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ABSTRACT Analyzing floor surface materials is critical for controlling the motion and tasks of mobile
robots. In this study, we propose a novel method for classifying floor materials for indoor mobile robots
using a piezoelectric actuator–sensor pair and deep learning. This method can classify the floor properties
itself with isolated sensing system while the mobile robot is moving. The piezoelectric pair is a thin-film
type. It consists of an actuator and a sensor. The sensing pair is positioned at the bottom of the robot. When
the robot moves forward, the sensing part collects the electrical responses from the actuator. Since one-
dimensional data is collected through the piezoelectric actuator-sensor pair, the size of the system is small
and the data processing speed can be reduced. Using this mechanism, experiments were conducted to classify
various materials of floor surfaces in indoor environments. The sensing data were processed by fast Fourier
transform, high-pass filter, polynomial fitting, and sampling to be used as inputs for machine learning of
the classification model. Specifically, the trained model achieved a high accuracy of 95.4%. In addition,
the training data were verified using the k-means clustering method. Moreover, the effect of the physical
properties on the sensor data was analyzed to investigate the relationship between the materials and the
sensing outputs.

INDEX TERMS Piezoelectric sensor, material classification, mobile robot, neural network.

I. INTRODUCTION
Robots for household and daily tasks are attracting increasing
attention owing to their convenience and technological
development [1]. In particular, mobile robots provide safe
and stable services by moving around and performing desired
tasks, such as cleaning or delivery [2], [3]. To accomplish
these tasks appropriately, they must recognize the surround-
ing environment in detail. For example, robot cleaners obtain
spatial data to reconstruct maps of the surrounding spaces
and avoid obstacles [4], [5], [6]. In addition, mobile robots
require more complex information about floors to prevent
accidents, such as drops or slips [7], [8], [9]. Thus, the floor
must be analyzed when manipulating mobile robots. In this
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study, we focused on recognizing floor materials to aid robot
locomotion and manipulation using various types of floor
information.

Clearly, the floor material directly affects the motion of
the robot because locomotion is related to the interaction
between the mobile robot and the ground. For instance, the
slip of a robot is caused by low friction on its wheels or by
a carpet that is not firmly fixed on the floor. In addition,
the task types of the robots depend on the floor material.
For robot cleaners, an appropriate cleaning method can be
selected for different floor types [10]. Similarly, diverse
methods have been proposed for recognizing floor materials,
including laser scanning [11], image training [12], [13], and
vibration analysis [14], [15], [16]. A common scheme in these
conventional approaches is to identify the roughness of a
surface. However, it is difficult to explain that topographic
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data reflect the properties of the floor. Thus, we suggest a
novel method using a piezoelectric actuator–sensor pair as a
new approach for the direct analysis of the floor surface by
exploiting the physical properties of materials.

FIGURE 1. Concept image illustrating material classification of the ground
using a mobile robot and piezoelectric sensor module.

The piezoelectric materials used in this study were made
of polyvinylidene fluoride (PVDF) films [17], [18], [19],
[20]. PVDF is soft and light; hence, it has been applied
to a sensor array to identify the topography of facing
surfaces, like artificial skin [21], [22], [23], [24]. In addition,
a sensing method based on PVDF films was used for
object classification by exploiting vibration feedback [25],
[26], [27]. With these advantages of piezoelectric materials,
we propose one of the applications by using a piezoelectric
actuator–sensor pair fabricated with PVDF films to classify
properties of the floor. Unlike recognizing the terrain on the
floor surface, our method distinguishes the floor properties
while the mobile robot is moving. This mobile robot is
designed with an independent sensor system inside the robot
to collect sensor data and even determine floormaterials on its
own. The distinguishing floor properties ensure that mobile
robots can move safely and perform optimal tasks according
to their surrounding environments. In addition, since the
weight and volume of the pair were light and thin, the pair
is useful when adapting to small mobile robots. Furthermore,
as the sensor data was one-dimensional data about voltage
variations over time, data processing is faster than two or
three-dimensional data and takes up less data storage space.
To provide mobile robots with reliable information about
the floor, deep learning was used with the piezoelectric
actuator–sensor pair. Specifically, the actuator–sensor pair
was in contact with the floor while the mobile robot moved.
The actuator applied mechanical and electrical stimuli to
the floor, and the sensor collected feedbacks through the
floor as responses related to the physical properties of floor
materials. Extensive raw data were collected by repeating
the experiment. Subsequently, the raw data were processed,
and a training data was prepared. The dataset was used
in learning phase of an artificial neural network, and a
classification model for recognizing the floor material was
constructed.

This paper is organized as follows: In Section II,
experimental methods, including the fabrication process of
a piezoelectric actuator–sensor pair, operating mechanism,
and structure of the classification model, are described.
In Section III, a sensor response analysis with the physical
properties of floor materials and the results of the classifica-
tion model training are presented. Finally, the conclusions are
summarized in Section IV.

FIGURE 2. Design of the actuator–sensor pair: (a) schematics and
(b) layer configuration. The red part is the actuator, and the blue part is
the sensor.

FIGURE 3. Illustration of the suspension and its mechanism:
(a) high-angle view, (b) low-angle view, (c) side view of the initial state,
and (d) side view when laid on the floor.

II. METHOD
A. ACTUATOR–SENSOR PAIR FABRICATION
An actuator–sensor pair structure was used to obtain ground
information. To fabricate the structure, 110µm- and 28 µm-
thick PVDFfilms (Measurement Specialties, Inc., USA)were
used for the actuator and sensor part, respectively. As the
PVDF film has a low Young’s modulus and thin thickness,
it is effective for removing the resonance-induced effect from
vibration and increasing the sensitivity of the sensor [28].
Also, these PVDF characteristics can help the piezoelectric
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actuator generate bigger vibrations toward the floor to
improve the performance of the classification. These films
were cut into shapes as shown in Fig. 2(a). Using a sampling
multimeter (DMM7510; Keithley Instruments, Inc., USA),
the capacitances of the actuator and sensor were measured as
0.5961 nF and 1.768 nF, respectively. Flexible printed circuit
boards (FPCB) soldered with cables were attached to the
actuator–sensor pair using carbon conductive adhesive tape
(Nisshin EM Co., Ltd., Japan). In addition, polyethylene
terephthalate (PET) film (thickness: 100µm; Saehan Co.,
Ltd., Korea) was cut into a size of 65mm × 30mm (width ×

length) for a flexible substrate. Subsequently, double-sided
PET film tape (thickness: 50µm; Saehan Co., Ltd., Korea)
was used to enable PVDF films to adhere to one side of
the PET substrate, and the PVDF films were covered by
polyimide tape (3M, Inc., USA) for protection. Fig. 2(b)
shows the overall schematic of the tactile sensor fabrication.

B. EXPERIMENTAL SCHEME AND DATA PROCESSING
To install the sensing pair under the mobile robot, a curved
panel was 3D-modeled and printed using a 3D printer
(3DWOX 2X, Sindoh Co., Ltd., Korea) with polylactic acid
(PLA) material. The panel was designed to have a curved
shape to prevent damage to the PVDF films when sliding
on the floor. In addition, the suspension was 3D-printed,
as shown in Fig. 3. The fabricated pair was attached to a
curved panel of the suspension. The suspension maintained
the pair at the bottom of the mobile robot in contact with
the floor under limited pressure from the floor. This simple
suspension format allowed the size of the system to be
dramatically reduced by keeping the actuator-sensor pair in
close contact with the floor. Figs. 3(a), 3(b), and 3(c) illustrate
the high- and low-angle views and side view of the suspension
combined with the pair, respectively. In addition, Fig. 3(d)
shows the working process of the suspensionwhen themobile
robot is placed on flat ground.

To control the mobile robot and the pair, three con-
troller boards were used: a main computer (Jetson Nano;
NVIDIA, Inc., USA), function generator/analog-to-digital
converter module (FAM), and an electronic control unit
(ECU; OpenCR 1.0; ROBOTIS, Inc., Korea). The main
computer was connected to the ECU and FAM to send
driving control signals and collect sensor data. The ECU
was responsible for controlling the movement of the mobile
robot. Additionally, the FAM consisted of a microcontroller
unit (MCU; TMS320F28377S-100 module; Syncworks, Inc.,
Korea), USB serial communication unit (FT2232H MINI
module; FTDI Co., Ltd., United Kingdom), switching
mode power supply, voltage converter, sine generator, and
additional circuits for the sensor module. The piezoelectric
actuator–sensor pair was connected to the FAM through
cables. In this way, the main computer and sensor system
are built into one robot, allowing the robot to independently
perform sensor system and floor material classification
without external intervention. The configuration of the
mobile robot is shown in Fig. 4.

FIGURE 4. Configuration of the sensing system and data processing.

FIGURE 5. Operation mechanism of the piezoelectric actuator–sensor
pair system.

Specifically, as the first step in data collection, the main
computer triggered signals to the ECU and FAM. The mobile
robot thenmoved forward at a speed of 10 cm/s for 4 seconds.
Simultaneously, the MCU activated the FAM circuit to
operate the actuator with a high-voltage sinusoidal input
and acquire electrical responses from the sensor. The FAM
generated an alternating voltage of 200V amplitude with
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an offset voltage of 200V. The frequency of the sinusoidal
input was swept from 100Hz to 1 kHz for approximately
2.3 seconds. For the sensing component, the sampling
frequency of theMCUwas selected to be 25 kHz. The sensing
was terminated at the end of the actuator sweep, resulting in
57687 data points.

FIGURE 6. Pictures illustrating the selected floor materials and tests for
data collection: (a)-(A) melamine-faced MDF, (b)-(B) carpet, (c)-(C) glass,
(d)-(D) aluminum, (e)-(E) poplar plywood, (f)-(F) acrylic, and (g)-(G)
nothing.

FIGURE 7. Architecture of dense neural network used for classification.

During the operation, the actuator generated mechanical
vibrations owing to the piezoelectric effect of the PVDF
film, as shown in Fig. 5. Subsequently, as the vibrations
were transmitted to the sensor through the substrate and
floor, electrical responses were measured from the sensor.
The bottom electrodes of the actuator and sensor function
as capacitances. The plain-shaped floor acted as a dielectric
substance between the electrodes; hence, the capacitance
depended on the floor material [29]. Therefore, the floor
acted as a medium for electrical/mechanical transfer during

FIGURE 8. Time and frequency responses of the melamine-faced MDF
when sweeping the input signal of the actuator: (a) Time responses of the
sensor output, and (b) frequency responses of the sensor. The grey and
green line represent the HPF-passed data with FFT applied and the
30th-degree polyfitted result of the grey line, respectively.

operation. Using these two mechanisms, the sensor collected
information from the floor panels.

The collected sensor data were transmitted from the
MCU to the main computer. Subsequently, the data were
processed using the main computer as shown in Fig. 4. A fast
Fourier transform (FFT) was applied to the raw data, and
values corresponding to the range of 0–2 kHz were obtained.
Moreover, a high-pass filter (HPF) with a cutoff frequency
of 100Hz was used to reduce the noise. Finally, the data
were polyfitted with a 30th degree polynomial and obtained
1000 equally spaced samples from 0 to 2 kHz. Polynomial
fitting was applied to reduce noise and extract the overall
tendency. After polyfitting, the samples were used as training
input in the neural network to classify the material set.

Fig. 6 shows the floor material set and their tests.
Specifically, six flat panels made of different materials that
were usually observed in indoor environments and ‘‘nothing’’
were selected. ‘‘Nothing’’ implied that no contact surface
existed owing to the floating of the mobile robot. The
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FIGURE 9. Frequency spectra for each surface material used in the training classification model. Grey lines in each plot correspond to 240 input
data for machine learning. Red lines represent average spectrum of the input dataset. (a) Melamine-faced MDF, (b) carpet, (c) glass, (d) aluminum,
(e) poplar plywood, (f) acrylic, and (g) nothing.

experiments were repeated and sensor data were collected for
these seven types.

C. NEURAL NETWORK FOR CLASSIFICATION
In this setting, 240 experiments were conducted for each floor
condition to obtain model training, test, and validation data
inputs. In total, 1680 data were collected. These data were
preprocessed and collected to form a dataset D:

D = {(xn, yn), n = 1, . . . , 1680}, (1a)

xn = [xn,1, xn,2, . . . , xn,1000]T , (1b)

yn = [yn,1, yn,2, . . . , yn,7]T . (1c)

where D represents an input dataset for supervised machine
learning, xn represents a vector of the nth processed sensor
data, and yn represents a categorical ground-truth vector of
the class number of the surface material corresponding to
xn. This dataset was used to train the classification models.
A dense neural network (DNN) was adopted as a classifier for
floor surfacematerials. Fig. 7 demonstrates the architecture of
the proposed classification model. Specifically, a multilayer
perceptron (MLP) layer consisted of a combination of
input/hidden layers with a size of 1000-400-100 and dropout
layers with a scale of 0.2. The dropout layers prevented
overfitting by eliminating unnecessary nodes [30], [31], [32],
[33]. Additionally, an L2 regularizer with a regularization
rate of 0.002 was applied to each input/hidden layer. The L2
regularizer prevented overfitting of the model to the training

data by assigning penalties to data with high variance [32],
[33], [34], [35]. To prevent training from overfitting, early
stopping by monitoring the validation loss after 1000 epochs
was applied [36], [37]. To train the classification model,
supervised learning was executed for 4000 epochs using
dataset D. The ratio of the training, test, and validation
sets was 4:1:1, and they were separated after the mixing
data randomly. The DNN was implemented using the Keras
API (version 2.6.0) on Python 3.8.8, and the model was
trained on a desktop computer with a CPU (Intel Core i9–
10900 CPU, Intel, Inc., USA), RAM (DDR 43 200MHz
32GB RAM, Samsung Electronics, Inc., Korea), and GPU
(GeForce RTX 3070 GPU, NVIDIA, Inc., USA). After model
training, the model was ported to the main computer of the
mobile robot.

III. RESULT AND DISCUSSION
A. DATA AND MATERIAL ANALYSIS
The collected sensor data were processed based on the
experiments described in the previous section. Fig. 8 shows
an example of the sensor data and processing mechanism
from the experiment conducted on the melamine-faced MDF.
Although the amplitude of the input signal remained constant
while sweeping the frequency, the responses increased with
time and frequency. In addition, the frequency responses,
as shown in Fig. 8(b), presented dominant values in the range
of 100Hz to 1 kHz caused by the voltage sweep. Furthermore,
a small amplitude appeared in range of 1 kHz to 2 kHz by the
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effect of the harmonic terms.Moreover, low-frequency power
noises were effectively removed using an HPF with a cutoff
frequency of 100Hz. Consequently, the polyfitted graph
represented the overall shape of the frequency responses.

Through data processing, 240 processed data for each
surface material were synthesized and plotted with the
average values, as shown in Fig. 9. Because the frequency
sweep of the electrical signals to the actuator was performed
in the range of 100Hz to 1 kHz, dominant values appeared
with an increasing tendency for every material in the
corresponding range of the frequency domain, whereas
aluminum showed a slight decline from 500Hz to 700Hz.
In addition, the maximum points for each material occurred
at approximately 850 Hz. The maximum values (Vmax) and
corresponding frequencies (fmax) are presented in Table 1.
Aluminum had the largest Vmax of 83.08mV, followed by
glass, poplar plywood, melamine-faced MDF, acrylic, carpet,
and nothing in descending order. The Vmax of aluminum was
2.75 times higher than that of glass and was remarkably high
among the materials. Moreover, fmax did not vary with the
material.

To investigate the differences in Vmax with the floor
materials, the correlations between the physical properties
of the materials and Vmax were analyzed. As mentioned
regarding themechanism of sensor operation, mechanical and
electrical factors can affect the sensor data. In this context, the
physical properties of the floor panels were organized in view
of the floor with two layers: the surface and substrate core.
We noted that the floor could have a coating layer and a layer
below it in these case. We assumed that the surface materials
acted as dielectric substances between the electrodes of the
actuator and the sensor [29]. Thus, the electrical properties
might be key factors to consider. Meanwhile, we focused
on the mechanical properties of the core materials because
mechanical vibration can propagate from the source in every
direction with attenuation [45]. In the context, resistivity (ρr ),
dielectric constant (ϵr ) of surface materials, and Young’s
modulus (E) of core materials were surveyed. The properties
of six floor materials are presented in Table 1. Using these
values, Fig. 10 shows the relationship between Vmax and each
property.

As shown in Fig. 10(a), Vmax showed a decreasing ten-
dency according to the resistivity. Moreover, as the resistivity
increased to that of insulators (1010 � · m approximately),
it was stabilized to low value. In contrast, Vmax increased
linearly as the dielectric constant increased, as shown in
Fig. 10(b). From Fig. 10(a) and (b), the dielectric constant
had a greater effect on the maximum sensor voltage than
the resistivity, except for the case of aluminum. The reason
is presumed to be that when the floor material is a non-
conductor, a capacitance relationship can occur between the
actuator part, the sensor part, and the floor [29]. Otherwise,
in the case of aluminum, it was speculated that the floor
acted as a wire connecting the electrodes of the actuator
and the sensor, causing large voltage changes. Consequently,
we inferred that materials with extremely small resistivities,

FIGURE 10. Distribution of the maximum voltages (Vmax ) according to
(a) resistivity (ρr ), (b) dielectric constant(ϵr ), and (c) Young’s modulus (E).
Blue squares correspond to aluminum, orange circles to glass, yellow
crosses to poplar plywood, purple triangles to melamine-faced MDF, light
green plus signs to acrylic, and light blue asterisks to carpet.

such as conductors, or those with high permittivity result in a
high Vmax . However, for the melamine-faced MDF, its Vmax
did not correspond with linearity, as shown in Fig. 10(b).
Melamine-faced MDF was the only floor panel comprising
two layers of different materials in the classification set. This
might be attributed to different trends.

In Fig. 10(c), two remarkable features are shown. Glass
and poplar plywood had values of Young’s modulus that
were 10 times different but showed similar values of Vmax .
In contrast, glass and aluminum had similar Young’s moduli,
but Vmax significantly differed. When the actuator generated
vibrations toward the floor, the piezoelectric sensor detected
vibrations transmitted to the floor [28], [46], [47]. From the
sensor data, the topography of the floor could be identified.
However, in Fig. 10(c), the maximum voltages of the sensor
output are nearly the same for each insulator material even

28516 VOLUME 12, 2024



J. Min et al.: Classification of Floor Materials

TABLE 1. Electrical response results and properties of the surface materials.

FIGURE 11. Classification confusion matrix of the trained dense neural
network model.

if they have different Young’s modulus. This is because
the ground is fixed to one side and there is little vibrating
due to the actuator, so it is assumed that there will be no
significant change in the sensor value. Thus, we speculated
that resistivity and permittivity were more strongly affected
than the Young’s modulus.

B. ACCURACY OF CLASSIFICATION
To detect the floor panel materials, all processed data from
dataset D were used in the proposed DNN classification
model, as described in Section II-C. Prior to machine
learning, 240 processed data per surface material were
randomly split into training, test, and validation sets in a
ratio of 4:1:1. After training was completed, the performance
of the trained model was estimated using the validation set
by calculating the values of recall, precision, and accuracy
[48]. The results are illustrated in the confusion matrix
shown in Fig. 11. As confirmed from this matrix, the
overall accuracy of the classification model was 95.4%. The

FIGURE 12. Segmentation results of k-means clustering (k = 7) using
collected data: (a) frequency responses, and (b) clustering confusion
matrix.

high accuracy confirmed the performance of our model.
Herein, misclassification occurred in the melamine-faced
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MDF. In reality, it showed a misprediction of the acrylic. This
might have been caused by the similarities in the frequency
responses of the materials. In particular, they have similar
resistivity and Young’s modulus values.

Furthermore, the k-means clustering method (k=7) was
used on xn (n = 1, . . . , 1680) of D to analyze the dataset
from the perspective of unsupervised learning. The initial
means were set to be the same as the average values in Fig. 9,
and the mean square error (MSE) was used as the criterion
for updating the k-means. The graphical results of the k-
means clustering are shown in Fig. 12(a). After clustering,
the clustered sets were mapped into classes according to the
dominant corresponding yn of xn in the set. By mapping,
the clustering results were statistically analyzed. Fig. 12(b)
shows the accuracy of clustering with matrix. The k-means
clustering method recorded a high accuracy of 93.0%;
therefore, we verified the reliability of the obtained data.
The high discriminability between different materials led to
less overfitting during model training. However, 28 data of
melamine-faced MDF were confused with the acrylic data,
and 13 data of acrylic were confused with the melamine-
faced MDF data. This could be because of the similarities in
resistivity and Young’s modulus values. In addition, 50 data
for poplar plywood were clustered into a set of glass because
these materials showed similar resistivity and dielectric
constant values. Moreover, the performance of the DNN
was compared with that of k-means clustering. The DNN
accuracy was 2.4% higher than that of k-means clustering.
Specifically, the confusion between glass and poplar plywood
that appeared in k-means clustering was almost eliminated
in the DNN model, and the confusion between acrylic and
melamine-faced MDF was also reduced.

IV. CONCLUSION
In this study, a piezoelectric actuator–sensor pair and
an artificial neural network were used to classify floor
materials to enhance the performance of mobile robots. The
actuator–sensor pair based on the PVDF film was fabricated
to collect data from the floor. In addition, a suspension was
used to maintain contact between the sensing system and
the ground. Electrical systems for acquiring the sensor data
were integrated into a mobile robot to create an isolated
sensing environment. Extensive amounts of sensor data were
collected through repetitive experiments and the data were
processed using the HPF, FFT, and polynomial fitting. After
training the DNN model with the processed data, seven
floor materials were classified using the model, with a high
accuracy of 95.4%. In addition, by investigating the effects
of material properties on the sensor data, we confirmed that
a lower resistivity or higher permittivity of the floor material
might result in a higher peak value of the sensor responses.
In addition, the collected data were verified using the k-means
clustering method and showed 93.0% discriminability among
classes, thereby demonstrating the reliability of the data.

However, we assumed and test flat and clean floor situ-
ations to observe whether the piezoelectric actuator–sensor

pair could classify floor materials. Perhaps, it is difficult
to predict floor materials when there is a lot of debris
and uneven surfaces. To observe how this pair behaves in
the real-life environment, further work will be conducted
to investigate the impact on the pair by assuming various
types of debris and terrain through force–displacement
analysis.Moreover, to scrutinize the operation of the actuator-
sensor pair and improve the classification performance, finite
element analysis can be utilized, and the new data processing
method can be adapted to point out the features of sensor data.

Consequently, the proposed method could be used to
classify surface materials with high accuracy and to provide
useful ground information for mobile robots. Furthermore,
the proposed actuator–sensor pair can be used to collect
material or texture information in a variety of applications
such as autonomous robot cleaners or delivery robots.
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