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ABSTRACT The feature selection problem involves selecting a subset of relevant features to enhance
the performance of machine learning models, crucial for achieving model accuracy. Its complexity
arises from the vast search space, necessitating the application of metaheuristic methods to efficiently
identify optimal feature subsets. In this work, we employed a recently proposed metaheuristic algorithm
named the Great Wall Construction Algorithm to address this challenge – a powerful optimizer with
promising results. To enhance the algorithm’s performance in terms of exploration, exploitation, and
avoidance of local optima, we integrated opposition-based learning and Gaussian mutation techniques.
The proposed algorithm underwent a comprehensive comparative analysis against ten influential state-
of-the-art methodologies, encompassing seven contemporary algorithms and three classical counterparts.
The evaluation covered 22 datasets of varying sizes, ranging from 9 to 856 features, and included the
utilization of six distinct evaluation metrics related to accuracy, classification error rate, number of selected
features, and completion time to facilitate comprehensive comparisons. The obtained numerical results
underwent rigorous scrutiny through several non-parametric statistical tests, including the Friedman test,
the post hoc Dunn’s test, and the Wilcoxon signed ranks test. The resulting mean ranks and p-values
unequivocally demonstrate the superior efficacy of the proposed algorithm in addressing the feature
selection problem. The Matlab source code for the proposed approach is available for access via the
link ‘‘https://www.mathworks.com/matlabcentral/fileexchange/159728-an-opposition-based-gwca-for-the-
fs-problem’’.

INDEX TERMS Feature selection problem, great wall construction metaheuristic algorithm, opposition-
based learning, Gaussian mutation.

I. INTRODUCTION
In the era of big data and complex datasets,Machine Learning
(ML) has emerged as a powerful tool for extracting valuable
insights and making data-driven decisions [1], [2], [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

However, with the ever-increasing dimensionality of data, the
curse of dimensionality has become a significant challenge
in developing accurate and efficient predictive models [5].
This is where the crucial role of Feature Selection (FS) comes
into play. FS, also known as attribute selection or variable
selection, is the process of identifying and choosing the most
relevant and informative subset of features from a vast pool of
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input variables [6], [7]. The primary objective is to enhance
the performance of ML algorithms by eliminating irrelevant,
redundant, or noisy features that might negatively impact
model accuracy, increase computational costs, and/or reduce
interpretability.

The importance of FS lies in its ability to not only
improve predictive model performance but also enhance
the efficiency and generalization of ML algorithms [8],
[9], [10]. By selecting a subset of the most discriminative
features, FS not only reduces the risk of overfitting but
also mitigates the computational burden associated with
processing large volumes of data. Moreover, in many real-
world applications, interpreting the model’s decision-making
process is crucial to gain trust and acceptance. By selecting
a concise set of meaningful features, FS facilitates model
interpretability, enabling domain experts and non-technical
users to comprehend the factors influencing the model’s
predictions. This emphasizes the significance of FS in
ML. Whether it is in the realm of predictive modelling,
classification, regression, or any other ML task, FS serves
as a critical preprocessing step to unlock the full potential
of ML algorithms. Through careful selection of relevant
features, data scientists can buildmore accurate, efficient, and
interpretable models, paving the way for actionable insights
and informed decision-making.

In this context, FS methods can be broadly categorized into
filter, wrapper, and embedded techniques [6], [11], [12]. Each
approach has its strengths and weaknesses, and the choice of
method depends on the nature of the dataset and the specific
ML algorithm being used. In other words, filter, wrapper,
and embedded techniques are three broad categories of FS
methods used to identify the most relevant and informative
subset of features from a high-dimensional dataset. Each
approach follows a distinct strategy to evaluate and select
features, and the choice of method depends on the specific
characteristics of the data and the ML algorithm being
employed. Subsequently, we present a concise overview of
the operational principles underlying each technique in the
following points.

1) Filter Techniques: Filter techniques involve the inde-
pendent evaluation of each feature based on some
statistical or ranking criterion. These methods do
not consider the ML algorithm used for the final
model. Instead, they rank or score features individually
and select the top-ranked ones. Filter techniques are
computationally efficient and can be applied as a
preprocessing step before running any specific ML
algorithm.

2) Wrapper Techniques: Wrapper techniques assess the
quality of feature subsets by using the ML algorithm’s
performance as a criterion. These methods create
subsets of features, train a model on each subset, and
evaluate its performance using a chosen evaluation
metric. They are computationally more intensive com-
pared to filter techniques since they involve training
multiple models for different feature subsets.

3) Embedded Techniques: Embedded techniques incorpo-
rate FS into the model training process itself. These
methods combine FS with the algorithm’s learning
process, exploiting the inherent capabilities of the
learning algorithm to identify important features during
training. As a result, FS is seamlessly integrated into the
model building process, leading to more efficient and
accurate models.

The FS problem, known to be NP-hard, is increasingly
tackled using Metaheuristic Algorithms (MAs) [7], [13], [14]
instead of exact methods due to several compelling reasons.
One key factor is the exponential increase in the number
of possible feature subsets with the growing dimensionality
of data. Exact methods typically suffer from combinatorial
explosion, making them computationally infeasible for
large-scale datasets. By contrast, MAs excel at efficiently
exploring complex search spaces, providing near-optimal
solutions within a reasonable time frame. Their ability to
strike a balance between exploration and exploitation [15],
[16], [17] allows them to effectively navigate through vast
feature subsets and discover promising combinations that
yield improved model performance. Moreover, MAs are
inherently adaptive, making them suitable for a wide range
of optimization problems, including FS, without relying on
domain-specific knowledge. As a result, the use of MAs has
become a preferred approach in addressing the FS problem,
offering researchers a practical and scalable solution to
enhance the accuracy, efficiency, and interpretability of ML
models.

The pivotal role of FS in the ML process is evident
in the seven-step framework, playing a crucial part in
refining prediction accuracy. Thus, numerous scholars have
dedicated extensive efforts to this phase, as evidenced by
various research works. For instance, the study referenced
in [18] addresses cancer classification, employing the kernel
Shapley value rooted in cooperative game theory for feature
extraction from high-dimensional gene expression data.
Another notable work, referenced as [19], focuses on cancer
prediction and combines spider monkey optimization with
cuckoo search algorithm for hybridized feature selection.
Additionally, [20] and [21] contribute valuable insights into
FS across diverse ML classification tasks.

In the context of our research, we have harnessed the
power of a cutting-edge metaheuristic algorithm, known
as the Great Wall Construction Algorithm [22], to address
the NP-hard FS problem. This algorithm has garnered
considerable attention for its exceptional performance across
a wide spectrum of challenges, including both constrained
and unconstrained benchmark problems. To further bolster
its capabilities, we have taken the initiative to augment
the fundamental version of this algorithm by introducing
several key enhancements. These additions are strategically
designed to amplify its prowess in exploring solution spaces,
exploiting promising regions, and adeptly steering clear
of local optimums, all of which are critical attributes for
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effective problem-solving. The enhanced algorithm under-
went a comprehensive evaluation by being juxtaposed with
ten influential metaheuristic algorithms commonly employed
in solving feature selection problems. This comparative study
encompassed key metrics such as classification accuracy
and fitness value. The results unequivocally demonstrate the
superior performance of the proposed enhanced algorithm,
surpassing the effectiveness of the other metaheuristics
across these evaluative criteria. The following three points
summarize the main improvements added to the Great Wall
Construction Algorithm:

• We employed an efficient opposition-based learning
technique [23] to enrich our approach. This technique
enhanced exploration and diversification through the
generation of opposite or complementary solutions,
facilitated escape from local optimums by offering
alternative starting points or directions in the search
space, and expedited convergence, enhancing the speed
of our metaheuristic algorithm.

• We incorporated Gaussian mutation [24] into our
approach to bolster local search capabilities and prevent
entrapment in local optimums.

• Weused the step function to discretize continuous values
into a binary range, as it offers a straightforward and
easily implementable method.

The paper is structured into six distinct sections, each con-
tributing to a comprehensive understanding of our research.
Section II provides an overview of the current state-of-the-
art metaheuristic-based approaches designed to address the
FS problem, shedding light on the latest advancements in this
field. In Section III, we delve into the fundamental concepts
and methodologies underpinning the development of our
solution, establishing the theoretical groundwork for our
approach. Section IV is dedicated to presenting our proposed
solution in detail, elucidating the various steps involved and
discussing their significance in tackling the FS problem. The
experimental aspect is addressed in Section V, where we
present the results of our empirical study and conduct a
comparative investigation to evaluate the performance of our
solution. Finally, in Section VI, we conclude by summarizing
our primary contributions and offering insights into potential
future directions for this research.

II. RELATED WORK
Several survey papers have been published to investigate
and review studies addressing the FS problem [7], [13].
In this section, we present a comprehensive overview
of metaheuristic-based FS methodologies that have been
published recently. Our emphasis lies in elucidating the
introduced algorithms, the transfer functions, the classifier
and the metrics employed for evaluating their efficacy, and
the diverse advantages and disadvantages of each approach.
By illuminating these facets, we aim to provide a good
understanding of the evolving landscape of FS techniques
and their practical implementation across a spectrum of

datasets. In the comprehensive landscape of FS algorithms,
a multitude of innovative approaches have been explored to
address the challenges posed by high-dimensional datasets.
The algorithms will be categorized into two approaches for
FS, specifically binary and hybrid metaheuristic methods.

The algorithm outlined in [25] employs the binary bat
algorithm for FS problem resolution, incorporating S and
V shape transfer functions. It utilizes the support vector
machine classifier, yielding an accuracy of 98.25%. While
excelling with large datasets, this algorithm experiences a
slower convergence time. In [26], the binary grasshopper
optimization algorithm is utilized to address the FS problem,
integrating S and V shape transfer functions. It incorporates
the k-nearest neighbours classifier, achieving an accuracy
of 97.9%. This algorithm boasts a swift convergence time
and effective FS, but its performance is constrained in
high-dimensional datasets. The algorithm in [27] employs
the binary grey wolf optimizer for FS problem-solving,
utilizing S and V shape transfer functions with the k-nearest
neighbours classifier, resulting in an accuracy of 84.20%.
While demonstrating rapid convergence and effective FS,
it may become entangled in local optimums. In [28], the
binary firefly algorithm is applied for FS, incorporating an
aggregation function and k-nearest neighbours, naive Bayes,
and linear discriminant analysis classifiers, achieving an
accuracy of 97.78%. This algorithm exhibits fast convergence
and robust FS, but it may face challenges with local
optimums. Furthermore, [29] utilizes binary particle swarm
optimization for FS, incorporating the sigmoid transfer
function and the decision tree classifier, achieving an
accuracy of 98.17%. While excelling with small datasets,
it encounters limitations with larger datasets and potential
entrapment in local optimums. The algorithm in [30] employs
S-shaped and V-shaped gaining–sharing knowledge-based
algorithms for FS problem-solving, utilizing S and V shape
transfer functions. It integrates the k-nearest neighbours
classifier, resulting in an accuracy of 99.6%. This algorithm
performs well with high-dimensional datasets and adaptive
parameter tuning, although additional parameter tuning may
be necessary. In [31], the binary sine-cosine algorithm is
utilized for FS problem resolution, employing S and V shape
transfer functions with the k-nearest neighbours classifier,
achieving an accuracy of 98.23%. It proves efficient for
high-dimensional problems but may require fine-tuning. The
algorithm in [32] uses the binary Giza pyramids construction
algorithm for FS, incorporating S and V shape transfer
functions with the k-nearest neighbours classifier, achieving
an accuracy of 98.75%. This algorithm demonstrates swift
convergence and strong performance with large datasets,
yet it may not be suitable for smaller datasets. For [33],
the binary ant lion algorithm is employed for FS problem-
solving, using S and V shape transfer functions with the
k-nearest neighbours classifier, resulting in an accuracy of
96.37%. While effectively handling high dimensionality or
non-linearity, it may suffer from slow convergence and
potential entrapment in local optimums, requiring significant
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computational resources for optimal performance. The work
described in [34] applies the binary salp swarm algorithm
for FS, utilizing S and V shape transfer functions with the
k-nearest neighbours classifier, achieving an accuracy of
95.26%. While adept at addressing problems with complex
search spaces or multiple objectives, this algorithm can be
sensitive to parameter choices and may demand substan-
tial computational resources for optimal performance. The
algorithm outlined in [35] utilizes the binary cuckoo search
algorithm for FS problem resolution, employing the sigmoid
transfer function. It incorporates the optimum-path forest
classifier, achieving an accuracy of 97.33%.While effectively
managing problems with multimodal search spaces or noisy
objective functions, it may be sensitive to parameter choices
and susceptible to local optimums. Finally, the binary
equilibrium optimizer in [36] is employed for FS problem-
solving, utilizing S and V shape transfer functions with
the k-nearest neighbours classifier, achieving an accuracy of
97.01%. This algorithm has demonstrated effectiveness in
finding global optimums, performing well with a relatively
small population size. However, it may be sensitive to
parameter choices and could require a larger population size
for optimal performance.

On the other hand, the algorithm introduced in [37]
employs the binary chaotic bat algorithm to address the FS
problem, utilizing V shape transfer functions. It incorporates
random forest and k-nearest neighbours classifiers, achieving
an accuracy of 96.97%. This algorithm adeptly manages
challenges posed by intricate search spaces or multiple
objectives. The integration of chaotic dynamics enhances its
search capacity, preventing entrapment in local optimums.
Nonetheless, sensitivity to the choice of chaotic function
and a potential necessity for a sizable population size for
optimal performance are noteworthy considerations. In [38],
a similar approach is taken with the utilization of the binary
chaotic dragonfly algorithm, incorporating chaotic transfer
functions and the k-nearest neighbours classifier, resulting in
an accuracy of 96.72%. While effectively handling complex
search spaces or multiple objectives, this algorithm also
displays sensitivity to the chosen chaotic function. The binary
chaotic vortex algorithm, detailed in [39], leverages chaotic
transfer functions and the k-nearest neighbours classifier,
achieving an accuracy of 97.45%. Performance relies heavily
on parameter settings, such as population size and maximum
iteration number, necessitating careful tuning. However, com-
putational expenses may arise, particularly for large datasets,
due to multiple fitness function evaluations. In [25], the
binary chaotic black hole algorithm integrates chaotic transfer
functions and the k-nearest neighbours classifier, boasting
an accuracy of 98.33%. Although promising for FS, its
performance is contingent on parameter settings and specific
applications. The binary chaotic moth–flame optimization
algorithm, outlined in [40], applies chaotic transfer functions
and the k-nearest neighbours classifier, yielding an accuracy
of 96.62%. While effective in handling complex search

spaces or multiple objectives, sensitivity to the chaotic func-
tion, potential slow convergence, and susceptibility to local
optimums are potential drawbacks. The work in [41] intro-
duces the fractional chaotic order marine predator algorithm,
utilizing the k-nearest neighbours classifier with an accuracy
of 97.13%. This promising FSmethod incorporates fractional
calculus to enhance exploration and exploitation abilities,
but computational expenses and potential reliance on a
large population size are considerations. The island-based
genetic algorithm in [42] employs support vector machine, k-
nearest neighbours, decision tree, and multilayer perceptron
classifiers, achieving an accuracy of 93.51%. Combining
global and local search techniques enhances its search
capability, but computational expenses are a concern. The
optimizer described in [43] introduces the quantum whale
optimization algorithm, utilizing the k-nearest neighbours,
linear discriminant classifier, support vector machine, and
decision tree classifiers, achieving an accuracy of 98.75%.
Quantum-inspired operators enhance its search capability,
but sensitivity to parameters and potential need for a large
number of iterations are noted. Lastly, the approach in [44]
combines the technique for order of preference by similarity
to ideal solution with the binary JAYA algorithm, incorpo-
rating time-varying transfer functions. Using the Gaussian
Naïve Bayes classifier, it attains an accuracy of 98.08%.
While a hybrid algorithm effectively handling multiple
objectives, it may require a substantial number of iterations
and pose computational expenses for large-scale problems.
This survey of diverse FS algorithms highlights their unique
strengths and limitations, offering a rich spectrum of choices
for researchers addressing the complexities of FS in various
domains.

In the realm of FS, it is essential to recognize that
achieving perfection remains elusive. Despite the proposal
of numerous commendable solutions and their exceptional
performance, the field continually calls for enhancements.
This reality aligns with the principle articulated in the No-
Free-Lunch theorem [45], emphasizing that no universally
superior solution exists. Therefore, the door remains open
for the exploration and development of new algorithms and
solutions to address the ever-evolving challenges of the
FS problem. In this vein, several promising avenues for
further investigation emerge, including the exploration of
algorithms such as the remora optimization algorithm [46]
and the dynamic Harris Hawks optimization with a mutation
mechanism [47]. These avenues promise to contribute
valuable insights and advancements to the ongoing quest for
optimizing FS methodologies.

III. BACKGROUND
In this section, we introduce the various concepts employed
in the proposed methodology for addressing the FS problem.
First, in Sections III-A, III-B, and III-C, we explain the
working principles of the concepts related to MAs. Then,
in Sections III-D and III-E, we describe the ML algorithm
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and metrics used to evaluate the performance. Finally,
in Section III-F, we give the mathematical formulation of the
FS optimization problem.

A. GREAT WALL CONSTRUCTION ALGORITHM
The Great Wall Construction Algorithm (GWCA) represents
a novel metaheuristic optimizer introduced by Ziyu Guan
and his colleagues [22]. Its draws inspiration from the
historical competition and elimination mechanisms observed
among workers during the construction of the ancient Great
Wall. The GWCA optimizer incorporates these principles
into its optimization strategy. Besides, the algorithm prior-
itizes performance-driven methodologies over metaphorical
aspects, leveraging the competitive spirit of the workforce
that contributed to the Great Wall’s construction. With this
unique approach, the GWCA algorithm aims to efficiently
tackle complex optimization problems while emulating the
effectiveness and resource management exhibited during
the historical construction process. Table 1 summarizes the
parameters utilized in the definition of the GWCA algorithm.
In the following sections, we describe the phases of the
GWCA optimizer.

1) INITIALIZATION
Equation 1 is employed to initialize the individuals in
the first population, where the parameter λ governs the
growth rate of the logistic map (set to 4), and the
parameter α is a uniformly distributed random number
within the range [0, 1] (excluding the values 0.25, 0.5, 0.75,
and 1).

X (0)
i,j = ϕi,j ×

(
UBj − LBj

)
+ LBj

ϕi,j =

{
α, i = 1
λϕi−1,j

(
1− ϕi−1,j

)
, 1 < i ≤ N

i ∈ {1, . . . ,N } and j ∈ {1, . . . ,D} (1)

2) EXPLOITATION
Equation 2 is employed to exploit the search space during the
swarming process, where the parameter k is a uniformly dis-
tributed random number sampled from a uniform distribution
over the set {0, 1}, and the parameter ϵ is an infinitely small
number set to 2.22E-16.

X (t+1)
i,j = α1 × υ × X (t)

i,j + R
(t)
i,j + X

(t)
b,j

υ =

(
T × TL
m
−g×

H (t)
sin (θ)

)
× C (t)×G (t,P,Q)

H (t) = 1−
t

Tmax

C (t) = log
(

(Cmax − Cmin)×
Tmax − t
Tmax

+ Cmin

)
R(t)
i,j = (−1)k × α2 ×

(
X (t)
b,j − X

(t)
i,j

)
TL = 1−

t
Tmax

+ ϵ (2)

3) EXPLORATION
Equation 3 is employed to explore the search space during
the swarming process, where the parameter ϵ is an infinitely
small number set to 2.22E-16.

X (t+1)
i,j = X (t)

i,j + α3 × T1 + α4 × υ × sign (T2)× T3

T1 = X (t)
b,j − X

(t)
i,j

T2 = f
(
X (t)
n⟨i⟩

)
− f

(
X (t)
i

)
T3 = X (t)

n⟨i⟩,j − X
(t)
i,j

υ = m× g×
H (t)
sin (θ)

× C (t)×G (t,P,Q)

H (t) = 1−
t

Tmax
+ ϵ

C (t) = log
(

(Cmax − Cmin)×
Tmax − t
Tmax

+ Cmin

)

sign (x) =


−1, x < 0
0, x = 0
1, x > 0

(3)

4) BALANCE BETWEEN EXPLOITATION AND EXPLORATION
Equation 4 is employed to bias the search towards better
solutions, promoting convergence towards the optimal or
near-optimal solutions in the search space, and overcome
the issue of getting trapped in local optimums during the
optimization process.

X (t+1)
i,j = X (t)

i,j + 2× α5 × T1 + T2 ×G (t,P,Q)

T1 = X (t)
b,j − X

(t)
i,j

T2 = Mi,j − X
(t)
i,j (4)

5) SELECTION
Algorithm 1 is used to determine which individuals from the
current population are more likely to be chosen to appear
in the next generation (i.e., eliminate the worst solutions).
The worst solution are replaced with new ones generated
using Equation 5. It is worth mentioning that the coefficients
r1, . . . , rD are uniformly distributed random numbers within
the range [0, 1].

X = [r1 × T1, . . . , rD × TD]
T1 = (UB1 − LB1)+ LB1
...

TD = (UBD − LBD)+ LBD

(5)

6) GWCA’S PSEUDOCODE AND TIME COMPLEXITY
This section provides a comprehensive overview of the
GWCA, focusing on both its pseudocode representation and
its time complexity. The time complexity of a function
evaluation is O(D), and the time complexity of the swarming
behaviour is O(Tmax×N ×D). Since the function evaluation
step is included into the swarming loops, it means that the
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TABLE 1. The parameters used in the GWCA.

Algorithm 1 The Selection Mechanism
Input: ρ: The percentage of individuals to be eliminated.
Input: P = {X1, . . . ,XN }: The population of individuals.
Output: P = {X1, . . . ,XN }: The updated population of

individuals.

1 k ← 1;
2 while k ≤ ⌈ρ × N⌉ do

3 P← P−

{
argmax
i∈{1,...,|P|}

{f (Xi)}

}
;

4 k ← k + 1;
5 end
6 while |P| < N do
7 Generate a candidate solution X using Equation 5;
8 P← P ∪ {X};
9 end

time complexity of the GWCA is O(n4). The pseudocode
depicted in Algorithm 2 describes the different steps of the
GWCA.

B. OPPOSITION-BASED LEARNING
Opposition-Based Learning (OBL) [48] stands as an emerg-
ing notion within the field of MAs, drawing inspiration from
the contrasting dynamics observed among different entities.
The inception of the opposition concept in 2005 marked a
significant milestone, garnering substantial attention from
researchers over the subsequent decade. Diverse algorithms
in the field of soft computing, including optimization tech-
niques, reinforcement learning, artificial neural networks,
and fuzzy systems, have embraced the principles of OBL
to enhance and elevate their operational efficiency. At the
core of OBL lies the foundational idea of concurrently
examining the current solution and its contrasting counterpart

Algorithm 2 Pseudocode of the GWCA
Input: Initialize the parameters of the GWCA.
Input: P = {X1, . . . ,XN }: The population of individuals.
Input: M = {M1, . . . ,MN }: The memory of individuals.
Output: X∗: The best solution.

1 for i← 1 to N do
2 for j← 1 to D do
3 X (0)

i,j is initialized using Equation 1;
4 Mi,j ← Xi,j;
5 end
6 end
7 for t ← 1 to Tmax do
8 for i← 1 to N do
9 Generate a random integer number I ∈ {1, 2, 3};
10 if I = 1 then
11 for j← 1 to D do
12 X (t)

i,j is updated using Equation 2;
13 end
14 else if I = 2 then
15 for j← 1 to D do
16 X (t)

i,j is updated using Equation 3;
17 end
18 else
19 for j← 1 to D do
20 X (t)

i,j is updated using Equation 4;
21 end
22 for j← 1 to D do
23 X (t)

i,j is updated using Algorithm 3;
24 end
25 Mi is updated using Algorithm 4;
26 end
27 Replace undesired individuals using Algorithm 1;
28 end
29 X∗ ← argmin

i∈{1,...,N }

{
f
(
X (t)
i

)}
;
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Algorithm 3 The Boundary Checker

Input: X (t)
i,j : The solution to be checked.

Input: LB: The vector of lower boundaries.
Input: UB: The vector of upper boundaries.
Output: X (t)

i,j : The checked solution.

1 if X (t)
i,j < LBj then

2 X (t)
i,j ← LBj;

3 end
4 if X (t)

i,j > UBj then

5 X (t)
i,j ← UBj

6 end

Algorithm 4 The Memory Updating Process

Input: X (t)
i : The current solution.

Input:Mi: The memory to be updated.
Output:Mi: The updated memory.

1 if
(
f
(
X (t)
i

)
< f (Mi)

)
then

2 for j← 1 to D do
3 Mi,j← X (t)

i,j ;
4 end
5 end

to achieve efficient problem-solving [49]. In simpler terms,
when an optimization algorithm aims to discover the best
possible outcome for an objective function, the incorporation
of both a candidate solution and its opposite can be proven
advantageous, thereby augmenting the algorithm’s overall
effectiveness.

Starting from January 2005, over 400 academic works have
been disseminated pertaining to the concept of OBL [48].
These research contributions have found their home within
various platforms including conferences, journals, and books,
all situated within the domains of soft computing. Within this
compilation, approximately 60% manifest as journal papers,
38% materialize as conference papers, while the remaining
2% comprise books or theses.
Definition 1: LetX = (x1, . . . , xD) be a candidate solution

in the search space, where xj ∈ (LBj,UBj) and j ∈
{1, . . . ,D}. The opposite candidate solution of X is denoted
by X̆ and is computed by Equation 6 [49].

X̆ = LB+ UB− X (6)

Since the introduction of the initial OBL concept,
a series of works have emerged. In this context, we delve
into a straightforward yet highly efficient OBL approach,
as detailed in the publication [23]. This technique serves
as a cornerstone within our proposed algorithm, specifically
designed to address the FS problem. In the following section,
we describe the working principle of the OBL technique
described in [23]. This approach employs a pair of algorithms,

namelyAlgorithms 5 and 6, to calculate contrasting solutions.
The goal is tominimize the waste of function evaluations. The
choice between these algorithms depends on the diversity of
the current population. When the diversity, computed using
Equation 7, surpasses a predefined threshold, Algorithm 5
is executed. Conversely, if it falls below the threshold,
Algorithm 6 is employed. On the one hand, Algorithm 5
has demonstrated its ability to accelerate the convergence
speed of MAs by fully leveraging opposing information.
On the other hand, Algorithm 6 has been shown to enhance
the diversity of MAs by partially incorporating opposing
information. Table 2 summarizes the parameters utilized
in the definition of Algorithms 5 and 6, and Equations 7
to 15.

normDiv =
1
N

N∑
i=1

D∑
j=1

√√√√ 1
D

(
Xi,j − X̄j
UBj − LBj

)2

(7)

X̄ =
1
N

(X1 + . . .+ XN )

X̆i,j = B(α, β)×
(
UBj − LBj

)
+ LBj

i ∈ {1, . . . ,N } and j ∈ {1, . . . ,D}

B(α, β) =
∫ 1

0
tα−1 (1− t)β−1 dt (8)

α =

{
spread× peak, mode < 0.5
spread, otherwise

(9)

β =

{
spread, mode < 0.5
spread× peak, otherwise

(10)

spread =
(

1
√
normDiv

)1+N(0,0.5)

(11)

peak =


(spread− 2)×mode+ 1
spread× (1−mode)

,mode < 0.5

2− spread
spread

+
spread− 1

spread×mode
, otherwise

(12)

mode =
UBj − Xi,j
UBj − LBj

(13)

spread = 0.1×
√
normDiv+ 0.9 (14)

mode =
Xi,j − LBj
UBj − LBj

(15)

C. GAUSSIAN MUTATION
The Gaussian Mutation (GM) [24] operator introduces
random perturbations to the current solution by sampling
from a Gaussian distribution. The GM is commonly utilized
to make slight adjustments to the values of the solution
variables. Algorithm 8 depicts the pseudocode of the GM
operator.

Two parameters govern the extent of mutation: the
mutation rate (γ ) and the mutation strength (δ). The former
determines the probability of mutation for each solution
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TABLE 2. The parameters used in Algorithms 5 and 6.

variable (i.e., increasing the mutation rate raises the chances
of mutation taking place); while the latter determines the
magnitude of perturbations applied to the solution variables
(i.e., higher mutation strength results in more significant
variations across the search space). The normal distribution
is referred to as N(µ, σ ), where µ and σ are its mean and its
standard deviation, respectively.

D. K-NEAREST NEIGHBORS
The K-Nearest Neighbors (KNN) [50] is a simple yet
effective ML algorithm used for classification and regression
tasks. The working principle of KNN revolves around the
idea of proximity-based prediction. Given a new data point,
the algorithm identifies its k closest neighbours within the
training dataset based on a chosen distance metric, often
Euclidean distance. For classification, the majority class
among these k neighbours is assigned to the new data
point. In regression, the algorithm calculates the average or
weighted average of the target values from the k neighbours
to predict a continuous value. The key assumption is that
similar data points are likely to have similar outcomes.
The value of k , the number of neighbours, is a crucial
parameter that influences the algorithm’s performance and
generalization. Smaller k values result in more flexible,
potentially noisy predictions, while larger k values lead to
smoother but potentially oversimplified predictions. KNN is
easy to understand and implement, making it a valuable tool
for various tasks, but its efficiency can decrease with larger
datasets due to the need to calculate distances for each query
point.

E. EVALUATION METRICS
In classification tasks in ML, various evaluation metrics
are used to assess the performance of model’s predic-
tions [51]. These metrics provide insights into how well
the model is classifying different classes and help quantify
its strengths and weaknesses. These metrics provide a
comprehensive view of a classifier’s performance from
different angles. The choice of metric depends on the specific
characteristics of the problem, the class distribution, and
the goals of the application. It is often recommended to
consider multiple metrics to get a well-rounded assess-
ment of a model’s performance. Some common evaluation
metrics for classification tasks are given in the following
sections.

1) CONFUSION MATRIX
A confusion matrix provides a detailed breakdown of True
Positives (TP) – the model identifies a positive case correctly,
True Negatives (TN) – the model correctly identifies a
negative case, False Positives (FP) – the model predicts a
positive outcome when it should have predicted a negative
outcome, and False Negatives (FN) – the model fails to
predict a positive outcome when it should have, which are
essential for calculating the subsequent metrics.

2) ACCURACY
Accuracy is the ratio of correctly predicted instances to
the total number of instances in the dataset. While easy to
understand, accuracy might not be suitable for imbalanced
datasets where one class dominates the others. Its mathemat-
ical expression is given by Equation 16.

accuracy =
TP+ TN

TP+ TN+ FP+ FN
(16)

3) PRECISION
Precision measures the ratio of correctly predicted positive
observations to the total predicted positives. It focuses
on the correctness of positive predictions and helps in
scenarios where false positives are costly. Its mathematical
representation is defined by Equation 17.

precision =
TP

TP+ FP
(17)

4) RECALL
Recall calculates the ratio of correctly predicted positive
observations to the actual positives. It is useful when the
emphasis is on minimizing false negatives. Equation 18
provides its mathematical formulation.

recall =
TP

TP+ FN
(18)

5) F1-SCORE
The F1-score is the harmonic mean of precision and recall.
It provides a balance between precision and recall, which can
be valuable when you need to consider both false positives
and false negatives. Its mathematical formula is expressed in
Equation 19.

F1-score =
2× (precision× recall)

precision+ recall
(19)
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Algorithm 5 The First OBL Technique
Input: P = {X1, . . . ,XN }: The population of individuals.
Input: LB: Lower boundaries of the search space.
Input: UB: Upper boundaries of the search space.
Input: N : The population size.
Input: D: The dimensionality of the search space.
Input: f (.): The objective function to be minimized.
Output: P = {X1, . . . ,XN }: The population of individuals.

1 Define a zero matrix A = (aij)1≤i≤N ,1≤j≤D;
2 for i← 1 to N do
3 for j← 1 to D do
4 aij ← Xi,j;
5 end
6 end
7 Compute the covariance matrix C of A;
8 Compute the matrix V whose columns are the eigenvectors

of C ;
9 U ← ∅;
10 Compute normDiv using Equation 7;
11 for i← 1 to N do
12 for j← 1 to D do
13 if rand(0, 1) ≤ 0.5 then
14 Compute mode using Equation 13;
15 Compute spread using Equation 11;
16 end
17 else
18 Compute mode using Equation 15;
19 Compute spread using Equation 14;
20 end
21 Compute peak using Equation 12;
22 Compute α using Equation 9;
23 Compute β using Equation 10;
24 Compute X̆i,j using Equation 8;
25 end
26 X ′i ←

(
V T × XTi

)T
;

27 X̆ ′i ←
(
V T × X̆Ti

)T
;

28 Compute U1 using Algorithm 7 (X ′i , X̆
′
i , Cr = 0.1);

29 Compute U2 using Algorithm 7 (X ′i , X̆
′
i , Cr = 0.9);

30
(
V × UT

1

)T
is updated using Algorithm 3;

31
(
V × UT

2

)T
is updated using Algorithm 3;

32 U ← U ∪
{(
V × UT

1

)T
,
(
V × UT

2

)T }
;

33 end
34 U ← U ∪ P;
35 P← ∅;
36 while |P| < N do

37 B←

{
argmin

i∈{1,...,|U |}
{f (Ui)}

}
;

38 U ← U − {B};
39 P← P ∪ {B};
40 end

6) CLASSIFICATION ERROR RATE
The classification error rate in ML is a fundamental
performance metric that quantifies the proportion of incor-
rectly classified instances in a dataset, comparing the
number of misclassified data points to the total number
of instances. It serves as a straightforward indicator of
a classification model’s accuracy, with lower error rates
indicating better performance and higher rates reflecting

Algorithm 6 The Second OBL Technique.
Input: P = {X1, . . . ,XN }: The population of individuals.
Input: LB: Lower boundaries of the search space.
Input: UB: Upper boundaries of the search space.
Input: N : The population size.
Input: D: The dimensionality of the search space.
Input: f (.): The objective function to be minimized.
Output: P = {X1, . . . ,XN }: The population of

individuals.

1 Define a zero matrix A = (aij)1≤i≤N ,1≤j≤D;
2 for i← 1 to N do
3 for j← 1 to D do
4 aij ← Xi,j;
5 end
6 end
7 Compute the covariance matrix C of A;
8 Compute the matrix V whose columns are the

eigenvectors of C ;
9 Compute the median m of the series: f (X1) , . . . , f (XN );
10 U ← ∅;
11 Compute normDiv using Equation 7;
12 for i← to N do
13 if f (Xi) ≥ m then
14 for j← 1 to D do
15 if rand(0, 1) ≤ 0.5 then
16 Compute mode using Equation 13;
17 Compute spread using Equation 11;
18 end
19 else
20 Compute mode using Equation 15;
21 Compute spread using Equation 14;
22 end
23 Compute peak using Equation 12;
24 Compute α using Equation 9;
25 Compute β using Equation 10;
26 Compute X̆i,j using Equation 8;
27 end
28 X ′i ←

(
V T
× XTi

)T ;
29 X̆ ′i ←

(
V T
× X̆Ti

)T
;

30 Compute U1 using Algorithm 7 (X ′i , X̆
′
i ,

Cr = 0.1);
31 Compute U2 using Algorithm 7 (X ′i , X̆

′
i ,

Cr = 0.9);
32 U1 ←

(
V × UT

1

)T ;
33 U2 ←

(
V × UT

2

)T ;
34 U1 is updated using Algorithm 3;
35 U2 is updated using Algorithm 3;

36 U ← U ∪
{
argmin {f (U1) , f (U2) , f (Xi)}

}
;

37 end
38 else
39 U ← U ∪ {Xi};
40 end
41 end
42 P← U ;

lower accuracy. However, the classification error rate has
limitations, such as not distinguishing between different
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Algorithm 7 The Multiple Exponential Recombina-
tion Algorithm
Input: X1: The first parent solution.
Input: X2: The second parent solution.
Input: D: The dimensionality of the search space.
Input: Cr : Mutation probability.
Input: T : Length of exchanged segments (T = 2).
Output: X3: The offspring solution.

1 Em← T × Cr ;
2 Es← T × (1− Cr );
3 Generate a random integer number n ∈ {1, . . . ,D};
4 k ← 1;
5 flag← 1;
6 while k ≤ D do
7 if flag = 1 then
8 while k ≤ D and rand(0, 1) ≤ Em

Em+1
do

9 j← 0;
10 if n ≤ D then
11 j← n;
12 end
13 else
14 j← n− D;
15 end
16 X3,j← X2,j;
17 k ← k + 1;
18 n← n+ 1;
19 end
20 flag← 0;
21 end
22 else
23 while k ≤ D and rand(0, 1) ≤ Es

Es+1
do

24 j← 0;
25 if n ≤ D then
26 j← n;
27 end
28 else
29 j← n− D;
30 end
31 X3,j← X1,j;
32 k ← k + 1;
33 n← n+ 1;
34 end
35 flag← 1;
36 end
37 end

types of errors (e.g., false positives and false negatives)
and not accounting for class imbalances. As a result,
it is often used in combination with other metrics to
provide a more comprehensive assessment of a model’s
classification capabilities. Equation 20 gives its mathematical
expression.

CER =
FP+ FN

TP+ TN+ FP+ FN
(20)

Algorithm 8 The Gaussian Mutation Process
Input: Xi: The solution to be mutated.
Input: γ : The mutation rate.
Input: δ: The mutation strength.
Input: µ: The Gaussian distribution’s mean.
Input: σ : The Gaussian distribution’s standard

deviation.
Output: Xi: The mutated solution.

1 for j← 1 to D do
2 if (rand(0, 1) < γ ) then
3 Xi,j← Xi,j + N(µ, σ )× δ;
4 Xi,j is updated using Algorithm 3;
5 end
6 end

F. MATHEMATICAL FORMULATION OF FS PROBLEMS
The FS problem is about selecting a subset of features from
a larger set while aiming to achieve a certain optimization
goal, such as improving model performance or reducing
complexity. The mathematical formulation can vary based on
the specific objective and constraints of the problem. In the
following, we give a mathematical formulation for the FS
problem.

In the FS problem, we assume a dataset with N instances
and D features: X = {x1, . . . , xN }, where xi, is a D-
dimensional feature vector, and a response variable y. The
goal is to select a subset of features from the original D
features that maximizes or minimizes a certain objective
function. The objective function can be defined based on
various criteria, such as model performance (e.g., accuracy,
F1-score), model complexity (e.g., number of selected fea-
tures), or other domain-specific considerations. The general
FS problem, used in this work, is mathematically formulated
using Equations 21, 22 and 23.
Minimize:

α × CER+ (1− α)×
|R|
|D|

(21)

where CER represents the classification error rate computed
using Equation 20, α is a random number sampled from
the uniform distribution, |R| denotes the number of selected
features, and |D| refers to the total number of features.
Subject to:

D∑
j=1

xi,j ≤ K , i ∈ {1, . . . ,N } (22)

whereK is the maximum number of selected features (if there
are constraints on limiting the number of selected features).
With:

xi,j ∈ {0, 1} , i ∈ {1, . . . ,N } , j ∈ {1, . . . ,D} (23)

where xi,j is a binary decision variable that represents whether
feature j is selected for instance i. If xi,j = 1, the feature is
selected; if xi,j = 0, the feature is not selected.
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IV. PROPOSED ALGORITHM
In this section, we present and elucidate the algorithm that
embodies our proposed methodology for addressing the FS
problem. Algorithm 9 provides a comprehensive overview of
the distinct steps involved in its formulation. This algorithm
serves as a vital roadmap for understanding the intricacies
of our method and its practical implementation. Through the
following discussion, we aim to provide a clear and detailed
account of our approach, allowing for a deeper insight into
the methodology’s inner workings.

In our algorithm, we have employed the transfer function
defined by Equation 24 to facilitate the mapping of candidate
solutions from a continuous space to a binary space. This
transfer function is called the step transfer function, and it
plays a pivotal role in transforming the real-valued outputs
into binary decisions, allowing us to effectively navigate
the discrete nature of the FS problem and make meaningful
decisions based on the continuous input data.

Y (t)
i,j =

{
0, if X (t)

i,j ≤ 0.5

1, otherwise
(24)

The various stages of the proposed algorithm can be
elucidated as follows:

• Initially, the algorithm commences by initializing and
inputting the values of controlling parameters, which are
detailed in Table 4.

• Lines 1 to 6 of the algorithm involve the initialization
of the initial population of candidate solutions through
the utilization of chaotic maps. This approach aims
to promote diversity within the population, facilitating
exploration across a broad spectrum of values and poten-
tially covering diverse regions within the solution space.

• Between lines 7 and 37, the algorithm carries out
the swarming process in an interactive manner. The
cessation of this process can be determined by various
stopping criteria, such as a predefinedmaximumnumber
of generations, a set maximum for function evaluations,
or a threshold for objective function values, among other
possibilities.

• Within the algorithmic framework, specifically in lines
8 to 11, the execution of either Algorithm 5 or 6 is deter-
mined based on the population diversity’s value. Algo-
rithm 5 is designed to expedite the convergence speed
of the proposed algorithm by fully exploiting opposing
information, while Algorithm 6 aims to amplify the
diversity of the algorithm by selectively incorporating
opposing information. Subsequently, in the span of lines
12 to 34, the swarming behavior of the GWCA is consid-
ered, orchestrating movement within the search space.
It is worth pointing out that the transition between the
preceding phases is conducted randomly, contributing
an element of stochasticity to the algorithmic process.

• In line 35, Gaussian mutation is executed to enhance the
diversity of solutions and avoid getting trapped in local
optimums.

• It is worth highlighting that lines 10, 30, 33, and 36 are
used to save the best solution encountered by the various
agents during the swarming process. This process plays
a crucial role in guiding the algorithm toward better
solutions over successive iterations.

• Finally, at line 38, the best solution found so far is
returned, representing the set of selected features.

We scrutinize the time complexity of the proposed
algorithm (Algorithm 9), observing that Algorithm 1 has a
time complexity of O(n), Algorithm 3 has a time complexity
of O(1), Algorithm 4 has a time complexity of O(n),
Algorithm 8 has a time complexity ofO(n), and Algorithm 10
has a time complexity of O(n4). Based on the elementary
time complexities discussed earlier, we conclude that the time
complexity of the improved version of the GWCA is O(n5).

V. EXPERIMENTAL STUDY AND DISCUSSION
Within this section, our focus centers on the rigorous
evaluation of the proposed algorithm’s efficacy in addressing
the FS problem. SectionV-A lays the foundation by providing
a comprehensive overview of both the datasets employed in
our comparative study and the parameter settings configured
for optimal performance of our proposed optimizer. Sub-
sequently, Section V-B meticulously delineates the diverse
algorithms included in the comparative study, shedding light
on their respective parameter configurations. The culmination
of this evaluation is encapsulated in Section V-C, where a
detailed presentation of the comparative study unfolds. This
section systematically delves into the selected criteria, offer-
ing a nuanced exploration of the obtained numerical results.

A. USED DATASETS AND PARAMETERS SETTING
Table 3 provides a comprehensive overview of the key
characteristics of the 22 datasets employed in our compar-
ative study. Access to the datasets can be obtained through
the link https://archive.ics.uci.edu/datasets. The datasets are
categorized into three groups – small, medium, and large
– based on the number of features, with datasets having
fewer than 20 features classified as small, those with 21 to
100 features as medium, and datasets with more than
100 features categorized as large. To evaluate the impact of
selected feature subsets, each dataset underwent division into
training, testing, and validation sets using the cross-validation
method. Subsequently, the KNN classifier was applied to
calculate the objective function as defined by Equation 21
(the number of neighbours to use is 5).

In Table 4, a comprehensive overview of the parameter
settings for the various variables employed in our proposed
algorithm dedicated to addressing the FS problem is pre-
sented.

B. BENCHMARK ALGORITHMS
In evaluating the efficacy of the suggested algorithm, a com-
prehensive performance analysis was conducted through
a comparative study with ten prominent state-of-the-art
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Algorithm 9 Pseudocode of the Proposed Algorithm
Input: P = {X1, . . . ,XN }: The population of individuals.
Input: M = {M1, . . . ,MN }: The memory of individuals.
Input: LB: Lower boundaries of the search space.
Input: UB: Upper boundaries of the search space.
Input: N : The population size.
Input: D: The dimensionality of the search space.
Input: JR: The jumping rate.
Input: Initialize the parameters of the GWCA.
Output: X∗: The best solution.

1 for i← 1 to N do
2 for j← 1 to D do
3 X (0)

i,j is initialized using Equation 1;
4 Mi,j ← Xi,j;
5 end
6 end
7 while Termination Condition is not Satisfied do
8 if rand(0, 1) ≤ JR then
9 Update the population P using Algorithm 10;

10 Update individuals’ memory using Algorithm 4;
11 end
12 else
13 for i← 1 to N do
14 Generate a random integer number

I ∈ {1, 2, 3};
15 if I = 1 then
16 for j← 1 to D do
17 X (t)

i,j is updated using Equation 2;
18 end
19 else if I = 2 then
20 for j← 1 to D do
21 X (t)

i,j is updated using Equation 3;
22 end
23 else
24 for j← 1 to D do
25 X (t)

i,j is updated using Equation 4;
26 end
27 for j← 1 to D do
28 X (t)

i,j is updated using Algorithm 3;
29 end
30 Mi is updated using Algorithm 4;
31 end
32 Replace undesired individuals using Algorithm 1;
33 Update individuals’ memory using Algorithm 4;
34 end
35 Update the population P using Algorithm 8;
36 Update individuals’ memory using Algorithm 4;
37 end
38 X∗ ← argmin

i∈{1,...,N }

{
f
(
X (t)
i

)}
;

methodologies. Seven of the algorithms are novel methods
introduced between 2020 and 2023, while the remaining
three are classical approaches, including particle swarm
optimization, genetic algorithms, and differential evolution.
The selected algorithms were scrutinized in depth, and their
respective parameter configurations have been succinctly
outlined in Table 5 for clarity and reference. It is worth

Algorithm 10 The Opposition-Based Learning
Input: P = {X1, . . . ,XN }: The population of individuals.
Input: DT: The diversity threshold.
Output: P = {X1, . . . ,XN }: The updated population of

individuals.

1 Compute the population’s diversity normDiv using Equation 7;
2 if normDiv > DT then
3 Update the individuals within P using Algorithm 5;
4 end
5 else
6 Update the individuals within P using Algorithm 6;
7 end

pointing out that these parameters have been extracted from
the original published papers.

1) Binary Arithmetic Optimization Algorithm (BAOA)
[52].

2) Binary Sand Cat Swarm Optimization algorithm
(BSCSO) [53].

3) Improved Bald Eagle Search algorithm (IBES) [54].
4) Chaotic Binary Reptile Search Algorithm

(CBRSA) [55].
5) Chaotic Vortex Search Algorithm (CVSA) [39].
6) Chaotic Gaining Sharing Knowledge-based optimiza-

tion algorithm (CBi-GSK) [56].
7) Chaotic Atom Search Optimization (CASO) [57].
8) Particle Swarm Optimization (PSO) [58].
9) Differential Evolution (DE) [59].

10) Genetic Algorithm (GA) [60].

All experiments were replicated on a laptop with an
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 16.0 GB
RAM, using Matlab R2020b; and statistical analyses were
conducted using IBM SPSS Statistics. The number of
candidates solutions, the number of iterations and the number
of runs were set to 10, 100 and 30, respectively, for all the
algorithms.

C. NUMERICAL RESULTS AND DISCUSSION
To assess and compare the performance of the various
algorithms employed in the comparative study, we utilized
a set of evaluation metrics. These metrics were chosen to
provide a comprehensive analysis of algorithmic effective-
ness and efficiency, enabling a thorough examination of their
performance across different criteria.

1) Average of ClassificationAccuracy (ACA): It furnishes
the average of accuracy values calculated through
Equation 16 over the specified number of runs.

2) Average of Fitness Values (AFV): It presents the mean
of fitness values derived from Equation 21 across the
designated number of runs.

3) Minimum of Fitness Values (MiFV): It gives the
minimum of fitness values calculated from Equation 21
across the designated number of runs.
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TABLE 3. The description of datasets used in the comparative study.

TABLE 4. The parameters used in the proposed algorithm.

4) Maximum of Fitness Values (MaFV): It provides the
maximums of fitness values computed from Equa-
tion 21 across the designated number of runs.

5) Average of Selected Features (ASF): It offers the
average number of selected features over the specified
runs.

6) Average of Completion Time (ACT): It provides the
mean of completion times over the designated number
of runs. The time is given in seconds.

To evaluate the impact of reducing the number of features
on the performance of the preceding metrics, we additionally
calculated various average values when considering the
inclusion of all available features. The obtained numerical
results are summarized in Table 6. Furthermore, Table 7
provides a comprehensive summary of the values for various
metrics achieved through the proposed algorithm.

TABLE 5. The parameters’ values of the algorithms used for the
comparative study.

Tables 10, 11, 12, 13, 14, and 15 showcase diverse metric
values derived from the algorithms under consideration for
the comparative study. Each table serves as input for the
Friedman and the Wilcoxon signed ranks tests, facilitating
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TABLE 6. The values of various metrics when considering all features.

TABLE 7. The values of various metrics obtained by the proposed
algorithm.

the examination of subtle differences among the algorithms
concerning the specified evaluation criteria. It is worth noting
that the best values for each metric are presented in bold
font. The initial observation reveals that the accuracy values
achieved by the proposed algorithm surpass those attained
when utilizing all features, indicating a substantial positive
impact on performance due to the reduction in the number of
features.

For each table, we have considered small, medium,
and large datasets separately to perform the Friedman and
Kruskal-Wallis tests and compute the mean ranks. First,
the Friedman test is a non-parametric statistical test used
to detect differences in treatments across multiple related
groups. It is often employed when the data violate the
assumptions of normal distribution or when the data are
measured on an ordinal scale. Second, the Kruskal-Wallis test

is a non-parametric statistical test used to determine whether
there are any statistically significant differences between the
medians of three or more independent (unrelated) groups. It is
an extension of the Wilcoxon rank-sum test (Mann-Whitney
U test) for two groups to multiple groups. We consider
the null hypothesis (H0), representing the statement of no
effect or no difference, and the alternative hypothesis (H1),
representing the statement that contradicts the null hypothesis
(i.e., suggesting the presence of an effect or difference).
The significance level, denoted as α, is the probability of
rejecting the null hypothesis when it is actually true. In our
study, α is set to 0.05. Tables 8 and 9 summarize the
p-values associated with the Friedman and Kruskal-Wallis
tests, respectively, indicating the likelihood of obtaining
the observed differences among the groups due to random
chance. In other words, if the p-value is less than the chosen
significance level (i.e., 0.05), the null hypothesis is rejected.
From Table 8, it is observed that all the p-values are less
than 0.05, which suggests to reject the null hypothesis. From
Table 9, it is observed that all the p-values are less than
0.05, which suggests to reject the null hypothesis, except
for large datasets suggesting to retain the null hypothesis.
On the other side, mean ranks refer to the average ranks
assigned to each treatment or group across different levels
of the independent variable: Mean Rank 1 and Mean Rank
2 are computed using the Friedman and Kruskal-Wallis
tests, respectively. They provide a summary measure of
the average performance or rank order of each treatment
under varying conditions. Higher mean ranks, signifying
smaller values, indicate superior performance or a higher
position in the rank order. As observed in Tables 10, 11,
12, and 13, BGWCA consistently secures the first place,
reflecting the best values in terms of accuracy and fitness,
as computed using Equations 16 and 21. However, according
to Table 15, BGWCA attains medium ranks in the majority
of cases (i.e., either the fourth or the sixth place out of the
11 algorithms). This behavior arises from the conflicting
relationship between optimality and computing time.

Figures 1 and 2 represent box-and-whisker plots for
small, medium and large datasets for all the optimizers.
The box-and-whisker plots shown in Figure 1 reveal distinct
patterns in the distribution of the ACA values. For the left
figure, the majority of data is clustered around zero, with
a small interquartile range and whiskers extending to a
maximum value of 0.1440. Two non-zero values, 0.0087 and
0.0400, could be considered potential outliers. The middle
figure shows a concentration of values around zero, with
a small interquartile range and whiskers extending to a
maximum value of 0.2744. The right figure consists mainly
of zero values, with a larger interquartile range and whiskers
extending from the minimum to the maximum values of
0 and 0.1360, respectively. The presence of a non-zero value,
0.0352, could be considered an outlier in the context of
this figure. The box-and-whisker plots shown in Figure 2
divulge insights into the distribution of the AFV values.
For the left figure, the majority of the data is concentrated
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TABLE 8. Summary of the Friedman test results.

TABLE 9. Summary of the Kruskal-Wallis test results.

TABLE 10. The ACA values for all algorithms.

FIGURE 1. The box-and-whisker plot for all the optimizers over all the datasets for ACA values.
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TABLE 11. The AFV values for all algorithms.

TABLE 12. The MiFV values for all algorithms.
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TABLE 13. The MaFV values for all algorithms.

TABLE 14. The ASF values for all algorithms.
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TABLE 15. The ACT values for all algorithms.

FIGURE 2. The box-and-whisker plot for all the optimizers over all the datasets for AFV values.

around zero, with a small interquartile range and whiskers
extending to a maximum value of 0.1457. The middle figure
exhibits a concentration of values near zero, with a small
interquartile range and whiskers extending to a maximum
value of 0.2724. In the right figure, the data is primarily
composed of zero values, with a larger interquartile range
and whiskers extending from the minimum to the maximum
values of 0 and 0.1347, respectively. The presence of a non-

zero value, 0.0362, in the right figure could be considered an
outlier. In conclusion, these box-and-whisker plots provide a
visual summary of the central tendency, spread, and potential
outliers in each figure, aiding in the comparison of their
respective distributions.

According to Table 8, it is obvious that the Friedman
test indicates significant differences. Therefore, we opted to
apply the Dunn’s post-hoc test in order to identify specific
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TABLE 16. The p-values obtained by the post hoc Dunn’s test for Table 10.

TABLE 17. The p-values obtained by the post hoc Dunn’s test for Table 11.
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TABLE 18. The p-values obtained by the post hoc Dunn’s test for Table 12.

TABLE 19. The p-values obtained by the post hoc Dunn’s test for Table 13.
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TABLE 20. The p-values obtained by the post hoc Dunn’s test for Table 14.

TABLE 21. The p-values obtained by the post hoc Dunn’s test for Table 15.
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TABLE 22. The p-values obtained by the Wilcoxon signed ranks test for Table 10.

TABLE 23. The p-values obtained by the Wilcoxon signed ranks test for Table 11.

TABLE 24. The p-values obtained by the Wilcoxon signed ranks test for Table 12.

TABLE 25. The p-values obtained by the Wilcoxon signed ranks test for Table 13.

TABLE 26. The p-values obtained by the Wilcoxon signed ranks test for Table 14.

TABLE 27. The p-values obtained by the Wilcoxon signed ranks test for Table 15.

pairs of treatments that are significantly different from each
other after finding a significant result in the Friedman
test. Tables 16, 17, 18, 19, 20, and 21 summarize the
p-values computed by the Dunn’s post-hoc test. The p-values
obtained from the Dunn’s test provide information about
the significance of the differences between specific pairs of
groups. P-values below the significance threshold of 0.05 are
emphasized in bold font. To interpret a particular value at
the intersection of a row (representing an algorithm, e.g.,
BGWCA) and a column (representing another algorithm,
e.g., IBES), if the associated p-value is less than 0.05,
it signifies a significant difference between these algorithms,
suggesting that the algorithm denoted by the row label
outperforms the one denoted by the column label. Conversely,
if the p-value is greater than or equal to 0.05, we infer nearly
similar performance between the two algorithms.

Tables 22, 23, 24, 25, 26, and 27 summarize the p-values
obtained by the Wilcoxon signed ranks test. As evident from

the results, the algorithm put forward demonstrates superior
performance in addressing the FS problem compared to all
other contenders across datasets of varying sizes, considering
a predetermined threshold of α = 0.05.

In Figures 3, 4, and 5, the convergence curves of fitness
values over 100 iterations, calculated using Equation 21,
are depicted for each dataset across the range of considered
optimizers. These visualizations offer a comprehensive
view of the optimization process, showcasing how the
fitness values evolve over iterations. The comparison across
multiple optimizers provides insights into their respective
convergence behaviors and performance on diverse datasets.
Figures 3, 4, and 5 clearly illustrate the high convergence
rates achieved across various datasets, demonstrating the effi-
cacy of the proposed algorithm. Importantly, the algorithm
maintains optimal solutions throughout the convergence
process, underscoring its reliability. Notably, the algorithm
successfully avoids premature convergence in the majority
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FIGURE 3. Convergence analysis of fitness values across optimizers for small dataset (d1 to d6).

of cases, a critical aspect in ensuring robust optimization.
The incorporation of opposition-based learning and Gaussian
mutation emerges as a key contributing factor to the
enhanced performance of the GWCA. This conclusion

highlights the significance of these innovative techniques
in improving the algorithm’s convergence behavior and
overall effectiveness in solving the FS problem across diverse
datasets.
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FIGURE 3. (Continued.) Convergence analysis of fitness values across optimizers for small dataset (d7 to d9).

TABLE 28. The list of symbols used in the paper.

VI. CONCLUSION
In conclusion, we presented a comprehensive exploration of
the feature selection problem, emphasizing the critical role
of selecting relevant features for enhancing machine learning
model performance. The inherent complexity of this problem,
stemming from a vast search space, was tackled through
the utilization of the Great Wall Construction Algorithm,

a recently proposed metaheuristic approach. To further
augment the algorithm’s effectiveness, opposition-based
learning and Gaussian mutation techniques were integrated,
addressing challenges related to exploration, exploitation,
and local optima avoidance.

The empirical evaluation of the proposed algorithm
involved a thorough comparative analysis against ten state-
of-the-art methodologies, encompassing both contemporary
and classical algorithms. The assessment spanned 22 datasets
of varying sizes, providing a diverse testing ground ranging
from 9 to 856 features. Six distinct evaluation metrics,
covering aspects such as accuracy, classification error rate,
number of selected features, and completion time, were
employed to ensure a comprehensive understanding of the
algorithm’s performance.

The rigorous validation of results was conducted through
non-parametric statistical tests, including the Friedman test,
post hoc Dunn’s test, and theWilcoxon signed ranks test. The
obtained mean ranks and p-values conclusively demonstrated
the superior efficacy of the proposed algorithm in addressing
the feature selection problem. The algorithm showcased
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FIGURE 4. Convergence analysis of fitness values across optimizers for medium datasets (d10 to d17).
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FIGURE 5. Convergence analysis of fitness values across optimizers for large datasets d18 to d22.

its prowess by outperforming competing methodologies
across multiple metrics, establishing itself as a robust
and promising solution for enhancing the efficiency and
accuracy of feature selection in machine learning models.
The findings of this research contribute valuable insights to
the field, offering a compelling approach to addressing one

of the fundamental challenges in machine learning model
optimization.

APPENDIX. TABLE OF USED SYMBOLS
Table 28 serves to summarize and elucidate the list of symbols
utilized in the paper, aiming to enhance the clarity and ease
of comprehension for readers.
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