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ABSTRACT Demand side management (DSM) involves technologies and strategies that allow customers to
actively participate in the optimization of their energy usage patterns, ultimately contributing to a more
sustainable and efficient energy system. In this paper, leader beluga whale optimization improvement
(LBWO) and original beluga whale optimization (BWO) are used to implement a DSM scheme that enables
lower peak-to-average ratio (PAR) and decreasing the expenses associated with electricity consumption.
In the context of this research, electricity consumers decide to store, buy, or sell the electricity to maximize
profits while minimizing its costs and PAR. Electricity consumers make their decisions based on the amount
of electricity generated from their mini-grid, electricity prices and demand from the public network. The
mini-grid is a combination of a photovoltaic (PV) panel and a wind turbine connected to an energy storage
system (ESS). An ESS is used for maintaining power system stability because the power generated from
renewable energy source (RES) has intermittent characteristics depending on environmental conditions. The
proposed scheme is tested on three different cases from a study, the first case is the traditional house, the
second case is the smart house with DSM, and the last case is the smart house with its mini-grid and DSM.
Simulation results indicate that in case 2, LBWO and BWO achieved a remarkable reduction in electricity
cost by 61% and 51% respectively. In case 3, the reduction was even more significant, with LBWO and
BWO lowering the cost by 76% and 64% respectively. Moreover, LBWO generated a revenue of 154 (cents),
while BWO generated a revenue of 118 (cents). The results confirm the effectiveness and robustness of the
suggested scheme in reducing electricity costs and the PAR (Peak to Average Ratio), while simultaneously
increasing profits for electricity consumers.

INDEX TERMS Beluga whale optimization, demand side management, leader beluga whale improvement,
mini-grid, renewable energy source, storage system.

I. INTRODUCTION
Energy is a necessary component of everyday life. Currently,
social growth is dependent on the use of an adequate energy
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supply [1], [2]. Energy usage rises in tandem with global
population expansion, technological and industrial advance-
ment. The majority of the world’s energy consumption is
based on fossil fuel resources such as coal, natural gas, and
oil [3], [4]. As a result of the scarcity of fossil fuels, meeting
future energy demand will be difficult. Furthermore, fossil
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fuels are to blame for rising carbon emissions and global
warming. According to the International Energy Agency, the
combustion of gas (21%), particularly coal (42%) and fossil
fuels (70%) produces nearly of the world’s total energy [5].
Ensuring a satisfactory power provision is currently regarded
as one of the most difficult jobs for assuring sustained
industrial and economic development. Energy production
and consumption are linked to environmental sustainability
and energy safety. Unproductive use of natural resources
wastes a considerable amount of energy resources. For the
purpose of the increasing need for electricity and the impact
of power plants to climate change, the scientific community
has begun to investigate alternate energy choices for power
generation [6].
The performance of the electric network is determined

by the balance of electricity generation and the ability
to fulfill the growing demand of users. Furthermore, the
amount of energy consumed has an impact on the energy
distribution system. This phenomenon renders grid operation
risky and unpredictable. As a result, unpredictability in
renewable energy supply must be considered in order to meet
increasing electricity needs and ensure the sustainability of
the system. The smart grid (SG) is an electric network that
incorporates control systems, communication technologies,
advanced sensing technologies, and smart meters to represent
the energy system of the future [7]. The foundation of
the smart grid’s theory has developed to ensure efficient
distribution and supply of electricity, along with effective
load control. The bidirectional flow of energy and data
between the client and the energy supplier is one of the
major aspects of SG [8]. As a result, the SG introduces
new possibilities for efficiently and dynamically delivering
electricity to consumers.

DSM can help to address reliability challenges and grid
sustainability. The DSM is a collection of load management
actions that involve the monitoring, implementation, and
design of pre-defined activities that affect the energy use
patterns of consumers [9]. The DSM can systematically
transport and distribute available energy, reducing carbon
emissions and peak loads while also allowing customers
to select their preferred energy type [10]. The DSM was
developed for the first time in 1970 [11]. The electrical
business developed the DSM model to manage both timing
and quantity of electricity consumption, in addition to analyze
electricity load patterns among consumers. Through the
coordination of diverse smart appliances and the production
of renewable energy, the integration of a DMS program
with RES, distributed micro-generators and energy storage
devices, can create an optimal management framework [12].
The price of electricity has a substantial impact on consumer
energy consumption [13], [14]. However, the DSM imple-
mentation in Singapore can readily handle the powermarket’s
demand patterns as well as assess and reshape load profiles.
This approach lowers customer peak load demand, enhancing
grid stability, sustainability, and security; it also lowers
carbon emissions, grid operation expenses, and power bills.

Furthermore, by regulating and supervising decentralized
energy resources, which encompass manageable end-use
devices, successful DSM activities can simply eliminate the
unneeded development of electrical infrastructure. These
actions can help to control the electrical market by taking
power distribution, transmission, and generation into account.

RESs have arisen as a pivotal solution to address the
challenges posed by fossil fuels, such as environmental
degradation, energy security concerns, and the global pursuit
of sustainable development. These sources, including solar,
wind, hydroelectric, and geothermal energy, offer several
compelling advantages. Firstly, they are inherently abundant
and widely distributed, reducing the dependence on finite
fossil fuel reserves and minimizing geopolitical tensions
associated with resource scarcity. Secondly, renewable
energy production emits significantly fewer greenhouse gases
and pollutants compared to conventional fossil fuel-based
methods, thus mitigating the adverse effects of climate
change. Additionally, harnessing renewable resources fosters
local economic growth by creating jobs, enhancing energy
resilience, and promoting energy independence. Moreover,
the development of advanced technologies in this sector
continues to drive down costs, making renewable energy
increasingly competitive and accessible. As nations transition
towards cleaner and more sustainable energy systems,
the integration of renewable energy sources stands as a
cornerstone in shaping a greener and more environmentally
conscious future.

This study introduces a smart home concept designed to
generate and store its own power through a mini-grid. This
enables prudent consumers to not only draw energy from
the main grid but also produce and reserve it. Additionally,
the paper aims to optimize the benefits derived from energy
exchange between electricity consumers and the commercial
grid.

The strategic decisions made by electricity consumers are
influenced by electricity tariffs, with the goal of minimizing
the PAR per hour and overall electricity costs, while
simultaneously maximizing revenue. In the context of the
smart home, consumers strategically purchase electricity
during low-cost time slots, which assists in lowering the PAR.
Conversely, surplus electricity generated in the smart home
is sold back to the commercial grid during high-cost time
periods, helping to reduce overall load demand.

To establish electricity costs for both selling and pur-
chasing, the study employs two Real-Time Pricing (RTP)
schemes. In the final phase, an extensive comparative analysis
is conducted, focusing on the efficiency of two distinct
optimization algorithms: the LBWO and BWO This analysis
aims to provide a clear understanding of the strengths and
limitations of these algorithms when addressing intricate
optimization challenges. Performance metrics are evaluated
across various scenarios.

This work presents several noteworthy contributions that
significantly advance the field. These contributions can be
summarized as follows:
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• The study introduces two novel algorithms, LBWO and
BWO, which are designed to efficiently manage and
schedule electrical appliances for energy consumption
optimization.

• The smart home system is equipped to make informed
decisions about participating in electricity exchange
with the commercial grid or conserving excess energy
for future use, ensuring a cost-effective and sustainable
energy strategy.

• The research highlights how intelligent consumers can
derive economic benefits by engaging in energy trading
with the commercial grid. This approach empowers
consumers to make efficient choices regarding energy
consumption and cost savings.

• The study conducts a thorough evaluation to assess the
suitability and independent decision-making capabilities
of both LBWO and BWO algorithms. The primary focus
of this analysis is their proficiency in optimizing the
scheduling of power trading for appliances connected to
the electrical grid.

The paper’s structure is organized into distinct sections.
In Section II, a comprehensive review of prior studies and
relevant literature related to the research topic is presented,
setting the stage for this study. Section III focuses on articu-
lating the problem statement under consideration. Following
that, in Section IV, we delve into the BWO algorithm,
outlining its key principles. Section V is dedicated to an in-
depth discussion of the LBWO algorithm. In Section VI,
the paper shifts its focus to practical case studies and the
corresponding simulation results. Finally, in Section VII,
we draw our study to a close, offering concluding remarks
and a concise summary of our findings.

II. LITERATURE REVIEW
In this section, we will explore some of the research works
addressed the problems facing the smart home and the
electrical network, such as reducing the cost of electricity and
reducing PAR while maximizing user comfort and balancing
the load between supply and demand.

Liu et al. [15] have presented the home energy manage-
ment system (HEMS) idea. They outlined the fundamental
elements of HEMS and compared various technological
approaches. They also highlighted some of the worries
and difficulties. Beaudin et al. [16] have conducted a
comparative review of the HEMS literature, focusing on
modeling methodologies and their impact on HEMS oper-
ations and outcomes. They examined forecast uncertainty,
modeling device heterogeneity, multi-objective scheduling,
computing constraints, timing considerations, and modeling
customer well-being. Zhou et al. [17] have presented a brief
introduction of smart HEMS architecture and functional
modules. The modern HEMS infrastructures and smart
house home equipment are then thoroughly researched and
reviewed. The use of various building renewable energy
resources in HEMS, such as solar, wind, biomass, and
geothermal energy, was investigated. Finally, several home

appliance scheduling solutions were examined in order
to lower domestic electricity costs and increase energy
efficiency from power generation utilities. Ahmad et al. [18]
have presented optimal HEMS that not only allow for the
integration of RES and ESS, but also integrate the domestic
sector into DSM operations. The planned HEMS reduced
the electricity invoice by coordination domestic devices and
ESS in response to the electricity market’s dynamic pricing.
The constrained optimization problem is first mathematically
formulated using multiple knapsack problems, then solved
using heuristic algorithms such as genetic algorithm(GA),
bacterial foraging optimization (BFO), binary particle swarm
optimization (BPSO), the wind driven optimization (WDO),
hybrid GA-PSO (HGPO). Mahapatra et al. [19] have pro-
vided a thorough study of the many technical and conceptual
components of effective power management at home. They
concentrate on the principles, technological background,
architecture, and infrastructure, as well as numerous plans
and aims, in addition to diverse concerns and obstacles
associated with HEMSs. They suggest a revolutionary way
for improving house system structure by combining the
implementation of green building principles to reduce energy
consumption for homeowners. Waseem et al. [20] have
used crows and gray wolf search optimization algorithms
for scheduling of household devices. In the existence of
RTP tariff, the cost of minimizing electricity, optimizing
consumer convenience, and decreasing the PAR of household
appliances was investigated. Due to the high load ratio of
the air conditioners, an optimization technique was also
employed to schedule the ACs to enhance the comfort of the
end users in their usage. Deep reinforcement learning was
given in [21] hierarchical layers for the distributed energy
resources such as an electric vehicle, an ESS and optimization
of energy usage of smart house devices. This study presents
an approach that employs a two-tier deep reinforcement
learning structure. In the initial tier, scheduling of household
devices is based on user preferences and comfort levels.
In the subsequent tier, the charging and discharging schedules
of electric vehicles and ESS are determined, taking into
account the optimal solution from the first tier and user-
specific environmental factors. Lissa et al. [22] proposed
creating a deep reinforcement learning algorithm for indoor
and domestic hot water temperature regulation, with the
goal of reducing energy consumption by optimizing PV
energy output. They developed a methodology for a new
definition of dynamic internal temperature, which allows for
better flexibility and cost reductions. El Sayed et al. [23]
have used genetic algorithm, particle swarm optimization,
sine cosine algorithm, and whale optimization algorithm
for scheduling devices of multiple and single houses using
combined inclining block rate and the time of use.

In SG, the algorithms can tackle optimization challenges.
These optimization concerns include minimizing electricity
prices, total energy usage, and PAR, maximizing customer
convenience and integrating RESs efficiently [24]. Previ-
ous research, for example, presented various GA based
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FIGURE 1. Proposed system model.

optimization methods for lowering electricity expenses [25],
[26], [27]. Furthermore, ant colony optimization (ACO),
BPSO and GA, were utilized to manage the energy usage.
In [28], elite evolutionary strategy artificial ecosystem-
based optimization is used to schedule household device for
reducing PAR, electricity cost, improve the grid electrical,
and maximize user comfort. In [29], improved bald eagle
search is applied for developing HEMS to control load
demand, minimize PAR, reduce electricity bills, and enhance
customer comfort. In [30], sine cosine algorithm is presented
to create ideal HEMS, which use DSM load shifting
technique to improve a smart house’s energy consumption
patterns.

III. PROBLEM STATEMENT
This paper proposes a SG model whose goal is to minimize
the total maximum load through the operation of the public
electrical grid, reduce electricity costs for users in a smart
home, and create the electric grid stability. The smart
home contains different smart devices and is also equipped
with a mini-grid. This mini-grid is capable of producing,
distributing and storing electricity. The electric grid has
the characteristics of two-way communication, effective
control and monitoring, etc. like the SG and linked with
the commercial utility company. This last, makes electricity
available to many users. The mini-grid is a represented
as a PV panel and a wind turbine connected to an ESS.
An ESS is used for maintaining power system stability
because the power generated from RES has intermittent
characteristics depending on environmental conditions. The
proposed system model is illustrated in Fig. 1.

A. TYPES OF SMART HOUSE APPLIANCES
The smart home is outfitted with a variety of smart appliances
(A), each having distinct operational time durations and
power ratings [31]. In this section, home appliances are

TABLE 1. The classifications of the devices.

FIGURE 2. The execution pattern status of the appliances.

divided into three main groups namely interruptible, unin-
terruptible, and essential appliances. Each of these groups
of devices has different characteristics and limitations that
are described in the next section. In this study, the proposed
scheme will be implemented within one day that divided into
24 time periods, each time period is 1 hour. Moreover, each
device is connected to the internet and has the capacity to
communicate with the energymanagement controller (EMC).
Furthermore, the proposed scheme will be implemented
within one day that divided into 24 time periods, each time
period is 1 hour. In the proposed system, the runtime must
be completed for each smart device. The execution pattern
of the device is represented in Fig. 2. Table 1 shows the
classifications of the devices.

1) ESSENTIAL APPLIANCES
Essential appliances are the mainstay of every home. These
devices are alternatively known as non-interruptible and non-
switchable devices. Primary load devices remain unaffected
and uninterrupted during their operational tasks. The essential
appliances will be denoted as (EA) in this study, and their
energy usage as (EEA). Because each appliance has a power
rating (λEA), the total energy spent in each time slot is
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computed using the following equation:

EEA =

T∑
t=1

(∑
EA∈A

(
λEA × αEA(t)

))
(1)

Equation (2) and (3) are employed to compute the cost of
electricity consumed per hour and per day,

σ tEA =

∑
EA∈A

(
λEA × ρ (t) × αEA (t)

)
(2)

σTotal
EA =

T∑
t=1

(∑
EA∈A

(
λEA × ρ (t) × αEA (t)

))
(3)

where σ t
EA represents the hourly cost of essential appliances,

σTotal
EA is the total daily electricity cost for essential appliances

andαEA indicates the status of essential appliances. Describes
the representation of the ON/OFF status of essential appli-
ances as follows:

αEA(t) =

{
1, If EA is ON
0, If EA is OFF

(4)

2) INTERRUPTIBLE APPLIANCES
In this section, the definition of interruptible appliances is
explained. Because these appliances have flexibility in their
operational duration, they can be paused or postponed during
operation. In this study, interruptible appliances are denoted
by (IA), and their energy consumption is denoted by EIA:

EIA =

T∑
t=1

(∑
IA∈A

λIA × αIA(t)

)
(5)

Each appliance has a power rating (λ IA). The hourly cost of
electricity for all interrupted devices paid to the commercial
grid can be calculated as follows:

σ tIA =

∑
IA∈A

(
λIA × ρ(t)×αIA(t)

)
(6)

The total cost of electricity for all interrupted devices paid to
the commercial grid can be calculated as follows:

δTotalIA =

T∑
t=1

(∑
IA∈A

(
λIA × ρ(t)×αIA(t)

))
(7)

where σ t
IA represents the hourly cost of interrupted appli-

ances, δTotalIA is the total daily electricity cost for interrupted
appliances and αIA(t) indicates the ON/OFF status of
interrupted appliances.

3) UNINTERRUPTIBLE APPLIANCES
The third-class study, uninterruptible appliances are denoted
by (UN), while energy usage is denoted by (EUN ). Each
appliance has a power rating by λUN . The energy consump-
tion can be calculated as follows:

EUN =

T∑
t=1

( ∑
UN∈A

(
λUN × αUN (t)

))
(8)

FIGURE 3. Electricity prices.

The hourly cost of electricity for all uninterrupted devices
paid to the commercial grid can be calculated as follows:

σ t
UN =

∑
UN∈A

(
λUN×ρ(t)×αUN(t)

)
(9)

The total cost of electricity for all interrupted devices paid to
the commercial grid can be calculated as follows:

δTotalUN =

T∑
t=1

( ∑
UN∈A

(
λUN×ρ(t)×αUN(t)

))
(10)

where σ t
UN represents the hourly cost of uninterrupted

appliances, δTotalUN is the total daily electricity cost for
uninterrupted appliances and αUN(t) indicates the ON/OFF
status of uninterrupted appliances.

B. PRICE TARIFF
The utility company offers various electricity tariffs to
encourage users to manage their load requirements. The
performance of the suggested system is evaluated by RTP
tariff. This tariff is discussed in the following subsection.
At every hour, there is a price for buying electricity and
another price for selling excess electricity to the commercial
network, as shown in Fig. 3. The electricity selling can be
calculated as follows [31]:

tariff sell = 0.90 ∗ tariff buy (11)

where tariffsell represents the rate at which electricity is sold
to the commercial grid, and tariffbuy refers to the purchasing
rate for each hour. The electricity selling rate is 90% of the
purchasing rate for each hour [31]. Users are responsible
for remitting the entire costs to utilities in exchange for the
electricity they consume. The electricity cost for a one hour
without mini-grid integration can be calculated as follows:

σ t =

∑
A

λA × ρ (t) × α (t) (12)

The electricity cost for a one hour with mini-grid integration
can be calculated as follows:

ς t = ((
∑
A

λA × α(t))) − E(t)) ∗ tariff buy(t) (13)
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The electricity cost for a one day without mini-grid integra-
tion can be calculated as follows:

δtotal =

24∑
t=1

(
∑
dn

λdn × ρ (t) × α (t)) (14)

The electricity cost for a one day without mini-grid integra-
tion can be calculated as follows:

ς total =

24∑
t=1

((
∑
A

λA × α(t)) − E(t)) ∗ tariff buy(t) (15)

The smart home, at the start of each hour, takes the decision
whether to buy, sell or store electricity. The smart home stores
the electricity generated from its mini-grid in the ESS for
future trading and purchasing electricity for load demand in
the event that the electricity price is low, but if the electricity
price is high, it uses its mini-grid or ESS to meet its loads.
The surplus electricity is quantified and subsequently traded
back to the commercial grid. The calculation is performed in
the following manner:

ηsell (t) = (
∑
A

λA × α(t)) − [E (t) + ESS] (16)

ηsell (t) =

{
ηsell (t) , If ηsell (t) < 0,
0, otherwise

(17)

where ηsell is hourly sold electricity and ηt is total sold
electricity, The cumulative electricity sent back to the
commercial grid can be calculated as follows:

ηt =

T∑
t=1

[ηsell (t)] (18)

The earnings from a local grid for a one hour can be calculated
as follows:

ęearn (t) = ηsell (t) ∗ tariffsell(t) (19)

The earnings from a local grid for a one day can be calculated
as follows:

ęt =

T∑
t=1

[ηsell (t) ∗BCsell(t)] (20)

C. MINI-GRID
A mini-grid is a localized and decentralized energy system
that operates independently or in coordination with the main
electrical grid. It typically encompasses a combination of
distributed energy resources (DERs) like solar panels, wind
turbines, and ESSs. In this study, the micro-grid consists ofm
number of RES. The total electricity produced by the mini-
grid in one hour is mathematically calculated as follows:

E(T ) =

∑
m∈M

εm(t) (21)

FIGURE 4. The curve of voltage-current of PV panel.

The total electricity produced by the mini-grid in one day is
mathematically calculated as follows:

E =

T∑
t

∑
m∈M

εm(t) (22)

where t refers to individual time intervals and T refers
to the maximum number of time intervals. An important
point to consider is that renewable energy sources exhibit an
intermittent nature. An ESS is used for maintaining power
system stability because the power generated from RES
has intermittent characteristics depending on environmental
conditions [32].

1) SOLAR PANEL
Solar panels, also known as PV panels, have emerged as
a key player in the quest for sustainable energy solutions.
These panels harness the abundant energy from the sun’s
rays and convert it into electricity through a process known
as the PV effect. Solar panels consist of multiple solar
cells, usually made from silicon, which absorb sunlight and
generate DC electricity. An inverter then converts this DC
electricity into AC, suitable for powering homes. In the
hours of high electricity price from the public grid, the
smart home tries to meet its requests from the mini-grid to
reduce the cost to a minimum and increase the convenience
of the user. Integration of PV cell performance models
allows the extraction of a current-voltage (I-V) curve and
maximum power point (MPP), aiding in the optimization
of PV cells. Fig. 4 illustrates the current-voltage curve.
The energy produced using solar panels can be calculated
mathematically as follows:

p = VPV IPV (23)

where p is the energy produced using solar panels, VPV is
the voltage of PV cells and IPV is the current of PV cells.
The mathematical calculation of PV cells’ performance is as
outlined below:

iL − iSexp
[
α
(
vpv + RS i− pv

)]
− 1vpv + RS ipv/RSh − ipv= 0 (24)

where the current of light is denoted by iL , the current of
diode saturation denoted by iS , resistance of shunt is denoted
by RSh, resistance of series is denoted by RS and the ideality
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factor is denoted by α and can be calculated mathematically
as follows:

α = q/nskT (25)

where temperature is denoted by T = 298 K, solar
cells number is denoted ns, q = 1.60 × 10 − 19 and
k = 1.38 × 1023 j/K. In this study, a solar panel with a
capacity of 230 watts and a total of 5 solar panels was used.

2) WIND TURBINE
Wind turbines are innovative devices that harness the kinetic
energy of wind to generate clean and renewable electricity.
Functioning like modern windmills, wind turbines consist
of rotor blades connected to a hub that is mounted atop a
tower. As the wind blows, the kinetic energy is transferred
to the rotor blades, causing them to rotate. This rotational
movement activates the turbine’s generator, converting the
mechanical energy into electrical power. The mathematical
calculation for determining the electric power generated by
the wind turbine is presented as follows:

Pwtt = 1/2·Cp · (λ )·ρ · A ·
(
Vwt
t
)3 (26)

where Pwtt is the electric power produced by the wind turbine,
Vwt
t is wind speed, ρ is the air density, A is the area of the

rotor and Cp is the coefficient of performance. The wind
turbine produces electrical powerwithin thewind speed range
defined as the cut-out and cut-in wind speeds. The cut-
out speed refers to the maximum wind speed at which the
wind turbine produces the highest amount of energy. If the
wind speed is greater than the cutting speed, the operation
of wind turbines is exposed to risks. Wind turbines must
be turned off for safety reasons. If the wind speed is less
than the cut-in speed, the power generation will be zero
[33]. The constraints of wind turbines can be represented
mathematically as follows:

V cut−in
≤ Vwt

t ≤V cut−out , ∀t (27)

Vwt
t ≥ V cut−out, ∀t, 0 (28)

Vwt
t ≤ V cut−in, ∀t, 0 (29)

where Vcut−in and Vcut−out refer to the minimum and
maximum wind speeds at which the wind turbine produces
electricity.

3) ENERGY STORAGE SYSTEM
An ESS plays a pivotal role in modern energy management
by bridging the gap between consumption and energy
generation. ESS technologies provide the capability to store
surplus energy during periods of low demand and release
it when demand is high, thus ensuring a stable and reliable
energy supply. These systems are crucial for integrating RES,
such as wind power and solar, into the commercial grid,
as they can store excess energy during peak generation times
for use during periods of low generation. In this study, the
capacity of the ESS is 5 kWh. The ESS is switchable and
the energy storage levels are 10% for minimum storage and

90% for maximum storage. In the event that electricity prices
rise or the small network is unable to meet the demand for
electricity, the ESS is discharged. If the ESS is at full capacity,
any extra electricity is returned to the commercial grid for
sale [34]. Mathematically, it can be expressed as:

SE(t)=SE(t−1) + k · ηESS · ESch(t)−k·ESdis(t)/ηESS (30)

where, stored electricity is denoted by E, time slot is denoted
by t, efficiency of ESS is denoted by ηESS, the charging
electricity of ESS is denoted by ESch and the discharging
electricity of ESS is denoted by ESdis. The constraints of ESS
can be represented mathematically as follows:

EScht <= ES(max) (31)

ESScht < ESS(upl) (32)

ESdist >= ES(min) (33)

IV. BELUGA WHALE OPTIMIZATION
In 2022, Zhong et al. introduced the BWO algorithm,
designed to address optimization problems by drawing
inspiration from the behaviors of beluga whale herds [35].
The BWO algorithm incorporates three phases: exploration,
exploitation, and whale fall, which mirror the behaviors of
pair swimming, prey hunting, and whale falling observed
in beluga whales. Two critical components in BWO are
the self-adapting balancing factor and the likelihood of
whale falls, which regulate the balance between exploration
and exploitation. To enhance global convergence during the
exploitation phase, the algorithm also introduces Levy flights.
Beluga whales, found in marine environments, are distinc-

tive aquatic mammals known for their all-white coloration
in adulthood. They are often referred to as the ‘‘canaries of
the sea’’ due to their diverse vocalizations. Medium-sized
beluga whales have a robust and rounded body shape. Their
excellent hearing and vision abilities enable them to navigate
and locate prey using sound. As shown in Fig. 5, belugas in
aquariums exhibit friendly behavior and graceful movements.
While our understanding of beluga whale social behavior
remains incomplete, some evident social and sexual activities
have been observed in beluga whales living under human
care [36].

A. MATHEMATICAL FORMULATION OF BELUGA WHALE
OPTIMIZATION
The BWO algorithm imitates beluga whale activities like
swimming, hunting, and whale falls. BWO, similar to other
metaheuristics, comprises both an exploitation phase and
exploration phase. Through random selection of beluga
whales, the exploitation phase focuses on conducting local
searches within that space, while the exploration phase
ensures global exploration of the design space. The beluga
whales are viewed as search agents that can move in search
space by changing their location vectors in order to simulate
the behaviors. Furthermore, BWO takes into account the
possibility of a whale falling, which alters the beluga whales’
positions.
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FIGURE 5. Beluga whale behaviors: (a) the phase of exploration (b) the
phase of exploitation (c) the phase of fall.

Each beluga whale serves as a search agent within the
population-driven framework of BWO, with each whale
embodying a potential solution that undergoes iterative
optimization. The representation of the matrix of search agent
positions is as follows:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d
...

...
...

...

xn,1 xn,2 · · · xn,d

 (34)

where d stands for the number of design variables and n is the
beluga whale population size. The respective values of fitness
for every beluga whale are kept as follows:

FX =


f
(
x1,1, x1,2, . . . ,x1,d

)
f
(
x2,1, x2,2, . . . ,x2,d

)
...

f
(
xn,1, xn,2, . . . ,xn,d

)
 (35)

The transition from exploration to exploitation in the BWO
algorithm is determined by the balance factor Bf , defined as:

Bf = B0 (1 − T/2Tmax) (36)

where T represents the current iteration, Tmax the maximum
number of iterations, and B0 fluctuates at random between (0,
1) during each iteration.

When the balance factor Bf is greater than 0.5, the
exploration phase begins, and when Bf is less than 0.5,
the exploitation phase begins. The fluctuation range of
Bf decreases from (0, 1) to (0, 0.5) as iteration T rises,

showing the considerable change in probabilities for the
exploitation and exploration phases while the probability of
the exploitation phase rises as iteration T rises

1) EXPLORATION PHASE
The swimming behavior of beluga whales is incorporated
into the establishment of the exploring phase in the BWO
algorithm. Beluga whales can engage in various social-
sexual behaviors, often demonstrated in different postures,
as shown in Fig. 5. This includes paired swimming of two
beluga whales in close proximity, moving synchronously or
mirroring each other [35]. Observing this behavior has been
documented in beluga whales that are kept under human care.
The beluga whale pair swims serve as a guide for search
agents’ positions, and the updating of beluga whale positions
is performed in the following manner:

XT+1
i,j = XTi,pj +

(
XTr,p1 − XTi,pj

)
(1 + r1) ,

XT+1
i,j = XTi,pj +

(
XTr,p1 − XTi,pj

)
(1 + r1)

(37)

where XT+1
i,j is the ith beluga whale’s new position on the

jth dimension, pj(j = 1, 2, . . . , d) is a random number
chosen from the d-dimension, XTi,pj is the ith beluga whale’s
position on the pj dimension, and XTr,p1 and XTi,pj are the
current iterations the ith and rth beluga whales on the pj
dimension. r is a randomly chosen beluga whale. r1 and
r2 are random numbers between (0, 1), and cos (2πr2)
and sin (2πr2) indicate that the mirrored beluga whales’
fins are pointing upward. The revised positions reflect the
synchronized or mirrored behaviors of beluga whales during
swimming or diving, based on the dimensions determined
by even and odd numbers. To improve the random operators
in the exploration phase, two random numbers, r1 and r2,
are used.

2) EXPLOITATION PHASE
The exploitation stage of BWO is modeled after beluga
whales’ hunting techniques. Beluga whales can travel and
forage together depending on the proximity of other beluga
whales. Therefore, beluga whales hunt by exchanging
information about job openings among themselves and
selecting the best applicant among them. In order to improve
convergence, the Levy flight technique is added during the
exploitative stage of BWO [36]. We assumed that they could
use the Levy flight method to capture their prey, and the
mathematical model is represented as follows:

XT+1
i = r3XTbest − r4XTi + C1·LF ·

(
XTr − XTi

)
(38)

where XTr and XTi represent the ith beluga whales and a
random beluga whale’s current position, XTbest denotes the
best position among beluga whales, r3 and r4 denote random
numbers between (0, 1), and C1 = 2r4(1-T /TMAX ) denotes
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the random jump strength used to measure the Levy flight’s
intensity. Levy flight function (LF) is determined as follows:

LF = 0.05 ×
u× σ

|v|1/β
(39)

σ =

(
0(1 + β) × sin(πβ/2)

0((1 + β)/2)×β × 2(β−1)/2

)1/β

(40)

In this equation, β represents the predefined constant of 1.5,
while u and v stand for randomly generated values following
a normal distribution.

3) WHALE FALL
Killer whales, polar bears, and people pose threats to beluga
whales throughout their migration and foraging. Most beluga
whales are intelligent and have the ability to evade threats
by communicating with each other. A few beluga whales,
though, have perished and are buried in the deep sea. The
occurrence called ‘‘whale fall’’ offers nourishment for a
considerable array of creatures. The dead whale’s exposed
bones and bodies draw a large group of hair crustaceans,
as well as a significant population of invertebrates and sharks,
to dine on them. Finally, the skeleton either decomposes
or is inhabited for decades by bacteria and corals. In each
iteration, minor changes within the groups are simulated by
selecting the probability of whale fall from the population
of individuals, mimicking the behavior of whale fall. It is
speculated that these beluga whales were either transported
or shot and subsequently descended into the ocean’s depths.
The positions of beluga whales and the magnitude of steps
taken by whale falls are utilized to calculate the new
position, ensuring the population size remains unchanged.
The mathematical formulation of the model is:

XT+1
i = r5XTi − r6XTr + r7Xstep (41)

If Xstep is the whale fall’s step size and r5, r6, and r7 are
random values between (0, 1).

Xstep = (ub − lb) exp (−C2T/Tmax) (42)

where ub and lb are the variables’ upper and lower bounds
and C2 is the step factor that correlates with the likelihood of
whale falls and population size (C2 = 2WF n). It is evident
that the step size is influenced by the maximum iterative
number, iteration, and design variable bounds.

Wf = 0.1 − 0.05T/Tmax (43)

The probability of a whale fall occurring decreases from
0.1 in the initial iteration to 0.05 in the final iteration,
signifying that the potential threat posed by beluga whales
diminishes as they approach their food source throughout the
optimization process.

B. THE BWO TECHNIQUE
The prior hypothesis said that BWO had three primary
stages: the exploration phase, which simulates swimming
activity; the exploitation phase, mimicking predatory behav-
ior, and the whale fall phase, which takes its cue from

the fall of beluga whales. When the exploitation phase and
the exploration phase of every iteration of the optimization
process are complete, the whale fall phase is put into action.
This section outlines the basic steps of BWO. The BWO
algorithm’s flowchart is depicted in Fig. 6.
Step 1: Initialization.
The population size n and the maximum number of

iterations (Tmax) of the method are chosen. Random initial
positions are assigned to all beluga whales within the search
space, followed by the assessment of fitness values using the
objective function.

Step 2: An update on the phase of exploitation and
exploration.

Based on the balancing factor Bf , every beluga whale is
assigned to either the the exploitation phase or exploration
phase. A beluga whale’s updating mechanism enters the
exploration phase if Bf > 0.5, and Eq. (37) updates the
position of the beluga whale. If Bf < 0.5, the exploitation
phase regulates the updating, and Eq. (38) is used to update
a beluga whale’s position. The best outcome for the current
iteration is then determined by calculating and sorting the
fitness values of the new places.

Step 3: A report on the phase of the whale fall.
In every iteration, the potential occurrence of beluga whale

mortality and their descent into the deep ocean is considered.
This leads to the adjustment of a beluga whale’s position as
outlined in Equation (41).

Step 4: Ending condition assessment.
The BWO algorithm terminates if the number of iterations

remaining exceeds the maximum number. If not, proceed to
Step 2 again.

C. COMPLEXITY OF COMPUTATION
The computational complexity of BWO, a critical parameter
for assessing its effectiveness, is encompassed by three
processes: initialization, fitness evaluation, and beluga whale
updating. Keep in mind that the initialization method for
beluga whales has a computational complexity of O(n). The
exploration and exploitation phases incur a computational
cost estimated atO(n×Tmax), where n represents a parameter
and Tmax denotes the maximum number of iterations. With an
estimated complexity of approximatelyO(0.1×n×Tmax) the
whale fall probability (Wf ) and balance factor (Bf ) operate
within the computational framework, Affect the computa-
tional complexity in the whale fall phase. Consequently, it is
estimated that BWO’s computational complexity is roughly
O(n(1 + 1.1 × ×Tmax)).

V. THE PROPOSED LEADER BWO ALGORITHM
The proposed technique, named Leader BWO optimization
algorithm, is based on the BWO algorithm as well as
the incorporation of Leader-based mutation-selection [37].
The proposed LBWO technique develops the low conver-
gence speed and the weak local optimum of the original
BWO algorithm thus improving the performance of the
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FIGURE 6. The flowchart of BWO algorithm.

suggested technique to attain the optimal value for the
fitness function. This adjustment utilizes the optimal location
vectors xtbest, x

t
best−1 and xtbest−2 based on the objective

function value of the new position vector xi (new), accounting
for the population count. This approach proves to be a
particularly effective method for addressing these challenges
and reinforcing the performance and resilience of the original
BWO algorithm.

Then the new mutation location vector xi (mut) is given
by [38]:

xi (mut) = xi (new) +2×
(
1 −

t
Max_it

)
× (2 × rand − 1)

×
(
2 ×xtbest −

(
xtbest−1 + xtbest−2

))
+(2 × rand − 1)

×
(
xtbest − xi (new)

)
(44)

Then, the next position is updated using the following
equation:

xi (t + 1) =

{
xi (mut) f (xi (mut)) < f (xi (new))

xi (new) f (xi (mut)) ≥ f (xi (new))
(45)

In conclusion, the optimal solution is revised as follows:

xbest =

{
xi (mut) f (xi (mut)) < f (xbest)
xi (new) f (xi (new)) < f (xbest)

(46)

The flowchart of the proposed LBWO technique is displayed
in Fig. 7. The place of Leader-based mutation-selection in
the proposed algorithm is presented in this figure. This

modification leads to enhance the exploration of the proposed
LBWO algorithm based on the simultaneous crossover and
mutation using the three best leaders. This adjustment results
in an improvement in the exploration aspect of the proposed
LBWO algorithm.

VI. SIMULATION RESULTS AND DISCUSSION
The experiments for the 23 benchmark functions were con-
ducted using MATLAB (R2016a) on a computer equipped
with an Intel(R) Core i5-4210U CPU running at 2.40 GHz
and 8GB of RAM. MATLAB simulations were employed
to evaluate the performance of the proposed system, and
the results are presented below. The simulation outcomes
are utilized to establish optimal scheduling and energy
exchange strategies for residential use. These evaluations
encompass three distinct scenarios under a single RTP pricing
tariff using LBWO, viewed from both the perspectives
of the intelligent user and the electric grid. Furthermore,
a comparative analysis is conducted between the outcomes
derived from our suggested approach and those obtained from
BWO. The analysis is carried out on a singular household
featuring a total of 12 appliances denoted as ‘A’, categorized
as previously mentioned. It is worth noting that appliances
categorized as essential loads may not partake in PAR
reduction or electricity cost minimization, as they remain
non-adjustable and must operate in accordance with user
preferences.
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FIGURE 7. Flowchart of proposed LBWO algorithm.

The initial case study involves a conventional and uncom-
plicated household behavior where electricity consumption
occurs without consideration of peak hours or electricity
prices. The subsequent case study revolves around a savvy
consumer who enjoys certain benefits, including the uti-
lization of a personal microgrid for electricity generation.
This case facilitates a comparative assessment from both the
consumer’s standpoint and the overall electrical network’s
perspective. The intelligent consumer is empowered to make
autonomous decisions while interacting with the power grid.
In the third and concluding case study, the smart consumer
retains the advantages observed in the second case, while
also incorporating an ESS. This allows the consumer not only
to manage load transfers, but also to engage in electricity
trading, storage, purchase, and sale. The proposed system
strives to achieve a comprehensive performance equilibrium.
The pertinent factors for our specific case scenario are
outlined in Table 2 [31].

A. BENCHMARK FUNCTIONS
Within this subsection, the effectiveness of the suggested
LBWO algorithm is showcased through evaluations across

TABLE 2. Factors for case studies.

23 benchmark functions [39]. This paper employs 23 widely
recognized benchmark test functions to evaluate the perfor-
mance of the LBWO algorithm. This paper sets the maximum
iteration limit for all utilized metaheuristic techniques at
200, with a population count of 50. Within this section,
a comparison is drawn between the proposed LBWO
technique and several recent algorithms. These include five
recently introduced algorithms, among which is BWO,
artificial rabbits optimization (ARO) [40], supply demand
based optimization (SDO) [41], wild horse optimizer (WHO)
[42], and INFO [43]. Within this investigation, the solution’s
quality is assessed through the utilization of both standard
deviation and mean value. A technique exhibiting lower
standard deviation and mean value can be deemed as
possessing robust global optimization capabilities and greater
stability. Table 3 presents the statistical outcomes obtained
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TABLE 3. Analyzing the statistical outcomes of benchmark functions involves assessing the performance of both the proposed lbwo algorithm and other
recently introduced algorithms.
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TABLE 3. (Continued.) Analyzing the statistical outcomes of benchmark functions involves assessing the performance of both the proposed lbwo
algorithm and other recently introduced algorithms.
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TABLE 3. (Continued.) Analyzing the statistical outcomes of benchmark functions involves assessing the performance of both the proposed lbwo
algorithm and other recently introduced algorithms.

from the proposed LBWO algorithm and five contemporary
algorithms, applied to address 23 benchmark functions. The
results are portrayed in terms of standard deviation and mean
value, with optimal outcomes emphasized in bold. Referring
to the provided table, the LBWO algorithm demonstrates
superiority over the compared algorithms across the majority
of benchmark functions, considering average values. The
above discussion highlights that the LBWO algorithm is
capable of obtaining superior solutions when compared
to numerous recently introduced techniques, particularly
in the context of solving various benchmark functions.
Additionally, the superiority of the LBWO algorithm over
BWO, ARO, SDO, WHO, and INFO techniques in solving
benchmark functions is evident. This discussion solidly
illustrates the high effectiveness of the proposed LBWO
algorithm.

Also from this table, the evident ranking order reveals that
the proposed LBWO algorithm surpasses all the compared
techniques across the spectrum of 23 benchmark optimization
problems. The BWO and ARO algorithms demonstrate com-
mendable robustness, securing the second and third positions
in terms of effectiveness. This leads to the conclusion that
the proposed LBWO technique establishes itself as a potent
algorithm for addressing these particular problem types.

Additionally, the convergence curves using these tech-
niques for each 23 benchmark functions are shown in Fig. 8.
Every benchmark function undergoes 20 separate runs. Addi-
tionally, Fig. 8 illustrates that the proposed LBWO algorithm
exhibits significantly improved convergence behavior when
contrasted with the original BWO, ARO, SDO, WHO, and
INFO algorithms. The LBWO algorithm’s rapid convergence
capability positions it as a proficient and promising solution
for addressing real-world optimization challenges. In order
to analyze the obtained results, a boxplot depicting the
performance across 23 benchmark functions is presented in
Fig. 9. Boxplots are exceptional graphical representations
for showcasing data distribution, making them an excellent
choice for emphasizing the alignment within the dataset.
These plots showcase boxes representing the 1st, 2nd, and
3rd quartiles of values, along with vertical lines extending
from the boxes known as whisker lines. These whisker lines
offer insights into the range of data distribution. Fig. 9
further reveals that the boxplots associated with the proposed

LBWO algorithm exhibit narrower shapes and predominantly
occupy lower value ranges across a significant portion of the
functions.

B. CASE 1: TRADITIONAL HOUSEHOLD
In the absence of energy management and a limited grid
capacity, a typical household is unable to generate surplus
electricity for resale. This conventional residence struggles
to effectively control its electricity usage. Furthermore,
the resident unknowingly and without any awareness of
electricity costs or other considerations, lacks the capacity
to make informed choices regarding electricity consumption.
In this scenario, electricity is purchased and utilized without
mindful consideration.

Referencing Fig. 10, there is a depiction of pricing
signals alongside the electricity consumption of traditional
households from the grid. This visual representation clearly
demonstrates that the electricity usage by the consumer
is haphazard and uninformed, as they disregard electricity
prices. Notably, during periods of elevated electricity prices
(as shown in the 9-10 timeframe), the consumer continues to
purchase and consume electricity, thereby creating consump-
tion peaks that impact the grid’s stability.

As highlighted in Fig. 11, the cost of electricity is displayed
on an hourly basis. Fig. 12 goes on to exhibit the cumulative
electricity expenses. However, it should be noted that the
outcomes derived from this scenario serve as a foundational
reference for our forthcoming comparisons.

C. CASE 2: HOUSEHOLD HAS AN ENERGY MANAGEMENT
SYSTEM BUT LACKS MICROGRID
Home energy management is taken into account, and
the intelligent consumer has the ability to control their
electricity consumption. Devices with adaptable functionality
can change when they operate, moving from times of high
demand to times of lower demand. In this situation, an energy
management controller is set up, and it adjusts the usage
pattern based on pricing and load information. Fig. 13 depicts
the hourly electricity consumption under two scenarios:
one without any load scheduling, and the other with load
scheduling using LBWO and BWO methods.

In Fig. 10, it’s evident that the employment of LBWO
results in lower electricity consumption compared to the
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FIGURE 8. Convergence characteristics of applied algorithms for 23 benchmark functions.

utilization of BWO, which leads to a lower consumption
than unscheduled electricity usage. Moving on to Fig. 14,

it demonstrates the effective reduction of PAR through
load shifting. LBWO exhibits notably better performance in
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FIGURE 8. (Continued.) Convergence characteristics of applied algorithms for 23 benchmark functions.

PAR reduction, outperforming both the BWO scenario and
the unscheduled condition. Specifically, the application of

LBWO and BWO brings about a reduction in PAR by 26%
and 15%, respectively.
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FIGURE 9. Boxplots of applied algorithms for 23 benchmarks functions.
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FIGURE 9. (Continued.) Boxplots of applied algorithms for 23 benchmarks functions.

FIGURE 10. Electricity consumption and RTP signal.

Through the implementation of energy management,
we effectively reduce the hourly electricity expenses, which
consequently leads to the eventual reduction of the overall
daily electricity costs. This is clearly demonstrated in Fig. 11,
where the application of LBWO and BWO during peak
hours results in minimized electricity costs, outperforming
unscheduled energy consumption patterns. Fig. 12 offers
a graphical representation of the total daily electricity
cost. Both figures distinctly show that electricity costs are
minimized with the use of LBWO, surpassing the benefits of
BWO and unscheduled energy consumption.

FIGURE 11. Hourly cost of electricity consumption.

Moreover, when employing BWO, the electricity costs are
lower compared to unscheduled consumption. In the second
scenario, a combined reduction in electricity costs of 61% and
51% is achieved through the utilization of LBWO and BWO,
respectively.

D. CASE 3: HOUSEHOLD HAS MICROGRID AND AN
ENERGY MANAGEMENT SYSTEM
In this context, the focus shifts towards a microgrid that
integrates an ESS, mirroring the intelligent home scenario
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FIGURE 12. The total cost of electricity consumption.

FIGURE 13. Electricity consumption per hour without and with load
scheduling.

FIGURE 14. PAR.

mentioned earlier. The informed consumer possesses the
ability to make timely decisions on an hourly basis, adjusting
energy usage, purchasing or vending electricity, and storing
power. In this situation, surplus electricity is sold back to the
grid when prices are high. The microgrid caters to energy
demands during peak periods and imports power from the
public grid when prices are low. This strategy maximizes the
smart home’s financial gains. Fig. 15 portrays wind turbines
and solar panels for generating electricity. Power generation
from the microgrid dwindles in the morning and evening due
to decreased sunlight and lower wind velocities. In contrast,
the highest output occurs during peak operating hours,
coinciding with the peak wind speed and solar radiation in
the daytime.

The effectiveness of wind turbine electricity generation
hinges on wind speed. Greater wind speeds result in more
substantial electricity production. Conversely, low wind
speeds lead to diminished output, while high wind speeds
escalate electricity generation. Hence, there exists a direct
correlation between wind speed and the electricity yielded
by wind turbines, as depicted in Fig. 16. Solar panel

FIGURE 15. Electricity generation from solar panels and wind turbines.

FIGURE 16. The effect of wind speed on electricity generation from wind
turbines.

FIGURE 17. The effect of temperature on electricity generation from solar
panels.

FIGURE 18. Tariff price with electricity selling and importing.

electricity generation efficiency, on the other hand, hinges
on temperature. Generally, higher temperatures enhance the
conversion of solar radiation into electricity. This indicates
an inverse connection between temperature and solar panel
efficiency in power generation, as shown in Fig. 17.
Fig. 18 showcases the collective import and export

of electricity facilitated by both the LBWO and BWO
algorithms. Proficient execution of these actions enables the
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FIGURE 19. Earning and cost for electricity selling and importing.

TABLE 4. Comparison between studied cases.

consumer to achieve optimal gains through electricity trading.
Furthermore, the suggested LBWO algorithm surpasses
the performance of BWO, particularly in terms of energy
trading during high-cost periods and load distribution. Total
profit resulting from electricity sales and overall electricity
expenses are depicted in Fig. 19. The proposed LBWO
algorithm distinctly excels over BWO in terms of enhancing
returns and minimizing electricity costs.

E. DISCUSSION
This section offers an elucidation of the three preceding
studied cases, accompanied by a comparative analysis
involving the proposed diagrams utilizing LBWO and BWO
algorithms. In Fig. 19, there is a notable reduction in
electricity costs, highlighting the increased efficiency of
Case 3 in comparison to Case 2. Displayed in Fig. 18 is the
amalgamated electricity intake from the external grid, and
upon juxtaposing the three cases, it becomes evident that
Case 3 exhibits the lowest electricity import volume when
compared to Cases 2 and 1.

In terms of the PAR, Case 2 surpasses Case 1 in terms
of diminishing the PAR value, as evidenced by Fig. 14. The
integration of ESSs is imperative to ensure a dependable
and stable grid. This integration is exemplified in Case 3,
where energy is adeptly managed to enhance profitability,
as illustrated in Fig.19. Table 4 encapsulates the comparative
analysis among the three cases utilizing LBWO and BWO
algorithms.

VII. CONCLUSION
In this study, we successfully implemented DMS in
conjunction with a RTP tariff to develop an effective

electricity load management strategy utilizing LBWO and
BWO techniques. Our primary objective was to optimize
electricity consumption for a smart household equipped with
a microgrid connected to the main grid, addressing both load
optimization and energy trading challenges. The integration
of ESSs proved to be essential in ensuring a resilient and
consistent power grid operation. This approach empowers
smart consumers to efficiently distribute, purchase, sell,
or store electricity.

To validate the effectiveness of our proposed scheme,
we conducted a comprehensive comparative analysis across
various cases and scenarios. The simulation results unequiv-
ocally demonstrate the superiority of our approach in
terms of profit maximization, PAR reduction, and overall
electricity cost savings. In specific instances, such as Case 2,
we observed a notable reduction in electricity costs by
61% and 51% through the utilization of LBWO and BWO
methods, respectively. In a more challenging setting, for
Case 3, the electricity costs demonstrated a remarkable
decrease of 76% and 64% with the employment of LBWO
and BWO, reaffirming the robustness of our proposed
scheme.

Furthermore, our proposed strategy exhibited promising
profitability, achieving profits of 154 and 118 cents through
LBWO and BWO, respectively. Notably, across all evaluated
scenarios, LBWO consistently outperformed BWO in terms
of profit maximization, PAR reduction, and cost minimiza-
tion.

As a direction for future work, our research opens avenues
for exploring the integration of advanced machine learning
algorithms to enhance load forecasting accuracy and adaptive
decision-making. Additionally, investigating the scalability
of the proposed scheme to larger and more complex energy
systems could provide insights into its applicability in real-
world scenarios. Moreover, incorporating real-world data
and considering dynamic factors such as changing energy
prices and consumer behaviors would contribute to a more
comprehensive evaluation of the scheme’s performance.
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