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ABSTRACT Parkinson’s disease is a neurological disorder, caused by the death of dopaminergic neurons
which can cause various movement disorders to appear, recognized as standard Parkinson’s motor symptoms.
A drug to stop the progression of the disease is very difficult to find, so current treatment is based on
alleviating the symptoms of the disease itself. As no direct treatment exists that would cure the condition,
early detection and proper treatment are essential in maintaining the patient’s quality of life. This work
explores the potential of merging artificial intelligence and machine learning algorithms for Parkinson’s
disease early detection from finger-tapping accelerometer tests. Time series classification is explored through
the use of recurrent neural networks augmented with and without attention layers. Additionally, extreme
gradient boosting in combination with statistical analysis is explored in order to differentiate Parkinson’s
from other developing neurodegenerative disorders. As the performance of algorithms hinges on proper
parameter selection, this work applies metaheuristics for performance optimization. A modified version of
a recently introduced sinh cosh optimizer algorithm is also proposed. The approach is tested on a publicly
available real-world clinical dataset consisting of patients and control group samples and a total of three
separate experiments were conducted. The introduced optimizer demonstrated admirable performance in
comparative analysis, with the best performing models exceeding 90% accuracy.

INDEX TERMS Parkinson’s disease, metaheuristics, sinh cosh optimization, optimization, hyperparamater
tuning.

I. INTRODUCTION

Parkinson’s disease (PD) is a neurological disorder, caused
by the death of dopaminergic neurons. As a consequence
of a lack of dopamine, various movement disorders appear,
recognized as standard Parkinsonian motor symptoms. These
symptoms include rest tremors, bradykinesia, muscular
rigidity, and postural and gait impairment [1]. In addition to
the already classic symptoms, some patients also experience
other symptoms such as early dementia, ataxia, or frequent

The associate editor coordinating the review of this manuscript and

approving it for publication was Valentina E. Balas

falls that may indicate the existence of other atypical
Parkinsonian disorders. Most common atypical parkinsonian
disorders are multiple system atrophy (MSA), progressive
supranuclear palsy (PSP), corticobasal degeneration (CBD)
as well as other rarer causes [2].

A drug to stop the progression of the disease is very
difficult to find, so current treatment is based on alleviating
the symptoms of the disease itself with drugs that raise
dopamine levels. However, it has been shown that lack of
dopamine is not the only thing that needs to be solved,
but that other neurotransmitters are also involved in PD.
Research has also shown that genetics, which has a significant
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influence, must be added to the environmental factors that
have long been considered the main causes of the disease.
Furthermore, attention must be paid to atypical Parkinsonian
disorders, which can often be misdiagnosed as PD. Treatment
of these diseases with standard methods used to treat PD
can further worsen the condition of patients. All of the
above significantly affects the complexity of the disease,
which begins to develop years before the first symptoms, and
early diagnosis is of key importance for the most successful
treatment of patients.

There is no definitive test that would confirm with certainty
the existence of PD or other atypical Parkinsonian disorders.
This is exactly the reason why scientists make their contri-
bution in this field, trying to correctly predict the existence
of mentioned diseases. Some of the ways of detecting
the disease are finger-tapping or gait analysis, Magnetic
Resonance Imaging (MRI) scans, electroencephalography
(EEG) tests, etc. Such comprehensive analyses can be
improved with machine learning algorithms, which would
contribute to both accuracy and saving resources.

Machine learning makes it possible to see very complex
dependencies between data, which might be missed by the
human eye with standard data analysis methods. The main
categories of machine learning are divided based on the data
which are given to the algorithms, and they are: supervised
learning, unsupervised learning, semi-supervised learning,
and reinforcement learning. In supervised learning, which is
used in this paper, the data is labeled [3]. The main problems
solved in supervised learning are classification and regression
problems. There are many algorithms that deal with solving
these problems [4], and each algorithm has hyperparameters
that need to be chosen well because they significantly affect
the performance of the algorithm itself. As the number of
hyperparameters increases, finding the best values becomes
more and more difficult. Outdated approaches such as trial
and error have proven to be very inefficient and adequate
solutions are needed for hyperparameter optimization, which
is considered an NP-hard problem and cannot be solved using
discreet methods [5].

Current state-of-the-art solutions for hyperparameter opti-
mization are found in metaheuristic algorithms. A meta-
heuristic or a high-level procedure is used to produce the
most optimal solution in the easiest and smartest way possible
when standard mathematical methods fail [6]. Metaheuristics
have found inspiration in nature, physics, and other elements
in the environment. Some of the most popular nature-inspired
optimizations are ant colony optimization, particle swarm
optimization, cuckoo search, bacterial colony optimization,
etc. Other metaheuristics based on physics phenomena are
central force optimization, spiral optimization, gravitational
search, etc. It has been shown that metaheuristics provide
the most optimal solution in most cases, but they do not
guarantee it. Even in cases where the most optimal solution
is not found, metaheuristics will give a satisfactory answer,
which is always better than being left without it in search of
the best one.
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The scientific contributions of this work can be summa-
rized as the following:

o A proposal for time-series-based methods for detecting
tremors associated with neurodegenerative disease with
high precision

o A statistics-based approach combined with XGBoost
to detect the specific kind of degenerative disease
associated with the symptoms

« An introduction of a modified approach for early detec-
tion of Parkinson’s disease in patients from finger-taping
test data

o The proposal of a modified optimization metaheuristic
used to select hyperparameters for detection algorithms
and improve overall performance

The remainder of this work follows the here outlined
structure: Section II presents related works that apply Al for
tackling neurodegenerative disturbers. Section III presents
the base algorithm followed by a detailed discussion of the
introduced modification. In Section IV and Section V,
the experimental setup is described in detail followed by the
observed outcomes and their detailed discussion. Finally,
a conclusion is provided alongside potential future works in
Section VI

Il. RELATED WORKS

There are studies that have dealt with the detection of PD and
atypical Parkinsonian disorders. Certain research has been
devoted to the analysis of MRI scans. MRI has significantly
contributed to the accuracy of diagnosing diseases. Analysis
of 3T T1 weighted MRI scans [7] or neuromelanin sensitive
magnetic resonance imaging (NMS-MRI) scans [8] with
convolutional neural networks (CNN) proved to be one of
the possible tools for early disease detection, with testing
accuracies above 95% in case of weighted MRI scans and
above 80% for NMS-MRI analysis. As access to MRI
machines may not be easily accessible to everyone, other, less
expensive approaches have been analyzed.

Gait analysis is also a factor that can significantly
contribute to the early detection of the disease. The most
well-known dataset with collected data on patients’ gait has
spawned several works. Gait analysis with the help of 1D
CNN [9] gave an accuracy above 98% and using a Support
Vector Machine (SVM) on the same data [10] achieved
an accuracy of above 94%. Another way of detecting the
existence of the disease is a finger-tapping test [11] that has
yet to be fully explored for diagnosis.

Machine learning algorithms are used for increasingly
successful analyses and predictions in the PD domain. For
the most efficient solution, it is important to reduce features
as much as possible so that the models are more optimal, fast,
and precise. Some research in other fields has recognized this,
so there are algorithms, that serve for feature reduction, based
on Recurrent Neural Networks (RNN) [12] or long short-term
memory networks (LSTM) [13] models, as is the case in this
work.
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In addition to reducing features, it is necessary to choose
the appropriate model for solving classification problems,
and the eXtreme Gradient Boosting (XGBoost) algorithm
was selected. XGBoost is an algorithm that gives very high
performance and predicts values for various problems with a
high percentage of accuracy. Other works in the field of PD
detection [14], [15] have also used this algorithm, and have
obtained very satisfactory results, with accuracy percentages
of over 85% and 90% respectively.

A. ATTENTION BASED RECURRENT NEURAL NETWORKS
The human brain works incredibly, and scientists have
tried to simulate the connections of neurons in the brain
with artificial neural network (ANN) algorithms [16]. The
architecture of an artificial neural network consists of an input
layer of neurons, where the data is inserted, hidden layers,
of which there may be more, depending on the problem
being solved, and an output layer of neurons, in which our
desired results are located. Neurons are interconnected by
connections, which have a weight. The output values from
the neuron are defined by an activation function that depends
on the current value of the neuron, the weight, and the
bias.

Recurrent neural networks are types of neural networks
that have feedback and have proven to be excellent solutions
to time series problems. This is due to the feedback
mechanism allowing the network to remember and learn from
previous inputs, unlike ordinary feedforward neural networks
that do not have feedback connections. Several types of RNN
networks tackled some of the associated issues observed in
the original architecture such as exploding and vanishing
gradients.

When the results from the model are obtained, it is possible
to calculate the accuracy of the model and how much the error
is, using the error function. The error function is the average
of the value of the loss function on all data from the set,
while the loss function is a measure of the deviation of the
prediction from the correct value. The goal is to minimize
the error (which can be done using a method called gradient
descent), and that is why the backpropagation process is
performed, which adjusts the network parameters (weights
and biases) to reduce the error. In the context of working
with RNN, backpropagation is done over the unfolded
network and this process is called backpropagation through
time (BPTT).

Precisely because of its property that the current output
from the network is influenced by previous inputs, this kind
of architecture is suitable for time series and sequences,
and this is one of the main uses of RNN. RNNs can also
be combined with other architectures and ML algorithms,
to solve more complex problems and exploit the best aspects
of all algorithms.

The attention phenomenon lacks a precise mathemat-
ical definition, and its incorporation into the Luong
attention-based model should be viewed as a mechanism.
Networks capable of operating with this attention mechanism
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and possessing RNN characteristics are considered attention-
based. The primary goal of such a mechanism is to assign
varying weights to the input sequence, allowing for the cap-
ture of data and the utilization of input-output relationships.
The fundamental resolution for this architecture involves
implementing a second network.

In pursuit of this objective, the authors opted for the
Luong attention-based model. The weight, denoted as wy,
is computed for each timestep ¢ in the source during the
decoding process of the attention-based encoder-decoder,
with the constraint Xyw,(s) = 1 and Vs; w;(s) > 0. The
hidden state 4; serves as a function representing the predicted
token for the corresponding timestep, given by Xw;(s) * iAzx.

Various mathematical applications of the attention mecha-
nism exhibit differences in how they calculate weights. In the
Luong model, the computation involves applying the softmax
function to the scaled scores of each token. The matrix W,
linearly transforms the dot product of the decoder’s h; and
the encoder’s }Azs to obtain the score.

B. EXTREME GRADIENT BOOSTING

Decision trees work on the principle of divide and con-
quer [17]. Each tree has a root node from where the checking
of the selected condition starts, and on the basis of which
further movement along the tree continues through internal
nodes, until a leaf is reached, which actually represents the
predicted class in the context of solving the classification
problem. One of the main advantages of the decision
tree compared to other models is the simplicity of model
understanding and interpretation.

The first thing that is done when creating a tree is deciding
which attribute from our data in the dataset will be the root
node, based on which branching will be done. The attribute
that gives the least impurity is chosen. Impurity can be
calculated in several ways, such as information gain and the
Gini index, which is the most used. For the attribute for
which the Gini index is calculated, it is first necessary to
calculate how it is related to the predicted outcome. If only
one class appears for a certain attribute value, and the others
do not, such a node is clean and has a gini impurity of 0.
In general, the gini impurity for leaf nodes created by division
by the value of a certain attribute is calculated according
to the formula (1), where p; is the prior probability that a
sample belongs to class j. While the total gini impurity for the
attribute is calculated with a weighted sum of gini impurities
of leaf nodes.

Gini impurity =1 — Z(pj)2 (€))
j

Thus, for the root node, the attribute that gives the smallest

impurity is chosen. Then it continues with the same process

and creates internal nodes based on the attributes from the

dataset until the leaves are reached. A leaf is created when a

node gives an impurity of 0. Here, of course, one must not

insist on completely clean leaves, in order not to overfit the
tree.
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One of the main disadvantages of the decision tree is
accuracy, and as a result, many decision tree-based machine
learning algorithms were created with certain modifications
that solve the problem of insufficient precision. Modifications
are mainly based on ensemble methods that combine several
models to achieve better results. Possible improvement of the
decision tree is represented by an algorithm called Random
Forest [18]. According to this algorithm, many decision trees
are generated, and when creating each one, only a subset of
all possible attributes is considered. Finally, the classification
decision is made based on the result chosen by the largest
number of trees. Based on the creation of more trees, the
AdaBoost [19] algorithm was also created, which creates
more small trees (root node and leaves), which during their
creation take into account the results of previous trees, and
some trees have more influence during the final count.

Along with some analogies like the AdaBoost algorithm,
there is also the Gradient Boost [20] algorithm. Gradient
Boost starts building predictions starting from a single leaf
that represents the prediction. Then the creation of the trees
continues, which are limited in size but still larger than with
AdaBoost. The tree is created based on the mistakes made
before. All new trees are scaled by the learning rate parameter,
which generally represents a small value between O and 1.
Finally, the prediction is made starting from the first leaf,
to which the predictions of the other scaled trees are added.

The extreme gradient boost (XGboost) algorithm is based
on the idea of a gradient boost algorithm, with very high
scalability. The beginning of the algorithm is the same as
with Gradient Boost, with the initial prediction in one leaf.
After that, the tree is built with slightly more specific rules
than before. First, the root of the tree is selected as one of the
attributes, and for the root of the tree, as well as for the leaves,
the similarity score for classification is calculated according
to the formula (2), where A is the regularization parameter.
The regularization parameter prevents overfitting of the tree,
reducing sensitivity to outliers. The minimum number of
residuals in a leaf is defined with [previous probability x (1-
previous probability)] which is called a cover. The default
cover value is 1.

> (res;)?
> [pprob; x (1 — pprob;)] + A

in the equation res; represents the residual and pprob;
previous probability,

Once the similarity scores for the nodes have been
calculated, the gain for the root of the tree is calculated. The
attribute with the highest gain is chosen as the root. Further,
the construction of the tree continues according to the same
principle up to the defined depth. When the construction of
the tree is finished, tree pruning is done according to the
A parameter. Before the predictions themselves, the output
is calculated for each leaf according to the similarity score
formula only without squaring the sum of residuals. The
prediction for classification itself is done similarly to the
Gradient Boost algorithm, starting from the initial prediction

Similarity score =

(@)
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for which the log (odds) is calculated, to which the result of
the tree multiplied by the learning rate /r parameter is added.
For classification, the obtained value is put into the logistic
function, to get the new prediction. To see how good the
predictions are, the loss function can be calculated according
to formula (3), where T is the number of leaves in the tree and
w are output values of the leaves. The goal is to minimize the
loss.

n
1
Loss = 3 LOi, Fai) + yT + SAlwl? 3)

i=1

Trees are built until the maximum depth is reached, or until
the residuals become small enough.

C. METAHEURISTIC OPTIMIZATION

For achieving the best results of machine learning algorithms,
the choice of the best hyperparameters is of key importance.
While the number of these hyperparameters was smaller,
finding the best values was achieved by a simple trial and
error method that achieved satisfactory results. However,
as the number of these hyperparameters is very large today,
finding the best values becomes a very difficult NP-hard
problem. One of the possible solutions for hyperparameter
optimization is metaheuristics.

Metaheuristics find inspiration in our environment,
in nature, in physics, etc. They can be inspired by various
phenomena in nature, such as animal behavior, or phenomena
in physics or chemistry [21]. Perhaps one of the most
well-known metaheuristics is ant colony optimization
(ACO) [22]. When ants find food that they carry to their
perch, on the way back they release pheromones on the way
they came, so that other ants know to go the same way. This
is the basic idea of the ACO algorithm. Another interesting
phenomenon is swarms of animals such as birds, insects,
herds, etc [23]. These swarms work together to reach a goal
like finding food, and in the process learn and influence each
other. The particle swarm optimization (PSO) algorithm is
based on this principle. The behavior of cuckoos was also
observed [24]. When laying eggs, these birds can also take
other nests if that gives their eggs a better chance. Then they
can even throw out host eggs and take over the nest. The
algorithm based on the breeding behavior of cuckoos is called
the cuckoo search algorithm.

Some of the metaheuristics such as central force opti-
mization (CFO) found inspiration in physics. CFO bases
its principles on gravitational kinematics. The expected
behavior is that probes move over time and approach
large masses with the largest gravitational field, which can
be applied to optimization problems as well. The spiral
phenomenon can also be taken as an interesting inspiration for
metaheuristics [25]. The spiral optimization (SPO) algorithm
performs a search using multiple spiral models, in which
the search points follow the spiral trajectories toward the
common center, not using a gradient. The law of gravity,
as the most important postulate in physics, had to give rise
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to some metaheuristics. The gravitational search algorithm
(GSA) is based on the principle that all particles attract each
other with a force proportional to their masses and inversely
proportional to the square of their distances. At the end of the
GSA algorithm, objects with the largest mass will indicate the
best solution.

Working with metaheuristics enabled better results in all
areas, including Parkinson’s disease. There are works in
the field of detecting Parkinson’s disease with the help of
ACO [26], PSO [27] or cuckoo search [28]. In other areas,
metaheuristic applications can also be found, such as CFO in
node localization in wireless sensor networks [29], or GSA
in the search for critical failure surface in slope stability [30].
Additional, optimization algorithms have shown great per-
formance tackling complex tasks across several fields with
hybrid algorithms further boosting performance [31], [32],
[33], [34].

lll. METHODS

The metaheuristics used in this paper are described in the
methods section. First, the recently introduced algorithm
is described and then the modified version is presented
that has been developed for this specific problem. The
introduced modifications propose potential solutions for
observed drawbacks of the original optimizer.

A. THE BASIC SINH COSH OPTIMIZER

The sinh cosh optimizer (SCHO) [35] is a recently introduced
optimization algorithm inspired by mathematical concepts.
As a population-based metaheuristic, in the initial stages,
the algorithm defines a population with a high degree of
randomness as shown in Eq 4.

ar,g .. .(11’./' ...ay.p
A= a1p...a2j...a2p “4)

aN,1...a4Nj...aN D

here P denotes a population of agents. Each agent’s A;;
position is determined as per Eq 5. The values of D and
N represent the solution dimensional space and number of
agents.

a=rnd(N, D) x (ub, Ib) + Ib 5)

where rnd denotes a random number, while ub and [b denote
upper and lower constraints of the search space.

Following initialization, the algorithm needs to balance
exploration and exploitation and guide agents towards
promising seagoing of the search space. Exploration is split
across tho strategies and balanced is governed by Eq 6:

T
S = ﬂoor(a) (6)

where T denotes the maximum allocated iterations and ct is
a control coefficient empirically selected and set to 3.6.
During exploration agents are updated as per Eq 7:
M
A+ Apess + 11X Wi % A, m>05 o
() A(l)

best

—r x Wy x Afl-’j) rn <05
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here ¢ denote the iteration number, Azjr/; describes the

Jj-th and i-th agents and Agzst signifies the best agent in
the j dimension. Random values from a range of [0, 1] are
selected for r; and r,. The value of Wi denotes a weighted
coefficient of the specific agent and can be determined as
per:

Wi =r3 X by X (coshrg + X sinhry — 1) ®)

the value of the by is decreased gradually though the
iteration, and r3 and r4 are randomly selected values form
a range of [0, 1]. A sensitivity parameter is also introduced
as [.

The second strategy used during exploration applies
Eq9

(0 0 0
A[?I—'l — Ab_esl‘ + |6 X W2 X Ab?st _Ai,j| rs > 05
(M) A(]) — e x Wa x A(I) _Aft])| rs < 0.5

best best

®

in this equation € is set to 0.003 as suggested in the original
work. The weight coefficient W, is determined as per:

Wy =rg X by (10)

here r¢ denote an arbitrary value in range [0, 1] and b, denotes
a slowly descending value.

The other prominent stage of the optimization is exploita-
tion during which agents focus on promising areas of the
search space making more refined moments towards optima.
Once again two strategies are employed by the metaheuristic.
The first stage utilized Eq 11

t+1
Ay =

o
[Abm +r7 x W3 x Aéi,j) rg > 0.5 (11

AP~ x W3 x Al 15 < 0.5

the values of r7 and rg are chosen from a range of [0, 1] and
W3 is determined as per:

W3 = r9 x by x (coshrig + pn x sinhrig) (12)

here r9 and rjp represent randomly selected values from
[0, 1].
The second strategy uses Eq 13

Singrin

best

At — Afi,j) +r1 X

W (W2 x A — Al (13)

coshri2
with rq1 and rq, values once again randomly selected from a
[0, 1] range.

B. MODIFIED SCHO OPTIMIZER
While the original SCHO has shown admirable performance
compared to contemporary optimizers under CEC [36]
standard evolution function testing as with many new
algorithms, there is room for improvement. Two mechanisms
are introduced into the basic algorithm in an attempt to boost
performance.

The initial mechanism presented is derived from the ABC
algorithm [37]. Depleted solutions are replaced with newly
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FIGURE 1. Objective and indicator outcome distribution for RNN
simulations.

generated ones if they fail to demonstrate improvement, and
within the constraints of the limited experiment iterations,
solutions that do not enhance performance are rejected after
two iterations.

This strategy has proven effective in enhancing explo-
ration. The second introduced mechanism is quasi-reflective
learning (QRL) [38]. This technique is employed to
generate additional solutions, further amplifying the
exploration process. Furthermore, during the algorithm’s
initialization stages, this mechanism is utilized for gen-
erating potential solutions, with the quasi-reflected com-
ponent z of the solution A location being determined

as:
b b
A = md(%, az) (14)

where /b and ub denote lower and upper bounds of
the search space and rad denotes a random value
within the given interval. The introduced algorithm
is named the modified SCHO (MSCHO). The pseu-
docode for the described optimizer is presented in
Algorithm 1.
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Parkinson Finger Tapping - objective convergence graphs
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FIGURE 2. Objective and indicator function convergence for RNN
simulations.

Algorithm 1 Pseudocode for the Described MSCHO
Algorithm
Set initial parameter values
Initialized population using QRL mechanism
while T > 7 do
Utilize appropriate SCHO strategy to update agent
locations depending on ¢
Determine agent fitness using an objective function
for agent p in Population do
if p did not improve for 2 iterations then
Generate new solution using QRL mechanism sand
replace p
end if
end for
end while
return Optimal solution from the population

IV. EXPERIMENTAL SETUP

The experimental setup for this work encompasses three
simulations. The first two simulations handle the time-series
classification of finder-taping signals. The first experiment
evaluates the performance of simple RNNs. The second
experiment incorporates attention layers into the RNN
in an attempt to improve outcomes. Recurrent networks
with attention layers are labeled as RNN-ATT in the
presented tables. Finally, the third experiment incorporates
additional statistical signal analysis of patient data and
handles multi-class classification of several neurodegenera-
tive conditions adjacent to PD. The dataset used for these
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FIGURE 3. PR and confusion metrics of the best-attained model during
RNN simulations.

simulations is publicly available.! And consists of clinically
confirmed individuals suffering from PD as well as other
neurodegenerative conditions. The dataset is fairly balanced
covering a diverse group of individuals.

Gyroscope data collected from several patients over
multiple trials is recombined into a uniform dataset and
normalized. Segments are labeled as originating from control
group patients of individuals affected by the condition. Time
series data is separated into the training and testing data as a
70%/30% split. Data formulated this way is used for the first
two experiments with RNN and RNN-ATT models and their
optimization.

The third experiment utilized per-patient data with sta-
tistical parameters including the RMS angular velocity
of the x-axis of the index finger, index finger axis y
angular velocity average of maxima of individual taps, the
RMS index finger axis y angular acceleration, the Fourier
transformation of the angular velocity vector of the index
finger vector. Additionally, thumb angular velocity maximum
and acceleration SD for the x and z axes respective are

1 https://github.com/innovation-center-etf/FINGER-TAPPING-
PARKINSONISMS-DATABASE
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FIGURE 4. Objective and indicator outcome distribution for RNN-ATT
simulations.

included. A total of six features is used for the final dataset
used to evaluate XGBoost classification. The initial 70% of
data is allocated for training and the later 30% for testing and
evaluation.

Hyperparameters that have a high influence on RNN per-
formance have been selected for optimization. These include
architecture settings such as the number of layers between
1 and 2, and neurons in each layer [5, 15]. Additionally,
dropout factors are optimized between 0.05 and 0.2, learning
rate is selected form a [0.0001, 0.01] range number of training
epochs from [30, 60]. In addition, the number of neurons in
the attention layer in RNN-ATT networks is tuned from a
range [5, 15] for the second simulation. Similarly, for the third
simulation, XGboost parameters that show a significant effect
on classification outcomes are tuned. These include learning
rate selected from a range [0.1, 0.9], minimum child weight
[1, 10], subsample [0.01, 1], colsample by tree [0.01, 1], max
depth [3, 10] and gamma [0, 0.8].

As the selection of hyperparameters can be considered
an NP-hard problem, for the requirements of this work,
several contemporary optimizer metaheuristics have been
implemented and subjected to a comparative analysis.
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FIGURE 5. Objective and indicator function convergence for RNN-ATT
simulations.

Algorithms are evaluated on their ability to select parameter
values that show improved performance. Apart from the
introduced modified metaheuristic, the original SCHO [35]
algorithms are also evaluated. Additionally the GA [39],
PSO [40], FA [41], WOA [42], BSO [43] and COLSHADE
[44] algorithms are included in the comparison. These
algorithms are implemented with their respective hyperpa-
rameters set to the values proposed in the original works that
introduced them.

To guide the optimization process several evaluation
metrics are tracked for each of the conducted simulations.
Standard metrics such as accuracy, precision, recall, and
f1-score are tracked [45]. All simulations used error rate as
the objective function that can be determined as per:

Error_rate = 1 — accuracy (15)

An additional indicator metric is also included. Cohen’s
Kappa [46] is used tracked as it has shown excellent
results when dealing with dissemblance data. This metric is
calculated as the following:

=2t (16)
11—z
in which z, denotes the observed and z, the ground truth
values.

V. SIMULATION OUTCOMES
The following presents the outcomes of each simulation
carried out in this work.
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RNN-ATT simulations.

A. RNN SIMULATION OUTCOMES

Outcomes in terms of objective and indicator functions for the
best, worst, mean as well as median runs for RNN simulations
are shown alongside the standard divination, and variance are
provided in Table 1 and Table 2.

From the conducted simulations with RNN, it can be
deduced that the introduced algorithms generated models
with bet best performing model as well as the lowest error
rate in the mean average as shown in Table 1. However,
admirable stability has also been shown for the original
SCHO algorithm, which demonstrated the bat outcomes
in the worst-case execution scenario, as well as median
executions.

Indicator outcomes in Table 2 once again indicate that the
introduced algorithm constructed a single best-performing
model, with the base algorithm showing a high rate of
stability. Nevertheless, it is worth mentioning that the WOA
algorithm did attain the best outcomes in the worst mean and
median runs when optimizing RNN.

Outcomes distributions of the objective and indicator
functions for RNN simulations are provided in Figure 1
as a visual comparison between algorithms in terms of
stability.
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TABLE 1. Objective function outcomes for RNN simulations.

Method Best Worst Mean Median Std Var
RNN-MSCHO 0.046823  0.145485  0.105212  0.112040  0.031279  0.000978
RNN-SCHO 0.097826  0.129599  0.110089  0.106187  0.011890  0.000141
RNN-GA 0.108696  0.155518  0.136009  0.136706  0.014735  0.000217
RNN-PSO 0.092809  0.215719  0.125975  0.113294  0.041068  0.001687
RNN-FA 0.103679  0.150502  0.120541  0.117057  0.015823  0.000250
RNN-WOA 0.077759  0.129599  0.100334  0.100753  0.017485  0.000306
RNN-BSO 0.105351  0.198161  0.133779  0.123328  0.030793  0.000948
RNN-COLSHADE  0.091973  0.145485  0.121377  0.123746  0.015816  0.000250
TABLE 2. Indicator function outcomes for RNN simulations.
Method Best Worst Mean Median Std Var
RNN-MSCHO 0.865706  0.590296  0.708735  0.698205  0.088508  0.007834
RNN-SCHO 0.692214  0.648249  0.694210  0.694902  0.023969  0.000575
RNN-GA 0.706084  0.565419  0.625102  0.630911  0.053224  0.002833
RNN-PSO 0.757195  0.115095  0.603778  0.689226  0.220990  0.048836
RNN-FA 0.693745  0.616867  0.672779  0.674922  0.033927  0.001151
RNN-WOA 0.791036  0.676520  0.728672  0.713412  0.043491  0.001891
RNN-BSO 0.712264  0.458101  0.638016  0.657515  0.085128  0.007247
RNN-COLSHADE  0.750058  0.626136  0.665753  0.651375  0.043904  0.001928
TABLE 3. Detailed comparison between best-performing models attained during RNN simulations.
Method Metric Control PD Accuracy  Macro avg  Weighted avg
RNN-MSCHO precision  0.895911  0.969795  0.953177  0.9328529  0.953177
recall 0.895911  0.969795  0.953177  0.9328529  0.953177
f1-score 0.895911  0.969795  0.953177  0.9328529  0.953177
RNN-SCHO precision  0.876238  0.907445  0.902174  0.891841 0.900426
recall 0.657993  0.973031  0.902174  0.815513 0.902174
f1-score 0.751592  0.939094  0.902174  0.845343 0.896922
RNN-GA precision  0.720635  0.952327  0.891304  0.836481 0.900216
recall 0.843866  0.905070  0.891304  0.874468 0.891304
fl-score 0.777397  0.928097  0.891304  0.852747 0.894202
RNN-PSO precision  0.730994  0.977752  0.907191  0.854373 0.922252
recall 0.929368  0.900755  0.907191  0.915062 0.907191
fl-score 0.818331  0.937675 0.907191  0.878003 0.910833
RNN-FA precision  0.793522  0.923077  0.896321  0.858300 0.893938
recall 0.728625  0.944984  0.896321  0.836804 0.896321
f1-score 0.759690  0.933902  0.896321  0.846796 0.894719
RNN-WOA precision  0.775000  0.976027  0.922241  0.875514 0.930813
recall 0.921933  0.922330  0.922241  0.922132 0.922241
f1-score 0.842105 0.948419  0.922241  0.895262 0.924508
RNN-BSO precision  0.732899  0.950506  0.894649  0.841703 0.901563
recall 0.836431 0911543  0.894649  0.873987 0.894649
fl-score 0.781250  0.930617  0.894649  0.855933 0.897022
RNN-COLSHADE  precision  0.755627  0.961582  0.908027  0.858604 0.915259
recall 0.873606  0.918015  0.908027  0.895811 0.908027
f1-score 0.810345  0.939294  0.908027  0.874819 0.910291
support 269 927

Convergence rates of the objective and indicator functions
for RNN simulations are provided in Figure 2 for visual
comparisons.

A clear improvement in convergence rate can be observed
in the introduced algorithm, which has demonstrated an
ability to overcome local optima traps and coverage toward
more promising solutions.

Detailed metrics comparisons between the best-performing
models attained by each optimizer during RNN summations
are provided in Table 3.

A clear advantage can be observed for the models opti-
mized by the introduced algorithm, which have showcased

VOLUME 12, 2024

the highest accuracy as well as admirable results across most
test cases.

Graphics of the PR curves and the confusion matrix of the
best-performing RNN model are shown in Figure 3.

To facilitate experimental repeatability parameter selec-
tions made by each algorithm for the respective best-
performing models during RNN simulations are provided in
Table 4.

B. RNN-ATT SIMULATION OUTCOMES

Outcomes in terms of objective and indicator functions for
the best, worst, mean as well as median runs for RNN-ATT
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TABLE 4. Parameter selection for the best-attained model during RNN simulations by each algorithm.

Method Learning Rate ~ Dropout Epochs  Layers Neurons L1  Neurons L2
RNN-MSCHO 0.008453 0.147989 60 2 7 12
RNN-SCHO 0.010000 0.200000 46 2 15 10
RNN-GA 0.007574 0.200000 56 1 15 N/a
RNN-PSO 0.006854 0.200000 52 1 15 N/a
RNN-FA 0.010000 0.200000 60 2 5 10
RNN-WOA 0.010000 0.200000 60 2 15 15
RNN-BSO 0.006139 0.059525 43 2 13 9
RNN-COLSHADE  0.006295 0.200000 55 2 15 15

TABLE 5. Objective function outcomes for RNN-ATT simulations.

Method Best Worst Mean Median Std Var

RNN-ATT-MSCHO 0.066054  0.129599  0.104236  0.112040  0.023215  0.000539
RNN-ATT-SCHO 0.101171  0.183946  0.134615  0.130853  0.025125  0.000631
RNN-ATT-GA 0.080268  0.154682  0.121795  0.122910  0.024853  0.000618
RNN-ATT-PSO 0.081104 0.146321  0.115663  0.117475  0.021304  0.000454
RNN-ATT-FA 0.090301 0.167224  0.121516  0.122074  0.025193  0.000635
RNN-ATT-WOA 0.073579  0.113712  0.098384  0.103680  0.015125  0.000229
RNN-ATT-BSO 0.106187  0.153010  0.123049 0.116639  0.016014  0.000256

RNN-ATT-COLSHADE  0.081104  0.144649  0.116918  0.121237  0.022593  0.000510

TABLE 6. Indicator function outcomes for RNN-ATT simulations.

Method Best Worst Mean Median Std Var

RNN-ATT-MSCHO 0.818912 0.638314  0.713302  0.708058  0.065759  0.004324
RNN-ATT-SCHO 0.724029  0.551677  0.635280  0.642669  0.055014  0.003027
RNN-ATT-GA 0.778547  0.583289  0.664825  0.657689  0.069863  0.004881
RNN-ATT-PSO 0.780966  0.640558 0.697136  0.700855 0.056171  0.003155
RNN-ATT-FA 0.764607  0.531504  0.675209  0.684350  0.075428  0.005689
RNN-ATT-WOA 0.802515 0.701431  0.731894 0.706202  0.042949  0.001845
RNN-ATT-BSO 0.721526  0.599700  0.665009  0.675682  0.046389  0.002152

RNN-ATT-COLSHADE  0.773655  0.623387  0.669840  0.647078  0.055641  0.003096

TABLE 7. Detailed comparison between best-performing models attained during RNN-ATT simulations.

Method Metric Control PD Accuracy  Macro avg  Weighted avg
RNN-ATT-MSCHO precision  0.812500  0.975336  0.933946  0.893918 0.938712
recall 0918216  0.938511  0.933946  0.928363 0.933946
f1-score 0.862129  0.956570  0.933946  0.909349 0.935328
RNN-ATT-SCHO precision  0.740260  0.953829  0.898829  0.847044 0.905794
recall 0.847584  0.913700  0.898829  0.880642 0.898829
f1-score 0.790295  0.933333  0.898829  0.861814 0.901162
RNN-ATT-GA precision  0.789298  0.963211  0.919732  0.876254 0.924095
recall 0.877323  0.932039  0.919732  0.904681 0.919732
f1-score 0.830986  0.947368  0.919732  0.889177 0.921192
RNN-ATT-PSO precision  0.772152 0971591  0.918896  0.871871 0.926734
recall 0.907063  0.922330  0.918896  0.914697 0.918896
f1-score 0.834188  0.946320 0.918896  0.890254 0.921100
RNN-ATT-FA precision  0.733333 0981199  0.909699  0.857266 0.925450
recall 0.940520  0.900755  0.909699  0.920638 0.909699
f1-score 0.824104  0.939258  0.909699  0.881681 0.913358
RNN-ATT-WOA precision  0.781931  0.979429  0.926421  0.880680 0.935008
recall 0.933086  0.924488  0.926421  0.928787 0.926421
f1-score 0.850847  0.951165 0.926421  0.901006 0.928602
RNN-ATT-BSO precision  0.708824  0.967290  0.893813  0.838057 0.909156
recall 0.895911  0.893204  0.893813  0.894557 0.893813

f1-score 0.791461  0.928772  0.893813  0.860117 0.897888
RNN-ATT-COLSHADE  precision  0.796552  0.958057  0.918896  0.877305 0.921732

recall 0.858736  0.936354 0.918896  0.897545 0.918896

f1-score 0.826476  0.947081 0.918896  0.886779 0.919955

support 269 927
simulations are shown alongside the standard divination and From the conducted simulations with RNN-ATT, it can
variance are provided in Table 5 and Table 6. be deduced that the introduced algorithms generated models
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FIGURE 7. Objective and indicator outcome distribution for XGBoost
simulations.

with bet best-performing model as shown in Table 5.
However, admirable outcomes have also been shown for the
original WOA algorithm. This is to be expected as per the
“No free lunch” (NFL) [47] theorem, no single approach
is equally suited to all challenges according to all metrics.
Constant experimentation is required to determine the best
method of problem pairings.

The introduced algorithm optimized the best model in
terms of indicator functions as well as shown in Table 6 as
well as in terms of median outcomes. However, the WOA
once again showcase decent outcomes in term of worst and
median outcomes.

Outcomes distributions of the objective and indicator
functions for RNN-ATT simulations are provided in Figure 4
as a visual comparison between algorithms in terms of
stability.

Distribution graphs suggest that the WOA shows great
promise in terms of model stability.

Convergence rates of the objective and indicator functions
for RNN-ATT simulations are provided in Figure 5 for visual
comparisons.

Convergence rates indicated that the introduced modi-
fication allows the modified algorithm to overcome local
minimum solutions, and focus towards finding a better
solution in the search space.
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FIGURE 8. Objective and indicator function convergence for XGBoost
simulations.

Detailed metrics comparisons between the best-performing
models attained by each optimizer during RNN-ATT
summations are provided in Table 7.

Detailed metrics indicate that the best performing model
optimized by the introduced metaheuristic attained the best
outcomes across multiple metrics and indicated the best
accuracy as shown in Table 7.

Graphics of the PR curves and the confusion matrix of the
best-performing RNN-ATT model are shown in Figure 6.

To facilitate experimental repeatability parameter selec-
tions made by each algorithm for the respective best-
performing models during RNN-ATT simulations are
provided in Table 8.

C. XGBOOST SIMULATION OUTCOMES

Outcomes in terms of objective and indicator functions for
the best, worst, mean as well as median runs for XGboost
simulations are shown alongside the standard divination and
variance are provided in Table 9 and Table 10.

In cases of the objective function, the introduced optimizer
attained the best outcomes or matched the best outcomes
presented by another optimizer, however, all algorithms
performed fairly well comparatively.

In terms of the indicator function, the introduced optimizer
also attained the best outcomes in the best case while the PSO
demonstrated the highest stability.

Outcomes distributions of the objective and indicator
functions for XGBoost simulations are provided in Figure 7
as a visual comparison between algorithms in terms of
stability.
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TABLE 8. Parameter selection for the best-attained model during RNN-ATT simulations by each algorithm.

Method Learning Rate ~ Dropout Epochs Layers Neurons L1  NeuronsL2  ATT Neurons
RNN-ATT-MSCHO 0.010000 0.200000 60 2 15 15 7
RNN-ATT-SCHO 0.006555 0.166548 59 1 14 N/a 11
RNN-ATT-GA 0.009202 0.116195 59 1 15 N/a 8
RNN-ATT-PSO 0.004887 0.122132 58 2 15 15 15
RNN-ATT-FA 0.010000 0.200000 60 2 15 15 15
RNN-ATT-WOA 0.010000 0.200000 60 2 14 15 14
RNN-ATT-BSO 0.010000 0.122906 60 2 10 12 15
RNN-ATT-COLSHADE  0.010000 0.121180 60 1 15 N/a 9

TABLE 9. Objective function outcomes for XGBoost simulations.

Method Best ‘Worst Mean Median Std Var

XG-MSCHO 0.200000  0.261538  0.216923  0.215385 0.017474  0.000305
XG-SCHO 0.215385 0.353846  0.272308 0.253846  0.044082  0.001943
XG-GA 0.215385 0.261538  0.232308 0.230769  0.012779  0.000163
XG-PSO 0.215385 0.246154  0.232308 0.230769  0.012779  0.000163
XG-FA 0.246154  0.276923  0.260000 0.253846  0.014514  0.000211
XG-WOA 0.215385  0.276923  0.249231  0.246154 0.016570  0.000275
XG-BSO 0.200000  0.246154  0.221538  0.223077 0.014100  0.000199

XG-COLSHADE  0.200000 0.246154  0.226154  0.230769  0.012016  0.000144

TABLE 10. Indicator function outcomes for XGBoost simulations.

Method Best ‘Worst Mean Median Std Var

XG-MSCHO 0.731831  0.649651  0.709054 0.711294  0.023219  0.000539
XG-SCHO 0.710836  0.528093  0.635876  0.659808 0.058200  0.003387
XG-GA 0.711203  0.648983  0.688544  0.690722 0.017081  0.000292
XG-PSO 0.710283  0.669001  0.688425  0.690378 0.016907  0.000286
XG-FA 0.670155  0.630098 0.651514  0.659143 0.019230  0.000370
XG-WOA 0.710744  0.630215 0.665948  0.669527 0.021867  0.000478
XG-BSO 0.731320  0.670260 0.703106 0.701134 0.018842  0.000355

XG-COLSHADE  0.731320  0.669421  0.696564  0.690624  0.016067  0.000258

TABLE 11. Detailed comparison between best-performing models attained during XGBoost simulations.

Method Metric 0 1 2 3 Accuracy  Macro avg ~ Weighted avg
XG-MSCHO precision  0.916667  0.764706  0.888889  0.666667  0.800000  0.809232 0.798089
recall 0916667  0.722222  0.941176  0.666667  0.800000  0.811683 0.800000
f1-score 0.916667  0.742857 0914286  0.666667  0.800000  0.810119 0.798681
XG-SCHO precision  0.750000  0.842105  0.750000  0.785714 0.784615  0.781954 0.785396
recall 0.750000  0.888889  0.882353  0.611111  0.784615  0.783088 0.784615
f1-score 0.750000  0.864865  0.810811  0.687500  0.784615  0.778294 0.780405
XG-GA precision  0.846154  0.722222  0.888889  0.687500  0.784615  0.786191 0.779076
recall 0916667  0.722222 0941176  0.611111  0.784615  0.797794 0.784615
f1-score 0.880000  0.722222  0.914286  0.647059  0.784615  0.790892 0.780768
XG-PSO precision  0.909091  0.789474  0.800000  0.666667  0.784615  0.791308 0.780302
recall 0.833333  0.833333  0.941176  0.555556  0.784615  0.790850 0.784615
f1-score 0.869565  0.810811  0.864865  0.606061  0.784615  0.787825 0.779095
XG-FA precision  0.846154  0.733333  0.800000  0.647059  0.753846  0.756637 0.747706
recall 0916667 0.611111 0.941176  0.611111  0.753846  0.770016 0.753846
f1-score 0.880000  0.666667  0.864865  0.628571  0.753846  0.760026 0.747338
XG-WOA precision  0.916667  0.722222  0.842105  0.687500  0.784615  0.792124 0.779858
recall 0916667  0.722222 0941176  0.611111  0.784615  0.797794 0.784615
f1-score 0.916667  0.722222  0.888889  0.647059  0.784615  0.793709 0.780895
XG-BSO precision  0.846154  0.764706  0.888888  0.705882  0.800000  0.801408 0.795931
recall 0916667  0.722222  0.941176  0.666667  0.800000  0.811683 0.800000

f1-score 0.880000  0.742857  0.914286  0.685714  0.800000  0.805714 0.797187
XG-COLSHADE  precision  0.916667 0.764706  0.888889  0.666667  0.800000  0.809232 0.798089

recall 0916667  0.722222  0.941176  0.666667  0.800000  0.811683 0.800000
f1-score 0.916667  0.742857  0.914286  0.666667  0.800000  0.810119 0.798681
support 12 18 17 18
Convergence rates of the objective and indicator functions Detailed metrics comparisons between the best-performing
for XGBoost simulations are provided in Figure 8 for visual models attained by each optimizer during XGBoost summa-
comparisons. tions are provided in Table 11.
Convergence rate improvements can once again be con- Graphics of the PR curves and the confusion matrix of the
firmed by graphs shown in Table 8. best-performing XGBoost model are shown in Figure 9.
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TABLE 12. Paramater selection for the best-attained model during XGBoost simulations by each algorithm.

Method Learning Rate  Min child weight ~ Subsample  Colsample by tree  Max Depth ~ Gamma

XG-MSCHO 0.282075 1.000000 0.900722 1.000000 10 0.000000
XG-SCHO 0.293307 1.000000 1.000000 0.759122 10 0.268169
XG-GA 0.100903 1.000000 0.987141 1.000000 10 0.800000
XG-PSO 0.812386 1.016655 1.000000 0.810564 8 0.765072
XG-FA 0.900000 1.000000 1.000000 1.000000 4 0.800000
XG-WOA 0.594996 1.000000 1.000000 1.000000 10 0.343158
XG-BSO 0.104486 1.000000 0.991391 1.000000 5 0.243472
XG-COLSHADE  0.723806 1.093269 1.000000 1.000000 5 0.347276
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FIGURE 9. PR and confusion metrics of the best-attained model during
XGBoost simulations.

To facilitate experimental repeatability parameter selec-
tions made by each algorithm for the respective best-
performing models during XGBoost simulations are provided
in Table 12.

D. OUTCOME STATISTICAL VALIDATION
Exploring challenges in optimization underscores the impor-
tance of model assessment. It is crucial to comprehend
the statistical significance of any enhancements introduced.
Relying solely on outcomes is insufficient for establishing the
superiority of one algorithm over another.
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FIGURE 10. KDE plots for the objective function outcomes in each
conducted experiment.

Previous studies indicate that a thorough statistical evalua-
tion should occur after sampling the examined methodologies
comprehensively. This involves computing objective aver-
ages across numerous independent runs. Moreover, it is
essential for samples to conform to a normal distribution
to prevent drawing inaccurate inferences. The utilization
of objective function averages for comparing stochastic
algorithms remains a topic of debate among researchers [48].

In establishing the statistical significance of observed
outcomes, samples were generated using the optimal values
from 30 independent executions of each metaheuristic.
Nevertheless, it was imperative to affirm the reliability
of parametric testing. To address this, the independence,
normality, and homoscedasticity of data variances were taken
into account, following the recommendations of [49].

The independence criterion is fulfilled by initializing each
run with a pseudo-random number. However, the assumption
of normality is not satisfied, as illustrated by the KED plots
and corroborated by the Shapiro-Wilk test outcomes for
single-problem analyses [50].
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TABLE 13. Shapiro-wilk scores for the single-problem analysis for testing normality condition.

Experiment MSCHO SCHO GA PSO FA WOA BSO COLSHADE
RNN 0.035 0.023 0.022 0.026 0.027 0.030 0.017 0.014
RNN-ATT 0.035 0.032 0.037 0.019 0.022 0.025 0.037 0.033
XGBoost 0.029 0.020 0.025 0.036 0.015 0.019 0.026 0.024
TABLE 14. Wilcoxon signed-rank test findings.
MSCHO vs. others SCHO  GA PSO FA WOA BSO  COLSHADE
RNN 0.035 0.046  0.036 0.042 0.043 0.029 0.040
RNN-ATT 0.041 0.044 0.046 0.035 0.024 0.039 0.037
XGBoost 0.024 0.043 0.039 0.048 0.045 0.044 0.038

By performing the Shapiro-Wilk test, p-values are gen-
erated for each method-problem combination, and these
outcomes are presented in Table 13.

The standard significance thresholds of « 0.05 and
a = 0.1 suggest the potential rejection of the null hypothesis
(Hp), indicating that none of the samples (across all problem-
method combinations) conform to a normal distribution. This
highlights that the prerequisite of normality, crucial for the
dependable utilization of parametric tests, was not fulfilled,
leading to the conclusion that there was no need to examine
variance homogeneity.

As the requirements for the reliable application of paramet-
ric tests were not met, non-parametric tests were employed
for the statistical analysis. Specifically, the Wilcoxon signed-
rank test, which is a non-parametric statistical test [51], was
performed on the MSCHO method and all other techniques
for all three problem instances (experiments). The same data
samples used in the previous normality test (Shapiro-Wilk)
were used for each method. The results of this analysis
are presented in Table 14, where p-values greater than the
significance level of @ = 0.05 are highlighted in bold.

Table 14 illustrates the p-values obtained from the
Wilcoxon signed-rank test, revealing that the proposed
MSCHO approach outperformed all other strategies across
all three studies.

For all other techniques, the p-values were below 0.05.
Consequently, in these computationally intensive simula-
tions, the MSCHO approach showcased both robustness and
effectiveness as an optimizer. According to the statistical
analysis, the MSCHO technique outperformed the majority
of the other tested metaheuristics in all four studies.

VI. CONCLUSION

This work tackles the complex and pressing issue of neu-
rodegenerative condition detection through the application
of emerging Al algorithms. Both time series classification
using RNNs and attention-based RNNs are employed as
well as statistical analysis with the XGBoost algorithm for
early detection of neurological conditions for a real-world
clinical dataset. Due to a heavy reliance on algorithms for
proper hyperparameter selection needed to attain desired out-
comes, metaheuristic algorithms are deployed for parameter
selection and adjustment. Additionally, a modified version
of the recently proposed SCHO algorithm is proposed and
employed in this study to select parameters in a set of
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three experiments. The introduced optimizer shows potential
couples with RNN, attention-based RNN, and XGBoost, with
the best-constructed models exceeding 90% accuracy for
time-series classification and 80% on simple classifications.

Certain limitations exist within this study. Limited amounts
of data are available which constrains the amount of
available training data. Furthermore, extensive computational
demands limit population sizes that can be tested for
metaheuristic optimizes. Additionally, only a small subset of
well-established algorithms are included in the comparative
analysis.

Future works hope to further improve the methodol-
ogy for early detection of neurological disorders through
optimization. Other algorithms should be explored such as
ash echo-state networks. Furthermore, the potential of the
introduced modified optimizer will be explored for other
challenging tasks form the medical field.
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