioned as a portable real-time classification
and lineage assignment platform, to be deployed in a field
environment or at clinical points of care, to provide a quick
and accurate diagnostic of pathogen in newly collected test
samples. However, it can also be applied in a data center
infrastructure, to provide high-speed pathogen classification
as a service.

ViRAL applications are not limited to viral genome clas-
sification and lineage assignment. It can also be efficiently
applied to classification and identification of microbial
pathogens, with the goal of personalizing antibiotic treatment
and reducing treatment failures, opportunistic infections and
the emergence of drug-resistant organisms.

REFERENCES
[1] E. B. Hodcroft, N. De Maio, R. Lanfear, D. R. MacCannell, B. Q. Minh,

H. A. Schmidt, A. Stamatakis, N. Goldman, and C. Dessimoz, ‘‘Want to
track pandemic variants faster? Fix the bioinformatics bottleneck,’’Nature,
vol. 591, no. 7848, pp. 30–33, Mar. 2021.

[2] S. Knyazev, K. Chhugani, V. Sarwal, R. Ayyala, H. Singh, S. Karthikeyan,
D. Deshpande, P. I. Baykal, Z. Comarova, and A. Lu, ‘‘Unlocking
capacities of genomics for the COVID-19 response and future pandemics,’’
Nature Methods, vol. 19, no. 4, pp. 374–380, 2022.

[3] L. Ma, H. Li, J. Lan, X. Hao, H. Liu, X. Wang, and Y. Huang,
‘‘Comprehensive analyses of bioinformatics applications in the fight
against COVID-19 pandemic,’’ Comput. Biol. Chem., vol. 95, Dec. 2021,
Art. no. 107599.

[4] P. Acera Mateos, R. F. Balboa, S. Easteal, E. Eyras, and H. R. Patel,
‘‘PACIFIC: A lightweight deep-learning classifier of SARS-CoV-2 and co-
infecting RNA viruses,’’ Sci. Rep., vol. 11, no. 1, pp. 1–14, Feb. 2021.

[5] T. Dunn, H. Sadasivan, J. Wadden, K. Goliya, K.-Y. Chen, D. Blaauw,
R. Das, and S. Narayanasamy, ‘‘SquiggleFilter: An accelerator for
portable virus detection,’’ in Proc. 54th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2021, pp. 535–549.

[6] B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf,
M. D. Woodhams, A. von Haeseler, and R. Lanfear, ‘‘IQ-TREE 2:
New models and efficient methods for phylogenetic inference in the
genomic era,’’Mol. Biol. Evol., vol. 37, no. 5, pp. 1530–1534, May 2020.

[7] P. Barbera, A. M. Kozlov, L. Czech, B. Morel, D. Darriba, T. Flouri,
and A. Stamatakis, ‘‘EPA-NG: Massively parallel evolutionary placement
of genetic sequences,’’ Systematic Biol., vol. 68, no. 2, pp. 365–369,
Mar. 2019.

[8] A. Löytynoja, A. J. Vilella, and N. Goldman, ‘‘Accurate extension of
multiple sequence alignments using a phylogeny-aware graph algorithm,’’
Bioinformatics, vol. 28, no. 13, pp. 1684–1691, Jul. 2012.

[9] Y. Turakhia, B. Thornlow, A. S. Hinrichs, N. De Maio, L. Gozashti,
R. Lanfear, D. Haussler, and R. Corbett-Detig, ‘‘Ultrafast sample place-
ment on existing tRees (UShER) enables real-time phylogenetics for the
SARS-CoV-2 pandemic,’’ Nature Genet., vol. 53, no. 6, pp. 809–816,
Jun. 2021.

[10] N. A. Kassim and A. Abdullah, ‘‘Classification of DNA sequences
using convolutional neural network approach,’’ in UTM Computing
Proceedings Innovations in Computing Technology and Applications,
vol. 2, 2017, pp. 1–6. [Online]. Available: https://www.semanticscholar.
org/paper/Classification-of-DNA-Sequences-Using-Convolutional-
Kassim-Abdullah/5b080c8a7d67fd23c3230dc420452ac2ee34967a#
citing-papers

[11] A. Tampuu, Z. Bzhalava, J. Dillner, and R. Vicente, ‘‘ViraMiner: Deep
learning on raw DNA sequences for identifying viral genomes in human
samples,’’ PLoS ONE, vol. 14, no. 9, Sep. 2019, Art. no. e0222271.

[12] M. A. B. Mahmoud and P. Guo, ‘‘DNA sequence classification based on
MLPwith PILAE algorithm,’’ Soft Comput., vol. 25, no. 5, pp. 4003–4014,
Mar. 2021.

[13] M. A. Deif, A. A. A. Solyman, M. A. Kamarposhti, S. S. Band,
and R. E. Hammam, ‘‘A deep bidirectional recurrent neural network for
identification of SARS-CoV-2 from viral genome sequences,’’ Math.
Biosci. Eng., vol. 18, no. 6, pp. 8933–8950, 2021.

[14] J. M. Bartoszewicz, A. Seidel, R. Rentzsch, and B. Y. Renard, ‘‘DeePaC:
Predicting pathogenic potential of novel DNA with reverse-complement
neural networks,’’ Bioinformatics, vol. 36, no. 1, pp. 81–89, Jan. 2020.

[15] A. Whata and C. Chimedza, ‘‘Deep learning for SARS COV-2 genome
sequences,’’ IEEE Access, vol. 9, pp. 59597–59611, 2021.

[16] C. M. Dasari and R. Bhukya, ‘‘Explainable deep neural networks for
novel viral genome prediction,’’ Int. J. Speech Technol., vol. 52, no. 3,
pp. 3002–3017, Feb. 2022.

[17] N. Q. K. Le and Q.-T. Ho, ‘‘Deep transformers and convolutional neural
network in identifying DNA N6-methyladenine sites in cross-species
genomes,’’Methods, vol. 204, pp. 199–206, Aug. 2022.

28366 VOLUME 12, 2024

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

[18] H. Yan, A. Bombarely, and S. Li, ‘‘DeepTE: A computational method for
de novo classification of transposons with convolutional neural network,’’
Bioinformatics, vol. 36, no. 15, pp. 4269–4275, Aug. 2020.

[19] D. R. Kelley, J. Snoek, and J. L. Rinn, ‘‘Basset: Learning the regulatory
code of the accessible genome with deep convolutional neural networks,’’
Genome Res., vol. 26, no. 7, pp. 990–999, Jul. 2016.

[20] F. Mock, F. Kretschmer, A. Kriese, S. Böcker, and M. Marz, ‘‘BERTax:
Taxonomic classification of DNA sequences with deep neural networks,’’
Proc. Nat. Acad. Sci. USA, vol. 119, no. 35, 2022,
Art. no. e2122636119. [Online]. Available: https://www.biorxiv.org/
content/10.1101/2021.07.09.451778v1.article-info and https://www.pnas.
org/doi/full/10.1073/pnas.2122636119

[21] Y. Kong and T. Yu, ‘‘A deep neural network model using random forest to
extract feature representation for gene expression data classification,’’ Sci.
Rep., vol. 8, no. 1, p. 16477, Nov. 2018.

[22] K. Gayvert, S. McKay, W. K. Lim, A. Baum, C. Kyratsous, R. Copin,
and G. S. Atwal, ‘‘Evolutionary trajectory of SARS-CoV-2 genome shifts
during widespread vaccination and emergence of omicron variant,’’ NPJ
Viruses, vol. 1, no. 1, p. 5, Nov. 2023.

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszko-
reit, and N. Houlsby, ‘‘An image is worth 16×16 words: Transformers for
image recognition at scale,’’ 2020, arXiv:2010.11929.

[24] A. Z. Broder, ‘‘On the resemblance and containment of documents,’’ in
Proc. Compress. Complex. SEQUENCES, Jun. 1997, pp. 21–29.

[25] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, ‘‘Min-
wise independent permutations,’’ J. Comput. Syst. Sci., vol. 60, no. 3,
pp. 630–659, Jun. 2000.

[26] Sequencing of SARS-CoV-2-First Update, Eur. Centre for Disease Preven-
tion Control, Stockholm, 2021.

[27] Y. Furuse, ‘‘Genomic sequencing effort for SARS-CoV-2 by country
during the pandemic,’’ Int. J. Infectious Diseases, vol. 103, pp. 305–307,
Feb. 2021.

[28] N. De Maio, C. Walker, R. Borges, L. Weilguny, G. Slodkowicz,
and N. Goldman, ‘‘Issues with SARS-CoV-2 sequencing data,’’ Image,
vol. 1119, no. 869, pp. 6–24, 2020.

[29] I. C. Group, ‘‘No time to wait: Securing the future from drug-resistant
infections,’’ Secretary Gen. United Nations, New York, NY, USA, Tech.
Rep., 2019. [Online]. Available: https://www.who.int/publications/i/item/
no-time-to-wait-securing-the-future-from-drug-resistant-infections

[30] J. von Neumann, ‘‘First draft of a report on the EDVAC,’’ IEEE Ann. Hist.
Comput., vol. 15, no. 4, pp. 27–75, Feb. 1993.

[31] Pioneers of Modern Computer Architecture Receive ACM A.M. Turing
Award. Accessed: Jul. 11, 2023. [Online]. Available: https://www.acm.
org/media-center/2018/march/turing-award-2017

[32] (2024). CoViT: Real-time Phylogenetics for the SARS-CoV-2 Pan-
demic Using Vision Transformers. [Online]. Available: https://github.
com/zuherJahshan/viral

[33] Illumina. (2021). Illumina—DNA Sequencing. [Online]. Available:
https://www.illumina.com/techniques/sequencing/dna-sequencing.html

[34] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H.
Hassan, O. Ergin, C. Alkan, and O. Mutlu, ‘‘GRIM-filter: Fast seed
location filtering in DNA read mapping using processing-in-memory
technologies,’’ BMC Genomics, vol. 19, no. S2, pp. 23–40, May 2018.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 5998–6008.

[36] K. Shen, J. Guo, X. Tan, S. Tang, R. Wang, and J. Bian, ‘‘A study on ReLU
and softmax in transformer,’’ 2023, arXiv:2302.06461.

[37] J. Lei Ba, J. Ryan Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ 2016,
arXiv:1607.06450.

[38] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, ‘‘Greedy layer-wise
training of deep networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 19,
2006, pp. 153–160.

[39] A. Krogh and J. Hertz, ‘‘A simple weight decay can improve generaliza-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst, vol. 4, 1991, pp. 950–957.

[40] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin,
and A. M. Phillippy, ‘‘Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing,’’ Nature Biotechnol., vol. 33,
no. 6, pp. 623–630, Jun. 2015.

[41] K. Shafin, T. Pesout, R. Lorig-Roach, M. Haukness, H. E. Olsen,
C. Bosworth, J. Armstrong, K. Tigyi, N. Maurer, and S. Koren,
‘‘Nanopore sequencing and the Shasta toolkit enable efficient de novo
assembly of eleven human genomes,’’ Nature Biotechnol., vol. 38, no. 9,
pp. 1044–1053, Sep. 2020.

[42] Z. Rasheed and H. Rangwala, ‘‘A map-reduce framework for clustering
metagenomes,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
Workshops Phd Forum, May 2013, pp. 549–558.

[43] A. Müller, C. Hundt, A. Hildebrandt, T. Hankeln, and B. Schmidt,
‘‘MetaCache: Context-aware classification of metagenomic reads using
minhashing,’’ Bioinformatics, vol. 33, no. 23, pp. 3740–3748, Dec. 2017.

[44] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,
S. Koren, and A. M. Phillippy, ‘‘Mash: Fast genome and metagenome
distance estimation using MinHash,’’ Genome Biol., vol. 17, no. 1,
pp. 1–14, Dec. 2016.

[45] J. M. Hancock, ‘‘Jaccard distance (Jaccard index, Jaccard similarity
coefficient),’’ in Dictionary of Bioinformatics and Computational
Biology. Chichester, U.K.: Wiley, 2004. [Online]. Available: https://www.
semanticscholar.org/paper/Classification-of-DNA-Sequences-Using-
Convolutional-Kassim-Abdullah/5b080c8a7d67fd23c3230dc420452
ac2ee34967a#citing-papers

[46] A. Brady and S. L. Salzberg, ‘‘Phymm and PhymmBL: Metagenomic
phylogenetic classification with interpolated Markov models,’’ Nature
Methods, vol. 6, no. 9, pp. 673–676, Sep. 2009.

[47] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, ‘‘Basic
local alignment search tool,’’ J. Mol. Biol., vol. 215, no. 3, pp. 403–410,
Oct. 1990.

[48] M. G. Dumont, C. Lüke, Y. Deng, and P. Frenzel, ‘‘Classification of pmoA
amplicon pyrosequences using BLAST and the lowest common ancestor
method in MEGAN,’’ Frontiers Microbiol., vol. 5, p. 34, Jan. 2014.

[49] B. Liu, T. Gibbons, M. Ghodsi, T. Treangen, and M. Pop, ‘‘Accurate
and fast estimation of taxonomic profiles from metagenomic shotgun
sequences,’’ Genome Biol., vol. 12, no. S1, pp. 1–27, Sep. 2011.

[50] G. Rosen, E. Garbarine, D. Caseiro, R. Polikar, and B. Sokhansanj,
‘‘Metagenome fragment classification using -Mer frequency profiles,’’
Adv. Bioinf., vol. 2008, pp. 1–12, Nov. 2008.

[51] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi, ‘‘CLARK: Fast
and accurate classification of metagenomic and genomic sequences
using discriminative k-mers,’’ BMC Genomics, vol. 16, no. 1, pp. 1–13,
Dec. 2015.

[52] R. Ounit and S. Lonardi, ‘‘Higher classification sensitivity of short
metagenomic reads with CLARK-S,’’ Bioinformatics, vol. 32, no. 24,
pp. 3823–3825, Dec. 2016.

[53] D. E. Wood and S. L. Salzberg, ‘‘Kraken: Ultrafast metagenomic sequence
classification using exact alignments,’’ Genome Biol., vol. 15, no. 3,
pp. 1–12, Mar. 2014.

[54] D. E. Wood, J. Lu, and B. Langmead, ‘‘Improved metagenomic analysis
with Kraken 2,’’ Genome Biol., vol. 20, no. 1, pp. 1–13, Nov. 2019.

[55] R. Rizzo, A. Fiannaca, M. La Rosa, and A. Urso, ‘‘A deep learning
approach to DNA sequence classification,’’ in Proc. Int. Meeting Comput.
Intell. Methods Bioinf. Biostatistics. Cham, Switzerland: Springer, 2015,
pp. 129–140.

[56] G. Lo Bosco and M. A. Di Gangi, ‘‘Deep learning architectures for DNA
sequence classification,’’ in Proc. Int. Workshop Fuzzy Log. Appl. Cham,
Switzerland: Springer, 2016, pp. 162–171.

[57] Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri, ‘‘DNABERT: Pre-trained
bidirectional encoder representations from transformers model for DNA-
language in genome,’’ Bioinformatics, vol. 37, no. 15, pp. 2112–2120,
Aug. 2021.

[58] Ž. Avsec, V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska,
K. R. Taylor, Y. Assael, J. Jumper, P. Kohli, and D. R. Kelley, ‘‘Effective
gene expression prediction from sequence by integrating long-range
interactions,’’ Nature Methods, vol. 18, no. 10, pp. 1196–1203, Oct. 2021.

[59] ONT. (2021). MinION—Portable Real-Time Devices for DNA
and RNA Sequencing. [Online]. Available: https://nanoporetech.
com/products/minion

[60] R. Hanhan, E. Garzón, Z. Jahshan, A. Teman, M. Lanuzza, and L. Yavits,
‘‘EDAM: Edit distance tolerant approximate matching content addressable
memory,’’ in Proc. 49th Annu. Int. Symp. Comput. Archit., Jun. 2022,
pp. 495–507.

[61] M. T. Zvyagin, A. Brace, K. Hippe, Y. Deng, B. Zhang, C. O. Bohorquez,
A. Clyde, B. Kale, D. Perez-Rivera, andH.Ma, ‘‘GenSLMs: Genome-scale
languagemodels reveal SARS-CoV-2 evolutionary dynamics,’’ Int. J. High
Perform. Comput. Appl., vol. 37, no. 6, pp. 683–705, 2023. [Online]. Avail-
able: https://www.biorxiv.org/content/10.1101/2022.10.10.511571v1 and
https://journals.sagepub.com/doi/10.1177/10943420231201154

[62] R. Kobus, A. Müller, D. Jünger, C. Hundt, and B. Schmidt,
‘‘MetaCache-GPU: Ultra-fast metagenomic classification,’’ in Proc.
50th Int. Conf. Parallel Process., Aug. 2021, pp. 1–11.

VOLUME 12, 2024 28367

Z. Jahshan et al.: ViRAL: ViT Based Accelerator for ReAL Time Lineage Assignment of Viral Pathogens

[63] A. Sinha, J.-Y.Mai, and B.-C. Lai, ‘‘MSIM:A highly parallel near-memory
accelerator for MinHash sketch,’’ in Proc. IEEE 35th Int. Syst.-Chip Conf.
(SOCC), Sep. 2022, pp. 1–6.

[64] J. E. Soto, T. Krohmer, C. Hernández, and M. Figueroa, ‘‘Hardware
acceleration of k-Mer clustering using locality-sensitive hashing,’’ in Proc.
22nd Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2019, pp. 659–662.

[65] J. E. Soto, C. Hernández, and M. Figueroa, ‘‘JACC-FPGA: A hardware
accelerator for Jaccard similarity estimation using FPGAs in the cloud,’’
Future Gener. Comput. Syst., vol. 138, pp. 26–42, Jan. 2023.

[66] M. Kiefer, I. Poulakis, S. Breß, and V. Markl, ‘‘Scotch: Generating FPGA-
accelerators for sketching at line rate,’’ Proc. VLDB Endowment, vol. 14,
no. 3, pp. 281–293, Nov. 2020.

[67] COVID19 Data Portal. Accessed: Aug. 8, 2023. [Online]. Available:
https://www.covid19dataportal.org/sequences/

[68] C. Goswami, M. Sheldon, C. Bixby, M. Keddache, A. Bogdanowicz,
Y. Wang, J. Schultz, J. McDevitt, J. LaPorta, E. Kwon, S. Buyske,
D. Garbolino, G. Biloholowski, A. Pastuszak, M. Storella, A. Bhalla,
F. Charlier-Rodriguez, R. Hager, R. Grimwood, and S. A. Nahas,
‘‘Identification of SARS-CoV-2 variants using viral sequencing for the
centers for disease control and prevention genomic surveillance program,’’
BMC Infectious Diseases, vol. 22, no. 1, p. 404, Dec. 2022.

[69] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[70] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[71] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[72] (2024). Memory Profiler. [Online]. Available: https://pypi.org/
project/memory-profiler/

[73] (2024). TimeIt. [Online]. Available: https://docs.python.org/3/library/
timeit.html

[74] J. Johnson, M. Douze, and H. Jégou, ‘‘Billion-scale similarity search with
GPUs,’’ IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, Jul. 2021.

ZUHER JAHSHAN received the B.Sc. and
M.Sc. degrees from the Faculty of Electrical
and Computer Engineering, Technion, Israel.
He is currently pursuing the Ph.D. degree with
the Faculty of Engineering, Bar-Ilan University,
Israel. His research interest includes improving
the efficiency of bioinformatic applications. This
is achieved primarily through the development of
innovative algorithms and the exploration of new
computer architectures that can facilitate faster
data processing and analysis.

ESTEBAN GARZÓN (Senior Member, IEEE)
received the Ph.D. degree in electronics engineer-
ing from the University of Calabria (UNICAL),
Italy, in 2022. In 2022, he won a Highly Com-
petitive Research Fellowship funded by the Italian
Ministry for Universities and Research (MUR),
under the call ‘‘Horizon Europe (2021–2027)
Programme.’’ He is currently a Research Fellow
with the Department of Computer Engineering,
Modeling, Electronics, and Systems Engineering,

UNICAL. He has authored/coauthored more than 45 scientific papers in
international peer-reviewed journals and conferences and has participated in
several IC tapeouts. His research interests include domain-specific hardware
accelerators, spintronics, cryogenic embedded memories, standard and
emerging technologies for logic and memory, and low-power applications.

LEONID YAVITS (Member, IEEE) received the
M.Sc. and Ph.D. degrees in electrical engineering
from Technion, Israel. He is currently with the
Faculty of Engineering, Bar-IlanUniversity, Israel.
He is also a Serial Entrepreneur who was involved
in co-founding and successful management (from
a concept to M&A) of several start-ups in the
field of ASICs. His research interests include
bioinformatics, domain specific accelerators, and
processing in memory.

Open Access funding provided by ‘Università della Calabria’ within the CRUI CARE Agreement

28368 VOLUME 12, 2024

