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ABSTRACT In modern power systems, testing protection systems and equipment before the field
implementation is vital to ensure the correct operation and guarantee reliability, quality and security of
electricity supply. This paper focuses on the performance testing of the distance protection, whose state-of-
the-art test methodologies (including the recommendations of the IEC 60255-121:2014 standard) can quickly
lead to time/money resource limitations. As budget-wise considerations should not justify an ‘‘arbitrary’’
or ‘‘convenient’’ selection of which and how many tests to perform, this paper shows how the current
testing methodologies benefits from the statistical design of experiments (stat-DOE). It is proven how the
stat-DOE supports the performance testing in the efficient selection of the optimal tests to conduct, in the
systematic investigation of the effect of different factors, and in the robust definition of pass/fail criteria for
specifying acceptance tests. A step-to-step practical guideline for adopting the stat-DOE is offered to conduct
a realistic performance testing, accounting for operator-specific requirements (e.g., maximum affordable
number of tests) and physical constraints among factors. The results allow to propose lines of refinement
and recommendations for the stakeholders. Finally, not only this paper serves as a guide to replicate the
performance testing of other protection functions or in alternative scenarios, but it also ultimately paves the
way for the routine adoption of the stat-DOE in the definition and refinement of test methodologies for power
system protection testing at large towards the achievement of a standardized basis for it.

INDEX TERMS Design of experiments, distance relay, IEC 60255-121:2014, performance testing, power
system protection.

I. INTRODUCTION
The increasing complexity of modern power grids calls for
more sophisticated protection functions to ensure correct
operation of the power system as well as the reliability,
quality and security of supply [1]. Thus, testing the protection
functions embedded in protection equipment and systems
turns to be a vital activity, to ultimately prevent the potentially
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disruptive consequences of protection failures, such as major
power outages and widespread cascading events. Power
system protection testing is a multi-faceted and broad-scope
activity. Different types of tests (both device-specific and
application-oriented) are identified by the IEEE Guide for
Power System Protection Testing [2], such as certification,
application, commissioning and maintenance tests. Among
these, this paper focuses on performance tests, i.e., a type
of certification tests typically conducted when a new relay
has to be used in the power system or a firmware has to
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be upgraded. These tests assess the ability of the relay to
perform based on its specifications and verify its behaviour
under realizable power system conditions, including fault
conditions. To test the performance of protection functions,
testing platforms based on real-time simulation are usually
developed inHardware-in-the-loop (HiL) tomodel (complex)
power systems and enable their connection with the physical
equipment under test to investigate the response under
conditions similar to real operation (e.g., [3], [4], [5], [6]).
Besides testing platforms, testing methodologies are also
required to assess the protection schemes, and standardization
efforts have been made to help users evaluate protection
functions on a formal basis with respect to relay selection,
setting, commissioning, application, and operation [7].
Among all the different protection functions, this paper

focuses on the distance protection as the function subject
of the testing procedure, due to its broad adoption in
transmission systems for its simplicity, selectivity, and
dependability [8]. The distance protection function works by
measuring the line impedance and comparing it to a threshold
value. The impedance seen by the relay is calculated based
on voltage and current measurements at the relay location.
As such impedance is a proportion of the distance from the
measurement location to the fault point, the fault location
recorded by the relay can be computed. In general terms, the
performance of the distance protection function can be seen
as a process f :

Y = f (U) (1)

which takes as input a set of factors U = {Ui}i∈{1,...,K }

(e.g., fault location, fault resistance) and outputs a set of
measurable response variable(s) Y (e.g., the operate time
of the relay). To assess the distance protection performance
and investigate which factors have the biggest impact on it,
one or more experiments (defined as a series of NT tests)
are conducted by deliberately changing the factors U at
different values (e.g., applying faults at different locations
with different fault resistance) and recording the response(s)
of interest.

A. STATE-OF-THE-ART OF EXPERIMENTAL STRATEGIES
FOR DISTANCE PROTECTION PERFORMANCE TESTING
The experimental strategies met in the literature for the
distance protection performance testing can be categorized
into one-at-a-time (OAT) and factorial, as discussed next.

1) ONE-AT-A-TIME EXPERIMENTS
The most straightforward experimental strategy is the OAT
method, which consists in choosing an initial pointU0 (where
all the factors are set at their baseline or nominal values),
and successively varying each factor one at a time over
its range of interest with the other factors held constant
at the baseline level, possibly iterating such approach by
selecting different nominal points U0 [9], [10]. Examples of
performance tests based on OAT experiments can be found
in [5], [11], and [12]. For instance, Figure 1 depicts an

OAT experiment to test the distance relay performance (in
terms of operate time) depending on changes in two factors,
namely fault location and fault resistance, in the case of
a single-phase-to-ground fault (AN) with inception angle
of 0◦. Assuming that Zone 1 covers 85% of the protected
line, the effect of different fault locations (from 0% till
85%) is tested (Figure 1a), with fault resistance fixed at 1�;
then, the fault resistance is varied over multiple values from
0.001� to 40�, with fault location fixed at 85% (Figure 1b).
Such OAT method is undoubtedly appealing and intuitive:
changing one factor at a time logically implies that whatever
observed effect on the process response can be exclusively
attributed to the specific factor being varied in each test. For
example, it might be inferred that, at the nominal conditions
studied in the two sets of tests (i.e., 1� and 85%), the
fault resistance has a major effect in increasing the operate
time (Figure 1b), with the fault location being important
only when the fault occurs at the boundary of Zone 1
(Figure 1a). Yet, OAT methods showcase at least two major
methodological flaws [9], [10]. First, they fail in detecting
potential interactions between factors, i.e., when the effect of
one factor on the observed response depends on the level of
another factor (e.g., being magnified or dampened). This may
lead to the incorrect classification of the factors’ importance
for the distance protection performance and ultimately to
poor results (which might even change if different nominal
points U0 are chosen). Second, they are ineffective in dealing
with the ‘‘curse of dimensionality’’, i.e., the number of tests
to conduct might easily exponentially grow as the number of
factors to investigate increases.

FIGURE 1. Example of an OAT experiment.

2) FACTORIAL EXPERIMENTS
Opposite to the OAT method is the factorial strategy, which
is based on varying multiple factors together instead of one
at a time. Although less intuitive than the OAT method, the
factorial strategy is a more robust approach when dealing
with several factors as interactive effect among factors
might emerge and be effectively captured. In its general
form, a factorial experiment is based on the so-called ‘‘full
factorial’’ design: the effect of K factors {U1, . . . ,UK } on
the process response is assessed by discretizing the factor
variability range into a given number of values {L1, . . . ,LK },
the so-called ‘‘levels’’, and conducting tests for each factor
level combination (or ‘‘run’’), sometimes replicating the same
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experimental runR times, for a total ofNT = L1×. . .×LK×R
tests. Examples of performance tests based on full factorial
designs can be found in [4], [12], [13], [14], and [15], as well
as in the IEC 60255-121:2014 standard [16]. In particular,
the latter was issued by the IEC Technical Committee 95 in
2014 with the intent to address the lack of uniformity
among testing methodologies, prevent misunderstandings
within the protection relay community, and produce a
standard procedure to evaluate and compare protection
function performance claims from different manufacturers.
The sequence of tests suggested by the IEC 60255-121:2014
standard [16] is reproduced in the flowchart of Figure 2: four
factors are considered, namely source impedance ratio (SIR),
fault location, type, and inception angle, and each of them
is studied at specific levels (4, 7, 4 and 4, respectively); all
the other factors (e.g., fault resistance, other relay settings)
are held constant at nominal values. As each fault is injected
4 times, NT = 1792.

FIGURE 2. Flowchart of the sequence of tests suggested by [16] (adapted).

B. MOTIVATIONS OF THE WORK
In Section I-B1, the main challenges and practice lacks
deriving from the above-discussed literature review are
presented. Based on these, Section I-B2 illustrates how this
paper intends to overcome them and to go beyond the
state-of-the-art.

1) MAIN CHALLENGES IDENTIFIED IN THE
STATE-OF-THE-ART
From the state-of-the-art review of Section I-A, three main
challenges can be identified.
(i) The distance protection performance testing conducted

in the literature (employing either OAT or full factorial
designs) is limited to measuring one or more responses
of interest, without an in-depth analysis of the results.
Consider e.g., Table 1, which shows an excerpt of the
full factorial experiment performed in [14], where the
relay operation is analysed for different fault locations
and types (‘‘✗’’ and ‘‘✓’’ signalize failure and success
in detecting the fault, respectively). From Table 1,
the only possible inference is that, if an AN fault
occurs, the relay fails to operate in both Zone 1
and 2, regardless of the fault location. Although such

TABLE 1. Example of a factorial experiment (adapted from [14]). Zone 1
and 2 are set to cover 80% and 150% of the protected line, respectively.

factorial experiments—which explore all the possible
combinations of the factors’ levels and are hence more
informative and efficient than OAT strategies—can be
effective in spotting some combinations of factor levels
leading to the relay misoperation, no attempt to perform
further analysis is carried out. For example, again with
reference to Table 1, no assessment of the statistical
significance of the effects of fault location and type is
performed, no empirical model of the relay operation
as function of the latter is built, and no ‘‘operability
region’’ in the design space (i.e., the space containing
all the possible factors’ combinations) is even roughly
defined.

(ii) When following the recommendations of the IEC
60255-121:2014 standard [16], it turns out to be
inevitable to conduct hundreds or thousands of tests.
This is even more so when a wider set of scenarios
is to be investigated to check compliance with utility-
specific requirements [15], and/or more factors than
those in [16] are worth to test, such as the fault resistance
(as done e.g., in [4], [15], [17]), which [16] suggests to
hold constant at 0�. These aspects introduce challenges
in terms of cost and duration of the testing activity—
especially in resource-saving contexts, e.g., due to the
required experimental time—, which are sometimes
used to justify an ‘‘arbitrary’’ or ‘‘convenient’’ selection
of the tests to perform, e.g., subjectively limiting the
number of factors to study, avoiding the collection of
replicated tests, etc.

(iii) The size of the experiment prescribed by factorial
designs might not be compatible with the maximum
number of tests that the operator can afford. For
instance, [13] conducted nearly 105 tests with an average
of 5 tests per minute, which, considering 8 working
hours per day, translates into about 40 days of tests.
Also, the scenarios under test might own properties
that lead the design space to be characterized by
some physical constraints that ultimately translate into
correlations among factors and/or disallowed combina-
tions thereof (e.g., phase-to-phase faults having non-
null resistance). The full factorial design prescribed
by the IEC 60255-121:2014 standard [16] cannot
accommodate user-specific requirements as well as
physical constraints among factors.
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TABLE 2. Overview of the workflow for the stat-DOE [9].

2) GOING BEYOND THE STATE-OF-THE-ART
The above challenges call for strategies which might
(i) enable robust and deeper analysis of the experimental
results, (ii) aid in the optimal choice of the tests while
retaining the experimental effort under control and holding
a greater level of objectivity in the testing procedure, and
(iii) flexibly account for operator-specific requirements and
physical constraints among factors. These features can be
effectively tackled by the statistical Design of Experiments
(stat-DOE), whose steps are reported in Table 2 and detailed
in Section III. The stat-DOE combines the strength of
the classical DOE [18], i.e., the process of laying out a
detailed plan in advance of carrying out the real experiments,
with the power of the statistical approach to properly
collect data (especially in resource-saving contexts) and
statistically analyze them, ultimately enabling scientifically
sound and robust inferences (see e.g., [9], [10]). The idea of
adopting a stat-DOE based approach for testing procedures
is not novel; e.g., in the smart grid interoperability testing
methodology [19] developed by the European Union Joint
Research Centre, the stat-DOE is an integral part of the test
procedure [20], [21]. Yet, to the best of authors’ knowledge,
never has the stat-DOE theory been applied in the power
system protection testing. Thus, the ultimate objective of this
paper is to show which benefits the stat-DOE can bring to
the testing methodologies for power system protection, with
specific focus on the distance protection function.

In this paper, the challenges of Section I-B1 are tackled by
resorting to the stat-DOE as discussed hereafter.

(i) Accurately designing an experiment via the stat-DOE
enables to robustly analyze the experimental results and
equip the testing procedure with a higher degree of
objectivity. In fact, the stat-DOE allows to statistically
characterize the variation of the response, to learn which
factors have the greatest influence on it, to identify
cause-effect relationships by fitting an empirical model
and using it to predict the process behavior at unexplored
factor levels’ combinations, to attach a given level of sta-
tistical confidence to any statement or conclusion, and
ultimately to support decision-making (e.g., compliance
check with utility-specific requirements or standard
guidelines before the field implementation of protection
devices/systems). The wealth of possibilities that would
stem at no cost from the statistical methods envisaged
by the stat-DOE (i.e., Step 6 of Table 2) is demonstrated
in Section V in an exemplary three-factor scenario,

where the full factorial design is used to reflect the most
widespread state-of-the-art experimental strategy.

(ii) The number of tests with a full factorial design increases
exponentially as the number of factors and/or the
number of their levels grow. To face such curse of
dimensionality, the stat-DOE theory offers alternative
designs that allow objectively reducing the number
of tests while maintaining a satisfactory level of
information. One of the most adopted designs to meet
such trade-off among economy and efficiency is the so-
called ‘‘fractional factorial’’, which is illustrated in the
context of the stat-DOE in Section VI in an exemplary
four-factor scenario.

(iii) Full and fractional factorial designs belong to the
family of classical designs, which have represented
the common practice since the early origins of the
stat-DOE theory [18], [22], [23]. Classical designs
work well when the scenario under study can be
securely mapped to any of them, and no particular
physical constraints or operator-specific requirements
are present. As this is not always the case (or at least
only partially), it turns out to be more convenient to
create an optimal ‘‘custom’’ design for the specific
experimental quest, instead of forcing the problem to fit
itself to the available off-the-shelf classical designs: this
is the rationale behind the modern designs, which have
been establishing as the best-practice within the stat-
DOE community, and many general-purpose statistical
software packages have become available to generate
them (e.g., [24], [25], [26]). When compared to classical
designs, modern designs (introduced in Section VII)
offer wider flexibility, by allowing not only the optimal
choice of the tests to conduct in the presence of
operator-specific requirements (e.g., maximum number
of affordable tests), but also to effectively work with
a constrained design space. Due to their broad-scope
applicability, modern designs are used in Section VIII,
where a guideline of the stat-DOE application is
illustrated to emulate a realistic performance testing of
a commercial distance relay in an HiL set-up.

C. CONTRIBUTIONS OF THE WORK
This paper brings the following novel contributions:

1) the stat-DOE theory is introduced for the first time in
the field of power system protection testing, by showing
how the former can be mapped to the latter; the full
and fractional factorial designs are revamped to test the
distance protection performance in two exemplary sce-
narios; the benefits of the stat-DOE to the state-of-the-
art testing of distance protection performance (including
the IEC 60255-121:2014 standard) are demonstrated;

2) the design efficiency of the two main experimental
strategies encountered in the literature (i.e., OAT and full
factorial) is compared in resource-saving contexts, i.e.,
in terms of amount of information that can be extracted
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when constraints are posed on the number of tests to
afford (e.g., due to limiting time/money budget);

3) a stat-DOE application guideline is showcased to
conduct an HiL testing of the distance performance by
adopting the current best-practice of modern designs;
the process and the results are used to compile
lines of refinements and recommendations for all the
stakeholders involved in the standardization chain (i.e.,
relay manufacturers, utilities, standardization bodies).

D. STRUCTURE OF THE PAPER
Section II provides theoretical background of the distance
protection function. Section III offers a brief overview of
the stat-DOE and maps its seven steps to the distance
protection performance testing. Section IV describes the test
set up adopted for all the experiments performed throughout
the paper. Section V describes the full factorial design
and discusses the wealth of possibilities stemming from
the statistical methods of the stat-DOE in an exemplary
three-factor scenario. Section VI describes the fractional
factorial design by actualizing it in an exemplary four-
factor scenario. Section VII presents the concept of the
modern designs and provides a technical comparison of
the OAT and factorial designs from the design efficiency
viewpoint. Section VIII illustrates the guideline to conduct
a realistic performance testing via the stat-DOE with the
current best-practice of modern designs, and extracts lines
of refinements and recommendations for all the stakeholders.
Section IX concludes the paper.

II. BACKGROUND ON DISTANCE PROTECTION
The distance protection (which is the most widely used
protection function in transmission systems) estimates the
physical distance between the relay’s sensors (voltage
and current transformers) and the location of the fault,
by measuring the line impedance and comparing it to a
threshold value. If the impedance seen by the relay is smaller
than the threshold value, the relay triggers a signal to the
appropriate circuit breaker to isolate the faulted line section.

Distance relays are designed to trip specific breakers to
protect limited zones of the power system, each of them char-
acterized by different time grading. Consider the exemplary
transmission system of Figure 3 with radial configuration,
whereby a distance relay is located at substation A, and
the impedance (R-X) diagram of Figure 4. In general, four
protection zones can be set within the relay.

• The relay setting for Zone 1 (in forward direction)
usually covers 80% to 85% of the impedance of
section A-B.

• The relay setting for Zone 2 (in forward direction) covers
100% of the impedance of section A-B plus 50% of
the impedance of the shortest line (section B-C). In the
case the remote substation misses the outgoing line
(e.g., substation B), but only the transformer bay (TX)
is present, Zone 2 covers 100% of the impedance of
section A-B plus 20% of the TX impedance.

FIGURE 3. Sample transmission system in radial configuration.

FIGURE 4. Phase and ground characteristic of the distance protection.

• The relay setting for Zone 3 (in forward direction)
covers 100% of the impedance of section A-B plus
120% of the impedance of the longest line (section B-D).
If there is an overlapping problem of Zone 3 between the
relays at substations A and B, the Zone 3 setting of the
relay at substation A covers 100% of the impedance of
section A-B plus 100% of the impedance of section B-C
plus 25% of the impedance of section C-E. In the case
the remote substation misses the outgoing line and only
the TX is present, Zone 3 covers 100% of the impedance
of section A-B plus 60% of the TX impedance.

• The relay setting for Zone 4 (in reverse direction) is
usually equal to 15% of the Zone 1 setting. Zone 4
is used as backup protection of the bus bar at the
substation A. Yet, for radial passive systems, Zone 4
does not operate since no current reversal is present, i.e.,
the fault contribution in the reverse direction is null.

Mho and quadrilateral characteristics are used by distance
relays to detect phase and ground faults, respectively,
as shown in Figure 4. To calculate the fault location, the
distance protection function receives voltage V and current I
signals from the instrument transformers at the relay location,
from which the impedance of the transmission line Z r is
computed [27]. For example, in the case of a single-phase-
to-ground fault AN, the impedance seen by the relay Z rA is
computed as:

Z rA =
V r
A

I rA + k0I rA
(2)

where k0 = (Z0 − Z1)/3Z1 is the compensation factor
(with Z0 and Z1 indicating the zero- and positive- sequence
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impedance of the line, respectively). On the other hand, in the
case of e.g., a phase-to-phase AB fault, the impedance seen
by the relay Z rAB is computed as:

Z rAB =
V r
A − V r

B

I rA − I rB
(3)

Similar formulas hold for the other fault types [27].

III. STATISTICAL DESIGN OF EXPERIMENTS
In this section, the steps of the stat-DOE workflow (see
Table 2) are briefly described and mapped to the specific
context of the distance protection performance testing. The
JMP® toolkit [26] supports the stat-DOE throughout this
work.

A. STEP 1 – SPECIFY PROBLEM AND OBJECTIVES
The problem at hand and the question(s) to address via the
specific experiment(s) are defined. In general, experiments
can be conducted e.g., for factor screening (to identify
the influential factors out of many factors to investigate);
optimization (to find the optimal settings of the influential
factors which yield ‘‘desirable’’ values of the response);
confirmation (to verify that the process behaves according to
some preliminary knowledge or hypothesis); robustness (to
study under which conditions the response takes on values in
‘‘unwanted’’ regions). In practice, the (distance) protection
performance testing can be undertaken not only by the relay
manufacturers to evaluate the relay design and check the
compliance with standards, but also by the utilities to check
the accuracy of the protection relay and define acceptance
tests, including acceptance criteria and requirements related
to the specific application [2], [7], [28].

B. STEP 2 – CHOOSE THE RESPONSE VARIABLE
One or more measurable responses of interest are identified
which provide useful insight about the process under study
and can satisfactorily address the experiment’s objective.
For example, valid metrics for evaluating the distance
protection performance can be the operate time, or the
selectivity of the relay at a specific protection zone [4].
Statistical indicators are sometimes extracted from the
measured responses, e.g., the minimum and maximum values
of the operate time, as well as the mode, median and
mean [16].

C. STEP 3 – CHOOSE FACTORS, LEVELS AND RANGES
The factors which might affect the response and are the main
target of the experiment are carefully selected, whereas the
others which may exert some effect on the response but either
are not of interest or it is convenient to ‘‘control’’ are set at a
specific level. Selecting which factors belong to either classes
(referred to as design factors and held-constant factors,
respectively) can be done by resorting to contributions from
stakeholders, subject expertise, standard guidelines, etc. For
example, the IEC 60255-121:2014 standard [16] considers
SIR, fault location, type and inception angle as the design

factors to evaluate the dynamic performance of distance
relays (see Figure 2), whereas the held-constant factors are
the fault resistance (to be set at 0�, or to the minimum
allowed value if numerical limitation arises) and all other
settings needed for distance protection to perform correctly
(to be set to the most common values suggested by the
manufacturer).

In addition, the ranges over which the design factors will
be varied as well as the levels at which these will be tested are
defined. For example, the fault location can be tested from 0%
to the boundary of Zone 1 (e.g., 85% of the protected line) if
the performance in such protection zone is of interest, or AN,
BN, and CN fault types can be injected if only single-phase-
to-ground faults are to be studied. Similarly to the selection of
design and held-constant factors, the factor ranges to choose
as well as the levels for each factor to study are typically the
outcome of some form of process knowledge (e.g., in terms
of practical experience, theoretical understanding, etc.) or
technical guidelines [16], [29].

D. STEP 4 – SELECT THE DESIGN
Out of the plethora of the available designs, the fittest for
the objective and specifications of the experiment is selected.
Based on the chosen design, a ‘‘design matrix’’ is generated
(such as the second and third columns of Table 1): each
row defines the nth factor level combination to test in each
run (n = 1, . . . ,N ) and each column specifies the level
at which each factor is set for the nth run. The design
selection should account for the size of the experiment in
terms of number of tests that can be afforded (potentially
considering replicated runs), and preliminary assumptions
on a tentative empirical model linking the design factors to
the response variable (e.g., presence of interactions among
factors, or quadratic effects for some factors). Two main
classes of designs can be identified: classical and modern
designs.

• Classical designs are mostly used to introduce stat-
DOE concepts, and include e.g., full and fractional
designs, response surface designs, mixture designs,
Taguchi array designs, split plot designs [9]. Upfront and
quite good knowledge of the system/process is required
when choosing classical designs, as they prescribe the
number/type of factors, the factor levels and model
effects as well as the number of tests to conduct.

• Modern designs are the current best-practice for carry-
ing out experiments. They aremostly computer-generated
designs that can be optimally customized to meet
specific features of the problem at hand [9], hence
providing the operator with more flexibility. For
instance, the number/type of factors, factor levels and
model effects can be freely specified (e.g., based
on subject matter expertise), the number of tests to
conduct can be tuned to match given operator-specific
requirements, and physical constraints among factors
can be handled.
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E. STEP 5 – CONDUCT THE EXPERIMENT
The experiment designed according to Step 1 to 4 is
conducted by testing all the factors’ combinations reported
in the design matrix. A script might come in handy to
automatize the sequential reading of the tests to perform, the
configuration of the testing platform with the corresponding
power system conditions, and the results’ extraction [15].

F. STEP 6 – STATISTICALLY ANALYSE THE DATA
To guarantee that results and conclusions are reliable and
objective, statistical methods are employed to analyze the
experimental data. These include e.g., statistical test of
hypothesis, confidence interval estimation, ANalysis Of
VAriance (ANOVA) and graphical methods [9]. Multivariate
regression analysis is also used to derive an empirical model
that best emulates the unknown functional relationship of (1)
between the observed response(s) and the (influential) design
factors. Also, follow-up runs usually planned according to
design augmentation strategies as well as confirmation tests
can be performed to validate the experiment conclusions.

G. STEP 7 – CONCLUSIONS AND RECOMMENDATIONS
Once the data have been analyzed, practical conclusions
about the results are drawn and actions are recommended
to the involved stakeholders. For example, the statistically
designed experiment can suggest which factors have the
biggest influence in driving the operate time above utility-
specific thresholds, or which factors have small (or negli-
gible) impact and can be studied by considering just fewer
levels (or even removed from the set of design factors) in
subsequent experiments, hence reducing the number of tests
to conduct. Also, the whole standardization chain can receive
useful inputs for further refinement, in terms of e.g., whether
it is worth integrating additional factors in the performance
tests (such as the fault resistance, that the IEC 60255-
121:2014 standard prescribes to be excluded from the set of
design factors) or indication on how pass/fail criteria can be
rigorously defined based on the specific application (about
which no directions are given in the IEC 60255-121:2014
standard).

IV. SCENARIOS UNDER STUDY AND TEST SET-UP
A. SCENARIOS UNDER STUDY
In this work, the distance protection performance is tested
in three different scenarios. Two exemplary scenarios are
elaborated to facilitate the understanding of the full and
fractional factorial designs, which are described in Sections V
and VI, respectively. In Section VIII, a more close-to-reality
scenario is developed to conduct a realistic performance
testing and provide a guideline of the stat-DOE application
by adopting the current best-practice of modern designs.

B. TEST SET-UP
The test set-up adopted to conduct all the experiments in these
three scenarios is described in Figure 5, which depicts the HiL

FIGURE 5. Testing platform developed for this work.

testing platform developed, consisting of real-time simulator,
CMS-356 amplifier, relay under test, router, as well as
GTAO, GTFPI, and GTNETx2 cards. An interface with both
GOOSE and copper-wire (output contact) is implemented via
GTNETx2 and GTAO/GTFPI cards, respectively.

The adopted power system model, shown in Figure 6
and simulated in the RSCAD® software, is a PI model
transmission line consisting of a bundle circuit per phase
(connected to the 115 kV grids on both sides as recommended
by the IEC 60255-121:2014 standard [16]), with:

• R0 = 0.2135�/km, X0L = 1.3294�/km, X0C =

0.567�/km for the zero sequence;
• R1 = 0.0429�/km, X1L = 0.2677�/km, X1C =

0.232�/km for the positive sequence.
The sensors modeled in the power system of Figure 6 are
ideal voltage and current transformers (with 115kV/115V and
1800A/1A ratios, respectively); no saturation is considered.

FIGURE 6. Single line diagram of the power system model.

The device under test is the Schneider P543 relay, with
four protection zones implemented therein. The phase and
ground characteristics of the distance protection function are
mho and quadrilateral, respectively. Taking into account the
utility requirements, the resistive reach for all the zones of
the quadrilateral element is set to 40 primary �. The service
settings of the relay, calculated according to the power system
model of Figure 6, are reported in Table 3.

TABLE 3. Service settings of the distance relay under test.

A script file is used, for the nth test, to (i) read the
corresponding row of the design matrix, (ii) configure the
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necessary power system conditions (e.g., line impedance
based on the fault location, SIR), (iii) emulate the fault
inception, and (iv) record the test result. One test is physically
conducted as follows: when a fault is applied in the power
system, the relay receives voltage and current signals (pre-
fault and during fault conditions) via the amplifier. Based
on formulas like (2) and (3), the relay decides whether
the occurrence of the fault is located inside the protection
zones. If so, the relay sends the trip signal using both
GOOSE and output contact to the real time simulator, which
correspondingly measures the operate time. The closed/open
status of the circuit breaker at the relay location is sent to the
relay via GOOSE by the real time simulator. The simulation
is run for 12 s to ensure that the power system returns to the
normal conditions before proceeding to the next test. All the
tests are conducted automatically, and the results for each
test, including current and voltage waveform, are recorded
as a COMTRADE file [30] in the case further analyses are
needed.

C. ASSUMPTIONS OF THIS WORK
The assumptions used in this work are described hereafter.

• The measured response of the system is the operate time
t , defined as the duration of the time interval between
the fault inception and the receiving of the trip signal
via GOOSE (without the circuit breaker operation).

• The typical operate time of the circuit breaker (including
mechanical process and arc extinguishing) is 100 ms.

• For the sake of simplicity, only the performance of the
relay at Zone 1 is evaluated.

• Unless otherwise specified, the utility’s viewpoint
is considered when discussing pass/fail criteria and
operability regions for the relay. Although the main pro-
tection zone (Zone 1) shall operate ‘‘instantaneously’’,
the utility can accept to have the main protection operate
just faster than the backup protection (Zone 2 and
3), to prevent wide-area blackout caused by the latter.
As shown in Table 3, the operate time of Zone 2 is
set at 300 ms. This is done to account for the circuit
breaker operation, and to introduce some safety margin
which is quantified in 200 ms to include the relay error,
the overshoot time of the relay, and the error of the
instrument transformers. Hence, the Zone 1 operation of
the relay is assumed to be ‘‘correct’’ (i.e., according to
the utility requirements) as long as t < 200 ms, with
200 ms being considered as the maximum acceptable
operate time.

V. FULL FACTORIAL DESIGN
In this section, an experiment based on the full factorial
design is elaborated to test the distance protection per-
formance. Such design is described in Section V-B while
being actualized in the three-factor scenario of Section V-A.
Later, Section V-C shows the wealth of possibilities that the
statistical analysis of the experimental data (as foreseen by

Step 6 of the stat-DOE) brings if the full factorial design
would be adopted in the broader context of the stat-DOE.
Different statistical analyses are described in detail and then
applied to prove the practical insights that could be gained
to ultimately extract statistically sound inferences. Finally,
Section V-D discusses themain downsides of the full factorial
design and sets the scene for introducing the fractional
factorial design.

A. DESCRIPTION OF THE SCENARIO
In this scenario, the effect of fault resistance, location and
inception angle is tested on the relay performance. The three
factors are tested at two levels: {1, 3}� for the fault resistance;
{84, 85}% for the fault location (assuming that only the
boundary of Zone 1 is of interest); {0, 15}◦ for the fault
inception angle. The generic model (1) thus becomes Y =

f (U1,U2,U3), whereU1,U2,U3 are fault resistance, location
and inception angle, respectively, and Y is the operate time.

B. DESCRIPTION OF THE DESIGN
In general terms, a full factorial design with K factors at two
levels is called 2K design. By convention, the ‘‘low’’ and
‘‘high’’ levels of each factor (U+

i and U−

i ) are indicated with
the orthogonal coding, i.e., with ‘‘−1’’ and ‘‘+1’’.

For the scenario of Section V-A, a 23 factorial design
generates the design matrix reported in Table 4 (second, third
and fourth columns), with N = 8 rows and K = 3 columns:
each row indicates the combination of levels at which the ith
factor is set at the nth run. By repeating the 8 experimental
runs 4 times (as suggested by the IEC 60255-121:2014
standard [16]), 32 tests are conducted. The operate times are
collected in the columns Y1 through Y4. The columns Yn• and
Ȳn• report the sum and the average of the four replicates of
the nth run. The grand total

∑4
n=1 Yn• and the grand mean

1
4

∑4
n=1 Ȳn• are indicated as Y•• and Ȳ••, respectively.

The 8 factor levels’ combinations to test with a 23 design
are displayed geometrically as the cube depicted in Figure 7.
To identify what factor levels’ combination yields the (sum of
the) responses of each run, the convention is used to denote
the ‘‘+1’’ level of any factor Ui by the respective lowercase
letter, and the ‘‘−1’’ level of any factor Ui by the absence

FIGURE 7. Geometric view of the 23 factorial design.
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TABLE 4. Design matrix of the 23 design and measured response (in terms of operate time) for the three-factor scenario of Section V-A.

of the corresponding letter. For example, fR corresponds to
the response obtained when the fault resistance is tested at its
‘‘+1’’ level and the fault location and fault inception angle are
at their ‘‘−1’’ levels. When all the factors are at their ‘‘−1’’
levels, I is used to denote the corresponding response.

C. CONDUCT STEP 6 OF THE STAT-DOE
As said in Section I-B1, recording the operate time (and
possibly extracting summary statistics such as mean or
median values) represents the culmination of the state-of-
the-art approaches adopting full factorial designs to test
the distance protection performance. Yet, if these factorial
designs were used in the broader context of the stat-DOE,
much deeper insight could be gained at no cost by resorting
to Step 6 of the stat-DOE, which envisages the statistical
analysis of the experimental data, as shown hereafter.

1) ESTIMATING THE FACTORIAL EFFECTS
With a 23 (2K ) design, 7 (2K − 1) factorial effects can be
estimated: the three main effects of fault resistance, location
and inception angle (FR, FL and FA), and the four interactions
FRFL , FRFA, FLFA, FRFLFA. Consider, say,FR, i.e., the main
effect of the fault resistance, defined as the change in the
operate time due to changing the fault resistance from its low
to high level, averaged over the levels of the other factors.
FromFigure 7, it is evident that, for each replicate, 4 estimates
of FR are available: fr−I , fRfL−fL , fRfA−fA and fRfL fA−fL fA.
By averaging them out, the main effect FR is computed as:

FR =
fr − I + fRfL − fL + fRfA − fA + fRfL fA − fL fA

4R
(4)

The numerator of (4) is called a ‘‘contrast’’, i.e., a linear com-
bination of the responses at each factor levels’ combination
(the column Yn• of Table 4) with either ‘‘+1’’ or ‘‘−1’’ signs.
All the seven factorial effects are estimated by using the table
of contrast coefficients reported in Table 5, which is obtained
by extending the design matrix with columns that represent
the interactions among factors (column 5 through 8), plus a
column with the identity vector I, representing the average
over the whole experiment. The signs of the interactions
result from multiplying the signs of their respective factors
(e.g., FRFL = FR × FL).

TABLE 5. Table of contrast coefficients for the 23 design.

The general equation for computing the contrasts for any
factorial effect for a 2K design is:

ContrastU1···UK = (u1 ± 1)(u2 ± 1) · · · (uK ± 1) (5)

where the sign in each set of parentheses is negative if the
factor Ui is included in the effect, and positive otherwise. For
example, the contrast for the two-factor interaction among
fault location and fault inception angle FLFA is found by
expanding the right hand side of:

ContrastFLFA = (fR + 1)(fL − 1)(fA − 1) (6)

and by replacing 1 with I in the result. As the contrasts for
the seven factorial effects are orthogonal, the 23 design (and
all the 2K designs) is orthogonal. After the effects’ contrast
are found, the corresponding effects can be obtained as:

U1 · · · UK =
2

R2K
(ContrastU1···UK ) (7)

which are reported in the second column of Table 6.
Examining themagnitude and direction of the factorial effects
provides guidance on which factors are likely to be important
in determining the observed response.

The overall variability in the data is given by the total sum
of squares SSTot :

SSTot =

N∑
n=1

R∑
r=1

Y 2
nr −

Y 2
••

NR
(8)

where Ynr is the response value of the nth run in the r th
replicate. To quantify the amount of overall data variation due
to each effectU1 · · ·UK , the sum of squares (SS) of the effects
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is computed as:

SSU1···UK =
1

R2K
(ContrastU1···UK )

2 (9)

From (8) and (9), the fundamental ANOVA equation can be
adopted to decompose the overall data variability (SSTot ) into
its components [9]. For the 23 design of Table 4 it writes:

SSTot = SSFR + SSFL + SSFA + SSFRFL + SSFRFA
+ SSFLFA + SSFRFLFA + SSError (10)

where the SS of the experimental/measurement error
(SSError ) is found by subtraction of the SS of each effect
in (10) from the SSTot . Each SS is associated with a given
number of degrees of freedom (df), i.e., the number of
independent elements inside the SS. The ratio between an SS
and its own df yields a mean sum of squares (MS). Thus, the
statistical significance of each factorial effect can be assessed
by resorting to a rigorous hypothesis testing [9], which, stated
formally in the case of, say, FR, reads:

H0 : FR = 0

H1 : FR ̸= 0 (11)

where H0 and H1 are the null and alternative hypotheses,
respectively. As the MS is formally a variance, the F0 ratio of
the MS of the effect to the MS of the error (MSError ) is a test
statistic for the hypothesisH0 that the effect is not significant.
For example, for the main effect FR, the F0 ratio:

F0 =
MSFR
MSError

=
SSFR/dfFR

SSError/dfError
(12)

follows an F distribution FdfFR ,dfError , where dfFR = L1−1 are
numerator degrees of freedom and dfError = L1L2L3(R −

1) are the denominator degrees of freedom. The null
hypothesis H0 would be rejected if the numerator MSFR is
‘‘significantly’’ greater than the denominator MSError , or,
more formally, if F0 is higher than the reference value F1,24.
To facilitate the decision making on the effect statistical
significance, the p-value is computed, which indicates the
smallest level α at which the null hypothesis H0 is rejected,
or, in other terms, at which the corresponding effect would
be significant. Values of p < 0.05 or p < 0.01 are
often considered evidence that the corresponding effect is
significant. For the scenario of Section V-A, Table 6 reports
the ANOVA of the factorial effects. By looking at both the

TABLE 6. ANOVA of the factorial effects. The asterisk signalizes the
significant ones at the α = 1% level of significance.

magnitudes of the factorial effects and their p-values, it turns
out that the main effects of fault resistance and fault location
(FR and FL) along with their second-order interaction (FRFL)
dominate the process, whereas the other effects are negligible.
Also, the positive values of FR and FL signalize that the effect
of fault resistance and location is directly proportional to the
operate time: faults with high resistance values and closer to
the boundary make the operate time increase. On the other
hand, an almost null value of FA signalizes that changing the
fault inception angle from 0◦ to 15◦ does not have any impact
on the operate time.

It is noteworthy though that the main effects do not
have much meaning when they are involved in significant
interactions, as it is the case for FR and FL : in fact, the effect
of FR on the operate time depends on the level at which
FL is studied, and vice versa. Figure 8, which plots their
second-order interactive effect, is the key to clarifying the
situation: the effect of the fault resistance varies depending on
the level at which the fault location is studied. In particular,
on the one hand, the fault resistance has almost null effect
if the fault happens at 85% (see the flat blue line): whatever
the fault resistance, the operate time is always higher than
200 ms. On the other hand, the effect of the fault resistance
is large if the fault happens at 84% (see the great slope of the
red line): for values of fault resistance close to 1�, the relay
operates in time, whereas the relay operates with times higher
than the threshold of 200 ms if the fault resistance increases
up to 3�. It is noteworthy that such interactive effect among
fault resistance and fault location could not be detected if the
OAT approach (see Section I-A1) would be adopted [10].

FIGURE 8. Plot of the second-order interaction between fault resistance
and fault location for the three-factor scenario of Section V-A.

2) FITTING AN EMPIRICAL MODEL
TheANOVAof the factorial effects treats the factors as if they
are qualitative. If the designed experiment involves at least
one quantitative factor, an empirical model of the process can
be built from the available data, and used as an interpolation
equation to predict the response at unexplored combinations
(i.e., at factors’ levels other than those actually used in the
experiment). The general approach to fit empirical models is
the regression analysis [9].

The full regressionmodel that can be fit to the experimental
data from a 23 design (if the number of replicated runs is R >

1) is the first order model with interactions of the form:

Ŷ = β̂0 + β̂1U1 + β̂2U2 + β̂3U3 + β̂12U1U2

+ β̂13U1U3 + β̂23U2U3 + β̂123U1U2U3 + ϵ (13)
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In (13), the intercept β̂0 (representing the constant response
not depending on the factors’ levels), and the other coeffi-
cients β̂1, β̂2, β̂3, β̂12, β̂13, β̂23 β̂123 are the unknown model
coefficients to be estimated from the experimental data (e.g.,
via least-squares methods), whereas ϵ is a random error
term accounting for the experimental/measurement error1

in the system/process under study (here, the measurement
error coming from the instrument transformer, amplifier,
measurement unit of the distance relay).

3) STATISTICAL ANALYSIS OF THE EMPIRICAL MODEL
Once a regression model is fit to the experimental data, the
ANOVA is again used to formally test the significance of the
empirical model. For example, Table 7 shows the ANOVA for
the full model (13). The overall variability of the response
values (given by SSTotal , with dfTotal equal to NT − 1) is
partitioned in two sources of variation: the data variability
explained by the fitted model SSModel , which reads

SSModel = SSFR + SSFL + SSFA + SSFRFL + SSFRFA
+ SSFLFA + SSFRFLFA (14)

and the data variability SSError that remains unexplained.
By performing the ANOVA of the full model (13), the very
small p-value signalizes that at least one of its terms is
significant.

TABLE 7. ANOVA of the full empirical model (13).

Table 8 reports detailed statistical information on the
coefficients of the fitted model, whose 95% confidence
interval lower and upper bounds are reported in the last
two columns. It is noteworthy that, as a consequence of the
±1 orthogonal coding, the least-square estimates of the β̂

coefficients of the model (13) are one-half the corresponding
effect estimates in Table 6. This property is useful to easily
interpret the model coefficients and determine the relative
size of the factor effects. In other words, the magnitudes
of the model coefficients are directly comparable: being
dimensionless, they measure the effect of changing each
design factor over a one-unit interval. For example, the effects
of fault resistance and fault location on the operate time are
almost the same (β1 = 57.58 and β2 = 58.07, respectively),
and both are as large as their interaction effect (β12 =

−58.13). The standard error (SE) of the model coefficients,
reported in column 3, is computed as

SE(β̂) =

√
MSError
R2K

(15)

1Note that if no replicated run is available, no internal estimate of the error
ϵ would be produced.

and is the same for all the coefficient estimates due to the
orthogonality of the 2K design. Interestingly, there is no other
8-run design on the three-dimensional design space bounded
by ±1 (i.e., the cube of Figure 7) that makes the SE of the
model coefficients smaller than

√
MSError/R2K .

TABLE 8. Statistical details of the coefficients of the full model (13).

A summary of the goodness-of-fit of the full model
obtained from the experimental data can be extracted from
a set of metrics as shown in the second column of Table 9.

The coefficient of model determination R2, which is
defined as:

R2
=

SSModel
SSTot

, R2
∈ [0, 1] (16)

quantifies the proportion of the overall data variation being
explained by the model (with R2

= 1 signalizing a perfect
fit). Since R2 tends to increase simply as more factors
(although insignificant) are added to the model, the adjusted
R2
Adj is sometimes preferred, and computed as:

R2
Adj = 1 −

SSError/dfError
SSTot/dfTot

(17)

As the R2
Adj is ‘‘adjusted’’ for the size of the model

(i.e., the number of factors), it can actually decrease when
non-significant terms are added to the model, and can be used
to evaluate the impact of increasing or decreasing the number
of model terms. To measure how well the model will predict
new data, the prediction error sum of squares (PRESS):

PRESS =

N∑
n=1

(Ŷ∼n − Yn)2 (18)

is computed with ‘‘leave-one-out’’ cross validation. In par-
ticular, the nth data point is predicted (Ŷ∼n) with a model
that includes all the observations except the nth one (Yn)
and computing the residual by comparing it with Yn. After
repeating this for all the observations, the sum of the squared
prediction errors is obtained: a small PRESS indicates that
the model is likely to be a good predictor. From the PRESS,
the R2Pred can be computed as

R2
Pred = 1 −

PRESS
SSTot

(19)

which indicates the proportion of the variability in new data
that the full model is expected to explain.
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TABLE 9. Summary of fit of the full (13) and reduced (20) model.

4) REFINE THE EMPIRICAL MODEL
The full model (13) initially fit to the experimental data of
Table 4 contains all the main effects as well as all the higher-
order interactions. In general, it might be desirable to fit
the lowest order polynomial that adequately describes the
system/process under study.

According to the ANOVA of Table 8, the model (13) can
be refined by screening the non-significant effects out of it
(considering a significance level of α = 1%). Hence, the
reduced model to predict the operate time would be:

Ŷ = 265.59 + 57.68 U1 + 58.07 U2 − 58.13 U1U2 (20)

which, in addition to the intercept, contains only the
coefficients β̂1, β̂2 and β̂12. This is an appeal of the ‘‘sparsity-
of-effects’’ principle, an heuristics based on which most
systems/processes turn to be dominated by some of the
main effects and low-order interactions, with most high-order
interactions being negligible [31]. The ANOVA of the
reduced model (20) is given in Table 10: the MSError is
now composed not only by a ‘‘pure’’ error component due
to the presence of replicated runs, but also by a ‘‘lack-
of-fit’’ component made of the SS of the factors dropped
from the full model (13). The summary of the goodness-of-
fit of the reduced model (20) is given in the third column
of Table 9. Although four coefficients have been removed
from the original model, no appreciable degradation of the
goodness-of-fit metrics is visible. For example, by observing
the values of the PRESS and R2Pred, the reduced model (20)
owns almost the same predictive capability of the original full
model (13).

TABLE 10. ANOVA of the reduced model (20).

5) GRAPHICAL ANALYSIS OF THE DATA
After building a suitable empirical model, it is useful to
resort to a graphical analysis to ease the interpretation of
the results. For example, plots of the main effects and/or
interactions can be built to inform about the magnitude
and direction of change of the response due to the factors
(e.g., see Figure 8 for the interactive effect among fault
resistance and fault location). Additionally, if at least two
factors are quantitative, three-dimensional response surfaces

or two-dimensional contour plots can be produced to predict
Ŷ at various factors’ combinations. For example, Figure 9
depicts the contour plot of the operate time in the design space
spanned by the variation range of fault resistance (1�, 3�)
and fault location (84%, 85%). In general, if the contour lines
are curved, the interaction is important. Under the assumption
that the relay is considered to fail if t > 200 ms, the contour
plot allows to easily identify its operability region, which
can be visualized in the bottom-left triangular area with the
green contour lines. Such contour plot can be also read along
each factor dimension. For instance, if the fault resistance is
> 2�, the operate time would be > 200 ms irrespective of
the location at which the fault happens. Conversely, if the
fault location is close to 85 % of the protected line, the relay
operates with t > 200 ms even for values of fault resistance
close to 1�. It is noteworthy that the operability region of
Figure 9 can be mathematically described by the empirical
model (20), which, under another perspective, can be seen as
the prediction rule that defines the combinations of values of
fault resistance and fault location leading to misoperation of
the relay (t > 200 ms).

FIGURE 9. Contour plot of the operate time t in the design space
spanned by the variation ranges of fault resistance and fault location.
Based on the utility’s requirements, failure of operation of the relay (red
contour lines) is assumed for t >200 ms.

6) CHECK MODEL ADEQUACY AND AUGMENT THE DESIGN
The full regression model that can be fit from a 2K design is
the first order model with interactions (13). Such regression
models work well even if the linearity assumption holds only
very approximately, as the interactive terms can capture some
sort of curvature in the response function.When the curvature
in the response function cannot be adequately captured by
such regression models, pure quadratic effects of the form
βiiU2

ii must be introduced, yielding a second-order response
surface model. However, fitting a second-order model is not
always necessary: in fact, checking the adequacy of the first-
order model (13) can be first performed by augmenting the
originalN -run design with so-called ‘‘center points’’, i.e.,NC
replicated runs at the center of the design space. In particular,
by comparing the average response at the N points with
that at the NC points, a formal hypothesis test can check
whether the center points lie on (or near) the plane passing
through the N factorial points, or, in other words, whether the
quadratic terms βiiU2

ii (leading to a response function with
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quadratic curvature) are statistically significant. If such test
cannot exclude the presence of a quadratic curvature in the
response function, a second-order model becomes necessary.
In this case, the original N -run design is augmented with
axial runs, leading to a so-called ‘‘central composite’’ design.
For the scenario of Section V-A, by adding four more runs
at the center point {2�, 84.5%, 7.5◦}, the curvature test
cannot exclude the presence of a quadratic curvature. Hence,
a central composite design is created by augmenting the
original design of Figure 7 with axial runs at the six points
on the center of the six cube sides plus the center point.
The second-order model fit to this composite design suggests
that the fault resistance does have a non-negligible quadratic
effect.

D. REMARKS ON THE FULL FACTORIAL DESIGN
In Section V-C, some of the opportunities offered by the
statistical analysis of the experimental data (Step 6 of the
stat-DOE) have been shown when the full factorial design
is used, and evidence of the deeper insight achievable (with
minimal effort) into the distance protection performance has
been provided. However, as the number of factors increases,
the number of tests required for a full factorial design grows
exponentially (NT = R2K ). For example, with 6 factors,
an unreplicated 26 design (with R = 1) would require
64 runs: in this case, 63 df would be available in total,
but only 6 of them are used to estimate the main effects,
and only 15 for the two-factor interactions, with the other
42 df being used to estimate three-factor and higher-order
interactions. In this context, the already mentioned sparsity-
of-effects principle can justify the assumption of regarding
high-order interactions as essentially ‘‘inert’’, and neglecting
them. Hence, main effects and low-order interactions can be
obtained by running only a fraction of the complete factorial
experiment: this leads to the fractional factorial designs,
which are described hereafter.

VI. FRACTIONAL FACTORIAL DESIGN
In this section, an experiment with the fractional factorial
design is elaborated to test the distance protection perfor-
mance. Such design is described in Section VI-B while
being actualized in the four-factor scenario of Section VI-A.
Later, Section VI-C provides final remarks on the fractional
factorial design and introduces cornerstone principles of the
stat-DOE.

A. DESCRIPTION OF THE SCENARIO
In this scenario, the three-factor scenario of Section V-A is
extended with a fourth factor U4, i.e., the fault type. This
factor is studied at two levels, namely the single-phase-to-
ground fault AN and the phase-to-phase fault ABC.

B. DESCRIPTION OF THE DESIGN
With 4 factors, a complete 2K design would require 16 runs;
imagine though that, because of time/money constraints, only
8 runs can be afforded, i.e., one half fraction of the 24 design.

TABLE 11. Design matrix of the 24−1 fractional factorial design.

TABLE 12. Estimates of the aliased effects for the 24−1 design of the
four-factor scenario of Section VI-A.

Such fractional design is referred to as 24−1 design, given that
24 12 = 242−1 runs are employed. In general, a 2K−1 design
can be formed by writing down a basic design consisting of
the runs for a full 2K−1 design, and then appending the K th
factor by identifying its plus and minus levels with the plus
and minus signs of the highest order interactionU1U2 . . .UK .
For example, the design matrix of a 24−1 fractional factorial
design is reported in Table 11: the second, third and fourth
columns form the design matrix of a 23 full factorial design
(see Table 4), and the fifth column contains the algebraic
signs associated to the highest order interaction (i.e., the
three-factor interaction FRFLFA, see the last column of
Table 5). Yet, as only 8 runs are available in the 24−1 design,
not all of the 15 effects can be estimated in a standalone
manner. This leads to the so-called ‘‘confounding’’ of the
effects; for example, as the three-factor interactionFRFLFA is
used to accommodate the fourth factor ‘‘fault type’’, its main
effectFT cannot be distinguished from theFRFLFA. In formal
terms:

[FT ] → FT + FRFLFA

where the [·] indicates that the main effect FT is the result
of the linear combination of FT itself and FRFLFA. Yet,
under the sparsity-of-effects principle, since the three-factor
interaction would be small enough to be ignored (as
confirmed by the ANOVA of Table 8), it can be logically
concluded that [FT ] provides an estimate of the main effect
FT . Two or more effects possessing such property are called
‘‘aliases’’. The alias relationships for such a 24−1 design are
reported in the first column of Table 12. A design with such
alias structure has a resolution IV, and it is indicated as 24−1

IV ;
in resolution IV designs, the main effects are aliased neither
with other main effects nor with other two-factor interactions,
but the two-factor interactions are aliased with each other.
Resolution IV designs must contain at least N = 2K runs,
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so e.g., if 9 factors are to be studied, a resolution IV design
requires at least 18 runs. In addition to resolution IV designs,
of particular importance are resolution III and V designs.

In resolution III designs, e.g., 24−1
III , no main effect is

aliased with other main effects, but main effects are aliased
with two-factor interactions, and some two-factor interactions
may be aliased with each other. It is possible to construct
resolution III designs to investigate up to K = N − 1 factors
in only N runs, where N is a power of 2. Particularly useful
resolution III designs are e.g., to study 3 factors with 4 runs,
7 factors with 8 runs and up to 15 factors with 16 runs, as well
as the so-called Plackett-Burman designs (with N being also
multiple of 4) which allow to study e.g., 11, 19 and 23 factors
with 12, 20 and 24 runs, respectively [32].
In resolution V designs, e.g., 25−1

V , no main effect or
two-factor interaction is aliased with any other main effect or
two-factor interaction, but two-factor interactions are aliased
with three-factor interactions.

Intuitively, fractional designs with the highest possible
resolution are desirable, as the higher the resolution, the
less restrictive the assumptions required regarding which
interactions are negligible. Hence, resolution V designs are
very powerful, in that they allow unique estimation of
all main effects and two-factor interactions, provided that
all three-factor and higher-order interactions be negligible.
However, as K grows, resolution V designs might require
a higher number of runs N : for this reason, resolution IV
designs are usually the optimal trade-off choice to start
with, in that they avoid the confounding of main effects and
two-factor interactions typical of resolution III designs, while
preventing the larger sample size requirements of resolution
V designs.

For the scenario of Section VI-A, Table 12 reports the
effect estimates with the associated p-values. Looking at the
magnitude of the alias chains, only FR + FLFAFT , FL +

FRFAFT and FRFL + FAFT have a great estimate. Under the
justified assumption that the three factor interactionsFLFAFT
and FL +FRFAFT are negligible, it is logical to conclude that
the fault resistance FR and fault location FL have dominant
effects. On the other hand, the alias chains FA+FRFLFT and
FT + FRFLFA have relative small estimates, leading to the
conclusion that the main effects of fault inception angle FA
and fault type FT are very small. Hence, if FT has negligible
effect, also the two-factor interaction FAFT is negligible, as it
is quite unlikely for a factor to have a negligible main effect
but a large interactive effect; this leaves with the explanation
that the large estimate of the alias chain FRFL +FAFT is due
only to the large effect of the second-order interaction FRFL .
Such interpretations agree with the conclusions stemming
from the analysis of the full 24 design (whose results are not
shown here for brevity). Consequently, if only the effects of
fault resistance and fault location are included, the reduced
model obtained from such 24−1 design is:

Ŷ = 263.09 + 61.37 U1 + 61.28 U2 − 61.34 U1U2 (21)

The value of R2
= 0.996459 confirms the goodness of the

empirical model, which is very close to (20) obtained for the
scenario of Section V-A: including the fault type as additional
design factor does not impact the dominant importance of
fault resistance and fault location on the operate time.

C. REMARKS ON THE FRACTIONAL FACTORIAL DESIGN
A major use of fractional factorials is for screening
experiments, i.e., when experiments with many factors
are considered and the goal is to identify those having
large effects while retaining the experimental effort under
control. The factors identified as important can then be
investigated more thoroughly by exploiting the projectivity
property of fractional factorial designs and/or by performing
further experiments based on the sequential experimentation
principle.

The projectivity property allows each fractional factorial
design of resolution P to contain complete factorial designs
(possibly replicated) in any subset of P − 1 factors. For
example, for the four-factor scenario of Section VI-A, since
both the fault inception angle and fault type have revealed
to be inert, they can be dropped from consideration; hence,
the original 24−1

IV can be projected into a full 22 design in the
remaining active factors (fault resistance and fault location),
and can be analyzed as in Section V-C.
The sequential experimentation principle suggests that

it is usually best to start with a smaller design, which
can be always augmented later if necessary. For instance,
it is always possible to combine the runs of two or more
fractional factorial designs and sequentially build a larger
design to estimate specific factor effects and/or interactions
of interest. Also, follow-up experiments can be conducted
by e.g., performing one or more confirmation runs to
verify the conclusions inferred from the original experiment,
augmenting the design with strategies such as full/partial
fold-over to de-alias specific effects of interest, adding some
runs to modeling additional terms such as quadratic effects,
and varying the factor ranges to move the analysis to another
experimental region that is more likely to contain response
values of interest. For more details, the reader is referred to
e.g., Chapter 8 of [9].

VII. THE MODERN PHILOSOPHY OF CUSTOM DESIGNS
Section V and VI describe the full and fractional factorial
designs and apply them to study two exemplary scenarios
to test the distance protection performance. Yet, these (and
other) classical designs might not fit the scenario under
test when the features of the latter do not perfectly match
the requirements typical of classical designs. For example,
the available resources might pose a burden which makes
the operator’s requirements (e.g., in terms of maximum
number of affordable tests) incompatible with the size of the
experiment prescribed by classical designs; also, constraints
might exist on the design space (in the form of disallowed
combinations of factors or linear/nonlinear constraints among
them), which cannot be handled by any of the classical
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designs. When none of the classical designs fit the bill, it is
common practice to create a ‘‘custom’’ design that is optimal
for the problem at hand and can accommodate operator
specific requirements and physical constraints among factors:
this is the philosophy behind the modern designs, which
are discussed in Section VII-A. Modern designs have been
establishing as best-practice in the stat-DOE community: in
fact, if the problem under study turns out to be a ‘‘standard’’
one, the generated custom design will correspond to one of
the classical designs (e.g., Section VII-B), otherwise it will be
the optimal one to fit the configuration of the scenario under
test.

A. CUSTOM DESIGNS AND OPTIMALITY
In general, a custom design allows e.g., to elaborate an experi-
ment with different types of factors (e.g., continuous, discrete
numeric, qualitative, constant, uncontrolled) with any number
of levels, to specify a non-regular (i.e., constrained) design
space, to prioritize the estimability of the effects of factors
of primary interest over those for which estimability is only
desirable but not necessary, and to select the number of runs
that matches the budget for the given experiment.

To construct the appropriate design that meets the
specific requirements of the scenario under test, custom
designs employ an optimality criterion, i.e., a criterion
for optimally selecting the design points whereby tests
should be conducted. After the early works on the design
optimality theory [33] and the first algorithms to build
optimal designs [34], most of the state-of-the-art methods
for optimal designs currently use a ‘‘coordinate-exchange’’
algorithm [35], in which individual design coordinates are
systematically searched to find the optimal settings that
maximize a given optimality criterion. The D-, G- and
I -optimality criteria are the most widely used.
The D-optimal design minimizes the SE of the model

parameters β̂ (15), or, in other words, the region defined
by their joint confidence intervals. As a smaller confidence
region means more precise estimates of the β̂’s, a D-optimal
criterion is suitable when the experiment goal is mainly
the estimation of the factors’ effects and testing of their
significance, and the identification of the active factors in
screening experiments. The G-optimal design minimizes the
maximum variance of the prediction over the design region,
and the I -optimal design minimizes its average value (i.e.,
the ratio of the prediction variance integrated over the design
space to the area of it). As a smaller prediction variancemeans
more precise estimates of the response prediction, G- and
I -optimal designs are suitable when the accurate prediction
of the response takes precedence over the precise estimation
of the factors’ effects, e.g., to predict the response variable
at untried factors’ combinations, to determine optimum
operating conditions and regions in the design space where
the response falls within an acceptable range. Formore details
on these and other optimality criteria, the reader is referred to
e.g., Chapter 6 of [9].

B. COMPARING OAT AND FACTORIAL EXPERIMENTS
As said in Section I-A1, some literature works follow
approaches for distance protection performance testing
based on OAT experiments, which showcase at least two
methodological pitfalls: lack of ability to capture interactions
among factors and limited capacity to cope with the curse of
dimensionality. After having introduced the concept of design
optimality in Section VII-A, the performance of OAT designs
can now be evaluated also under further viewpoints when
compared to classical/custom designs.

Without loss of generality, consider the model Y =

f (U1,U2) with two quantitative factors U1 and U2, whose
variation range is between −1 and +1 (leading to a squared
design space of area equal to 4), and imagine that only
NT = 8 tests can be afforded. Imagine to design two types
of experiments, a custom design and an OAT design. Their
cross-comparison is done in terms of ability to fit (with the
same NT ) the first-order model without interactions:

Ŷ = β̂0 + β̂1U1 + β̂1U2 (22)

due to the impossibility of the OAT design to capture
two-factor interactions and quadratic effects.

Figure 10a represents the optimal custom design for
such problem, which turns out to be a replicated 22 full
factorial design. Thus, the latter is taken, for the sake of
the comparison, as the reference design for the family of
classical/custom designs. On the other hand, Figure 10b
represents a typical OAT design: assuming the nominal point
{0, 0}, the factorU1 is first varied four times over its variation
range withU2 = 0, and thenU2 is similarly varied by keeping
U1 = 0.

FIGURE 10. (a) Custom design (replicated 22 full factorial). (b) OAT design.

Various diagnostic metrics (some of which are shown
hereafter) can be used to assess the performance of both
designs to fit the model (22) even before running the
experiments.

Figure 11 shows the profile of the Unscaled Prediction
Variance (UPV) over the factors’ ranges:

UPV =
Var[Ŷ (U1,U2)]

σ 2 (23)

where Var[Ŷ (U1,U2)] is the variance of the predicted
response at every design point (U1,U2), and σ 2 is the error
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variance (corresponding toMSError ). The prediction variance
Var[Ŷ (U1,U2)] depends on the error variance, which is
unknown before running the experiment. Yet, the UPV, i.e.,
the ratio of the Var[Ŷ (U1,U2)] to the error variance, is not
a function of σ 2, and hence depends only on the design
type and on the factor settings: consequently, the UPV can
be calculated even before acquiring the data, and provides
indication of where the predicted response will have more or
less variability. Obviously, low values of UPV are desirable.
As shown in Figure 11, the UPV of the custom 22 design
is constantly way lower than the OAT design. The two
designs can be compared also based on the max(UPV), i.e.,
the maximum value of the UPV: for the custom 22 design,
max(UPV)—which is the least desirable from the design
viewpoint—is more than two times smaller than the OAT
design.

Figure 12 depicts, for both designs, the Fraction of Design
Space (FDS) plot, which shows the UPV on the vertical axis
and the proportion of the design space (ranging from 0% to
100%) on the horizontal axis. The FDS plot gives indication
of how the UPV is distributed throughout the whole design
space: for a point (x, y) falling on the curve, the value x is the
proportion of the design space with UPV ≤ y. An ideal FDS
plot would be flat with a small value of UPV. From Figure 12,
it can be derived that the custom 22 design has uniformly
smaller UPV than the OAT design. Also, the two black dashed
crosshairs (centered at 50% of the design space) indicate that
the UPV of the custom 22 design will be at most 0.217 over a
region that covers 50% of the design region, whereas at such
FDS the UPV of the OAT already reaches almost 0.4.

FIGURE 11. UPV profile of the (a) custom 22 design and (b) OAT design.
The horizontal red dotted line indicates the maximum value.

Table 13 shows the values of the D-, G- and I -optimality
criteria for the custom 22 and OAT designs. The custom
22 design turns to be D-, G- and I -optimal for fitting the
first-order model (22), with relative efficiency values almost
always higher than 2 times when compared to the OAT
design. Interestingly, the custom 22 design outperforms the
OAT design although the latter covers the variation range of
the factors U1 and U2 with more levels than the former (see

FIGURE 12. FDS plot for the custom 22 design and OAT design.

TABLE 13. Efficiency of the custom 22 design and OAT design to fit the
first order model (22) in terms of optimality criteria.

the allocation of the eight design points in the design spaces
of Figure 10). Also, the presence of replicated runs allows
the custom 22 design to provide an internal estimation of the
experimental error, unlike the OAT design.

Finally, not only the custom 22 design is D-, G- and I -
optimal to fit as well the first-order model with interactions:

Ŷ = β̂0 + β̂1U1 + β̂2U2 + β̂12U1U2 (24)

but also, by adding just one more run, it boils down into an
unreplicated 32 factorial design with the two factors at the
three levels {−1, 0, 1}. Such 32 factorial design would allow
fitting even a second-order regression model of the form:

Ŷ = β̂0 + β̂1U1 + β̂2U2 + β̂12U1U2 + β̂11U2
1 + β̂22U2

2

(25)

VIII. STAT-DOE APPLIED FOR PERFORMANCE TESTING
In this section, the stat-DOE is adopted to conduct a realistic
performance testing of a commercial relay. A guideline of the
stat-DOE application is provided by actualizing all the steps
of Table 2 in such scenario, and thoroughly explaining the
rationale behind each of them. The derived results allow not
only to test and characterize the performance of the device
under test, but also to sketch out lines of refinements and
recommendations for all the stakeholders.

Although the performance of the distance protection only
within Zone 1 is tested, testing the performance within other
protection zones or of other protection functions (e.g. back-up
protection, tele-protection schemes) can be straightforwardly
conducted by replicating the different steps presented next.

A. STEP 1 – SPECIFY PROBLEM AND OBJECTIVES
An electricity utility has to conduct an acceptance test of
a Schneider P543 relay before its field implementation.
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Without loss of generality, the performance of the relay only
within Zone 1 is considered. The technical manual from the
relay’s manufacturer [29] reports that the operate times have
an average value of 30 to 35 ms in Zone 1. Nonetheless,
the utility is aware that protection relays, when deployed
in the field, rarely experience such small operate times
under real operating conditions (e.g., faults with resistance
higher than 0�); hence, the utility can accept that the relay
operates correctly as long as t < 200 ms, to account for the
safety margin as explained in Section IV-C. To conduct such
performance test, the test set-up of Section IV-B is employed,
and an experiment is laid out with the stat-DOE strategy.
Given the available time/money resources, it is assumed that
only 100 tests can be afforded.

B. STEP 2 – CHOOSE THE RESPONSE VARIABLE
The response variablemeasured to test the distance protection
performance is the relay’s operate time t , defined as the
duration of the time interval between the fault inception and
the receiving of the trip signal, excluding the operation time
of the circuit breaker.

C. STEP 3 – CHOOSE FACTORS, LEVELS AND RANGES
According to the IEC 60255-121:2014 standard [16], four are
the factors influencing the distance protection performance,
namely fault location, fault inception angle, SIR and fault
type; these factors should be tested by considering the levels
reported in Figure 2. Yet, it is assumed that the protection
engineer is interested in considering also the effect of the
fault resistance (similarly to other literature works e.g., [4],
[15], [17]), so to reflect more realistic operating conditions.
Hence, five are the design factors subject of the experiment;
these, their levels, and the held-constant factors are reported
in Table 14. The rationale behind the selection of the design
factors and the associated levels is discussed next.

TABLE 14. Design factors, their levels, and held-constant factors used for
the experiment designed for the performance testing in Section VIII.

• Faults of type BN, AC, ABC, ACN are injected,
as prescribed in the IEC 60255-121:2014 standard [16].

• As the IEC 60255-121:2014 standard [16] considers
only the positive side of the sine wave of the fault
inception angle, and the worst situation occurs at 0◦

(whereby the fault current magnitude is the highest),
faults with inception angles equal to 0◦, 15◦ and 30◦ are
applied.

• As the interest is the performance of the protection
function in Zone 1 (set to cover 85% of the protected
line), faults at locations corresponding to 5%, 25%, 50%,

75% and 85% are applied, with more focus on locations
close to the boundary between Zone 1 and Zone 2.

• Long, medium and short lines are investigated, as indi-
cated in the IEC 60255-121:2014 standard [16]. Given
that the SIR is the preferred method to classify the
electrical length of a line for the purpose of applying pro-
tective relays, SIR values feasible for long, medium and
short lines are chosen, i.e., 0.2, 2 and 5, respectively [8].

• The IEC 60255-121:2014 standard [16] does not con-
sider the fault resistance as design factor, and suggests to
set it at 0� (or to the smallest possible value if numerical
limitation arise). However, faults with resistance higher
than 0� are common in reality. Hence, a variation range
up to 9� is considered based on [36], and fault resistance
values of 0.001�, 3�, 6�, 9� are chosen.

D. STEP 4 – SELECT THE DESIGN
From Step 3, a mixed-level, hybrid design space is originated:
the five factors have different number of levels, and they
are either quantitative (fault resistance, fault location, fault
inception angle and SIR) or qualitative (fault type). It is
noteworthy that, to accommodate such design space, the
IEC 60255-121:2014 standard [16] suggests to adopt a full
factorial design (see Figure 2), which would require 4 ×

5 × 3 × 3 × 4 = 720 runs, for a total of 2880 tests if
each fault inception is replicated 4 times. As only 5 tests
can be conducted every minute (see Section IV), this would
lead to a total experimental time of more than 9 hours.
Since, in principle, protection zones other than Zone 1
would be subject to the performance testing, and different
scenarios (e.g., evolving and simultaneous faults) or even
other ancillary functions (e.g., tele-protection) could be
tested [15], conducting tests for several days would be
inevitable. Such experimental size might be incompatible
with the utility’s time/money resources (which here are
assumed to limit the number of affordable tests to 100), and it
already motivates resorting to a custom design. In addition to
this, Step 3 implies that the set of design factors include both
fault type and fault resistance; hence, the full factorial design
would be composed of runs without practical meaning in the
reality, e.g., phase-to-phase faults (AC, ABC) with non-null
resistance. Mathematically, this yields a constrained design
space, which neither the full factorial design nor other off-
the-shelf classical designs can handle. On the other hand,
custom designs are able to easily accommodate such feature
(see Section VII). Hence, for all these motivations, a custom
optimal design is adopted.
In detail, the custom design is generated with JMP [26] by:

(i) choosing the D-optimality criterion, assuming that the
main focus is estimating the effects of the five factors
and identifying their statistical significance;

(ii) imposing that the fault resistance of AC and ABC faults
shall be 0.001�;

(iii) choosing the effects of primary interest (i.e., whose
estimability is considered as ‘‘necessary’’) to be all
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TABLE 15. Excerpt of the design matrix generated with the custom
design.

the main effects, all the second-order interactions
(e.g., FRFA), and all the quadratic single-factor effects
(e.g., F2

A); on the other hand, interactions of higher order
than the second (e.g., FRFLFA) as well as quadratic
multi-factor effects (e.g., F2

RFA) are considered either
negligible or not physically meaningful and hence
excluded from the definition of the initial empirical
model;

(iv) setting the constraint on the number of tests to 100.

The first ten runs of the generated 100-test custom design
used for Step 5 to 7 are reported in Table 15, from which
it can be noted that phase-to-phase fault types are associated
only with null values of fault resistance (0.001 �).
Table 16 compares some of the diagnostic metrics of

Section VII-B for both the 100-test custom design, and the
full factorial one that would originate if the IEC 60255-
121:2014 standard [16] is followed. As the full factorial
design cannot deal with constraints on the design space
(here, the presence of disallowed combinations of factors),
the custom design evaluated in Table 16 is generated without
the constraint (ii). From Table 16, it emerges that, with
only 100 tests, the custom design has larger values of
the optimality criteria than the full factorial, as well as
a satisfactory average UPV. Also, as far as the minimum
number of required tests NMIN is concerned, the custom
design is way more ‘‘economical’’.

TABLE 16. Comparison of the custom design (neglecting the constraint
(ii)) and the full factorial design as per IEC 60255-121:2014 standard [16].

E. STEP 5 – CONDUCT THE EXPERIMENT
The 100-test design matrix generated by the custom design
including the constraint (ii) is used to conduct the physical
experiment with the test set-up and test procedure explained

in Section IV-B. The experimental results in terms of operate
time are recorded and further elaborated in Step 6.

F. STEP 6 – STATISTICALLY ANALYSE THE DATA
Figure 13 summarizes the experimental results. The his-
togram shows that the distribution of the operate time values
is bimodal, with a neat separation of tests whereby the relay
operates ‘‘correctly’’ and ‘‘incorrectly’’ (green and red bars,
respectively), according to the operability threshold of 200ms
accepted by the utility. The cumulative distribution plot shows
that t < 200 ms in almost 80% of the tests.

FIGURE 13. Histogram (left) and cumulative distribution plot (right) of
the values of operate time for the scenario of Section VIII.

After fitting a quadratic model to the experimental data
(R2

= 0.89), the ANOVA shows that the significant
effects are fault location, fault resistance and SIR. As found
already for the scenarios studied in Section V and VI,
the second-order interaction among fault location and fault
resistance has a great effect. In addition, faults simulated for
short lines lead to greater operate times than for medium
and long lines, due to the greater instrument transformer
measurement error because of the higher ratio between the
impedance in front of and behind the relay. It is worth noting
that these results match those obtained by using the full
factorial design with 2880 tests suggested by the IEC 60255-
121:2014 standard [16]; in other words, the same information
can be obtained with an efficiency almost 30 times higher.

Also, a set of follow-up runs are used to validate the
experimental conclusions. In particular, 50 new experimental
points are randomly sampled from the design space defined
by the factor ranges of Table 14, and the empirical model fit
with the original 100-test custom design is used to predict the
operate time at these untried factors’ combinations. As seen in
Figure 14, the regression line shows perfect agreement among
the predictions and the experimental results.

G. STEP 7 – CONCLUSIONS AND RECOMMENDATIONS
Finally, the experimental results allow extracting conclusions
useful not only for the utility, but also for other stakeholders
such as relay’s manufacturers and standardization bodies.

The empirical model built in Step 6 can be used as
a prediction rule to define the pass/fail regions of the
relay, or, in other words, the combinations of values of
fault location, fault resistance and SIR—i.e., the three
factors having significant effects—leading to misoperation
of the relay, which can be of practical use from the utility
viewpoint. Knowledge of the operability boundary as well as
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FIGURE 14. Regression between the values of operate time coming from
the 50-run validation experiment and those obtained with the empirical
model fitted on the experimental data from the custom design.

identification of the inconsequential factors would support
the actualization of Step 3 in further experiments (e.g.,
to conduct performance tests of other vendors), in terms
of choice of the factors to consider and variation ranges to
investigate.

Plots involving the three significant factors can be
produced. For example, Figure 15 shows a modified version
of the so-called ‘‘SIR diagrams’’ suggested by the IEC
60255-121:2014 standard [16]. In the latter, the SIR diagrams
separately report the average, minimum and maximum
operate times (y-axis) at the different fault locations (x-axis),
for various SIRs. Unlike these, the SIR diagrams suggested
in Figure 15 report all the recorded operate times at each
fault location, and their classification is made based on the
operability threshold t = 200 ms. In particular, the SIR
diagrams of the average operate times are not shown, as this
information would not be of much significance for cases
where, for a given fault location, some operate times are
greater and others are lower than the threshold (see e.g.,
Figure 15a for the fault location equal to 85%). Also, it is
convenient to produce similar diagrams for different values
of fault resistance, as done in Figure 16: for null values
of fault resistances, the relay always operates within the
threshold also at locations close to the boundary (i.e., 85%),
whereas, for greater fault resistances, the relay degrades its

FIGURE 15. Operate times for long (a), medium (b) and short lines (c).

FIGURE 16. Operate time for Zone 1 for different fault resistance values.

performance and operates above the threshold even for faults
occurring way before the boundary.

Overall, some lines of refinement and recommendations
for all stakeholders can be extracted, as discussed hereafter.

• The reporting of the test results recommended by the
IEC 60255-121:2014 standard [16] can be improved.
In particular, as long as the SIR diagrams are concerned,
all the operate times collected at all the tests may
be reported in one single diagram, as shown in
Figure 15, to avoid meaningless average values in case
the variability of the operate times is large. Moreover,
if other factors are considered, similar diagrams would
help to comprehensively characterize the performance
of the relay (e.g., Figure 16a–d for different values of
fault resistance).

• The IEC 60255-121:2014 standard [16] suggests to
conduct the performance testing by holding the fault
resistance constant at 0�, supposedly to account for
the relay manufacturer’s viewpoint. The experiments
conducted in Section V, VI and VIII show that, as
expected, the fault resistance has always a great effect
(both alone and in combination with the fault location),
and thus cannot be neglected for a thorough assess-
ment of the relay performance in realistic operating
conditions. With the stat-DOE, it is proven how the
utilities can effectively investigate the effect of the fault
resistance together with other factors. In particular, two-
fold is the benefit given by investigating the effect of
fault resistance on the relay performance over a wider
range, e.g., from 0 to 9 �, as reported in Figure 16.
In fact, on the one hand, the tests for which faults with
null resistance are applied (e.g., Figure 16a) allow the
utilities to check the compliance of the manufacturer’s
claims with the IEC 60255-121:2014 standard [16]
(as reported in the relay technical manual). On the
other hand, the tests for which faults with resistance
values higher than 0� are applied (e.g., Figure 16b-c-
d), help the utilities know the values of fault resistance
above which misoperation of the relay is recorded
in realistic conditions; this helps identifying further
directions of improvement, such as which kinds of
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additional protection functions the distance protection
should be equipped with to deal with high resistance
faults (e.g., directional over-current function).

• The IEC 60255-121:2014 standard [16] provides no
indication on how to define performance criteria for
distance relays, which are left to the utilities [28].
Although it is difficult to univocally define such criteria,
the stat-DOE supports the utilities in elaborating robust
pass/fail criteria based on their own requirements. For
example, if the utility accepts the distance relay to
operate ‘‘correctly’’ in Zone 1 as long as t < 200 ms
(considering the safety margin before the Zone 2
operation), the empirical model fit on the data of the
experiment designed with the stat-DOE can be used to
extract the relay’s operability boundary, which, in turn,
allows inferring the combinations of the design factors’
values that make the relay operate ‘‘incorrectly’’.

IX. CONCLUSION
Power system protection testing is vital to investigate the per-
formance of protection systems and equipment before their
field implementation. Yet, time/money resource constraints
can prevent a thorough testing activity. This paper shows
how the stat-DOE can be beneficial for the testing activity
(especially in a resource-saving context) by focusing on the
distance protection performance testing.

The state-of-the-art experimental strategies can greatly
profit from the statistical techniques envisaged by the stat-
DOE (e.g., statistical test of hypothesis, ANOVA, multi-
variate regression, etc.). Statistically designing the experi-
ments via the stat-DOE allows to perform a thorough and
broader-than-standard evaluation of the relay performance
under realistic operating conditions without ‘‘arbitrarily’’
selecting which and how many tests to conduct. Operator-
specific requirements (such as the maximum number of
affordable tests) or physical constraints among factors can
be effectively handled by modern custom designs that,
compared to the state-of-the-art experimental strategies, are
more efficient in producing the same amount of information
at much less price in terms of number of tests to conduct. For
instance, the custom design adopted to test the performance
of a commercial distance relay shows an efficiency almost
30 times higher than the design used by the IEC 60255-
121:2014 standard [16]. All the actors of the standardization
chain can benefit from the recommendations and potential
lines of refinement extracted from this work, in terms of how
to e.g., study the effect of factors others than those suggested
by the IEC 60255-121:2014 standard [16] (e.g., the fault
resistance), extract pass/fail criteria for defining acceptance
tests based on the utility’s requirements, and publish the test
results.

This work provides a replicable guideline to test the
performance of other protection functions (e.g., transformer
differential) and ancillary functions (e.g., tele-protection) or
even in different scenarios (such as evolving or simultaneous
faults [15]). Other use cases might have their own features

in terms of number and types of factors, type of response
to measure, operator-specific requirements, etc. Nonetheless,
although its instantiation may differ, the stat-DOE can rep-
resent an enabler towards a common basis for guaranteeing
replicability, robustness and objectivity of the testing activity.
More broadly, it can ultimately be a precious tool towards the
refinement of interoperability testing procedures [19], [37].
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