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ABSTRACT In this study, we apply a novel format of Maxwell’s equations in SI Units for analyzing
electromagnetic fields in conical cavities, with a special focus on time-domain analysis. This unique
approach aligns the dimensions of electric (E) and magnetic (H) fields as inverse meters, thereby facilitating
theoretical investigations into complex geometrical field behaviors. Our primary focus is on deriving
evolutionary equations for electromagnetic fields within conical structures. Additionally, this study serves
as a stepping stone for future in-depth research into the mechanical properties of electromagnetic fields,
particularly due to the unified dimensional approach of E and H fields. This method is expected to provide
more insightful perspectives in understanding the dynamics of electromagnetic fields in conical cavities. The
implications of this research extend to practical applications, notably in the design and analysis of microwave
resonant cavities and conical antennas, enhancing our comprehension of electromagnetic phenomena in
specialized structures within the broader scope of electrodynamics.

INDEX TERMS Maxwell’s equations, conical cavities, evolutionary electrodynamics, time domain.

I. INTRODUCTION
The exploration of electromagnetic fields within conical
geometries has garnered significant attention due to its
implications in advanced technologies, notably biconical
transmission lines [1], conical antennas [2], and the concepts
like the EMDrive (RF resonant cavity thrusters) [3], [4].
Stemming from the seminal works of Smith and Tai [5], [6],
research in this area has continually evolved to demystify
the complex behaviors exhibited by fields in these unique
structures [7]. Our study builds upon these foundational
theories and subsequent advancements in electromagnetic
field analysis.

In the realm of conical cavity electrodynamics, the
Evolutionary Approach to Electrodynamics (EAE) has
played an essential role in enhancing our understanding of
these fields in the time domain [8], [9], [10], [11], [12], [13],
[14], [15], [16]. However, previous investigations utilizing

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Angiulli .

the EAE focused on electromagnetic fields represented in
regular SI units, which somewhat constrained the analysis
of mechanical properties like mass and inertia. Inspired by
Kaiser’s theoretical exploration [17], which reexamines the
mechanical properties of electromagnetic fields in non-SI
units—specifically employing a unique perspective where
electromagnetic fields are considered with common physical
dimensions to facilitate the analysis of their mechanical
properties—our research adopts an innovative approach.
Unlike Kaiser, who uses the CGS system’s flexibility to
align the dimensions of electric and magnetic fields by
setting ϵ0 and µ0 for vacuum to 1, our methodology utilizes
an inverse meter, ⌊1/m⌋, unit representation for electric,
E⃗ (r,t), and magnetic, H⃗ (r,t), fields [18], [19]. This novel
alignment within the SI unit system diverges from Kaiser’s
approach by ensuring the physical dimensions of E⃗ and H⃗
are unified for a broader, more universally accessible analysis
in conical structures. While this paper lays the groundwork
for future study on the mechanical characteristics of
electromagnetic fields, aligning with Kaiser’s goal of
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dimensional commonality, it establishes the infrastructure
within the SI framework, ready for detailed exploration of
these mechanical properties in subsequent research.

A key focus of our work is the derivation of evolutionary
equations for electromagnetic fields in conical geometries,
an essential step toward solving modal amplitudes in
such structures. While the development of analytical and
numerical solution techniques has been instrumental in
advancing the field [20], [21], [22], [23], [24], [25], [26], our
study primarily concentrates on the theoretical formulation
of evolutionary equations in conical configurations using
the novel format of Maxwell’s equations [19]. Rather than
presenting numerical solutions, our focus is on the conceptual
and analytical framework that lays the groundwork for
future numerical analyses and applications in complex
electromagnetic scenarios.

This work contributes to the ongoing discourse in the
field, providing a foundational framework for future research
and explorations. It opens doors for potential practical
applications in areas such as advanced antenna design
and microwave technology, thus contributing to both the
theoretical and practical realms of electromagnetic research.

II. DEFINITION OF THE PROBLEM AND METHOD
In this section, we define the problem of analyzing electro-
magnetic fields in conical cavities in time domain.

The focus is on conical geometry converging towards a
single vertex, made of perfectly electric conducting (PEC)
material, see Figure 1. We introduce a novel approach by
scaling the dimensions of electric and magnetic fields into
a common unit, inverse meters, and electric and magnetic
current densities into a common unit, inverse meters squared.
This scaling is fundamental to our method also as in [17].
We then apply these scaled novel fields and densities to
reformulate Maxwell’s equations in SI units.

FIGURE 1. Geometry of the problem.

This representation is not only mathematically elegant
but also offers a clearer insight into the dynamics of

electromagnetic fields in conical structures. The culmination
of this section is the establishment of a theoretical framework,
setting the stage for the derivation of evolutionary equations
that are crucial to obtaining the amplitudes of the fields.

The redefined scaling of standard electric and magnetic
field vectors, E⃗(r⃗, t) and H⃗(r⃗, t), along with standard electric
and magnetic current densities, J⃗ (r⃗, t) and M⃗(r⃗, t), has been
introduced as a transformative approach in electrodynamics
research. This scaling adjusts the dimensions of these
field vectors to a uniform inverse meter unit for electric
and magnetic fields, marking a significant shift in how
electromagnetic problems are approached and analyzed,
as highlighted in various seminal studies [18], [19] as:

E⃗ (r,t)︸ ︷︷ ︸
⌊V/m⌋

= ϵV0︸︷︷︸
⌊V⌋

E⃗ (r,t)︸ ︷︷ ︸
⌊1/m⌋

= 3.361×105︸ ︷︷ ︸
⌊V⌋

× E⃗ (r,t)︸ ︷︷ ︸
⌊1/m⌋

H⃗ (r,t)︸ ︷︷ ︸
⌊A/m⌋

= µA
0︸︷︷︸

⌊A⌋

H⃗ (r,t)︸ ︷︷ ︸
⌊1/m⌋

= 8.921×102︸ ︷︷ ︸
⌊A⌋

× H⃗ (r,t)︸ ︷︷ ︸
⌊1/m⌋

J⃗ (r,t)︸ ︷︷ ︸
⌊A/m2⌋

= µA
0︸︷︷︸

⌊A⌋

J⃗ (r,t)︸ ︷︷ ︸
⌊1/m2⌋

= 8.921×102︸ ︷︷ ︸
⌊A⌋

× J⃗ (r,t)︸ ︷︷ ︸
⌊1/m2⌋

M⃗ (r,t)︸ ︷︷ ︸
⌊V/m2⌋

= ϵV0︸︷︷︸
⌊V⌋

M⃗ (r,t)︸ ︷︷ ︸
⌊1/m2⌋

= 3.361×105︸ ︷︷ ︸
⌊V⌋

× M⃗ (r,t)︸ ︷︷ ︸
⌊1/m2⌋


(1)

where ϵV0 and µA
0 represent the new permittivity and perme-

ability values, respectively, with the former having a volt,
⌊V⌋ , dimension and the latter an ampere, ⌊A⌋ dimension.
The field vectors E⃗ and H⃗ are now characterized by a unified
dimension of inverse meters, while the current vectors J⃗ and
M⃗ both share a dimensionality of inverse meters squared.
Incorporating the scaled dimensions as outlined in

Equation (1) into the traditional framework of Maxwell’s
equations leads to an innovative and reformulated version of
these equations within the framework of SI units as

∇×H⃗ (r,t) =
1
c

∂

∂t
E⃗ (r,t) +J⃗ (r,t) (2a)

∇×E⃗ (r,t) = −
1
c

∂

∂t
H⃗ (r,t) −M⃗ (r,t) (2b)

∇ · E⃗ (r,t) = ϱ; ∇ · H⃗ (r,t) = ϱm. (2c)

In the revised Maxwell’s equations (2), the quantities ϱ and
ϱm are introduced, both having a dimensional specification
of inverse square meters. These quantities are related to the
conventional densities ρ and ρm through the relationships
ρ =

√
Nϵ0ϱ and ρm =

√
Nµ0ϱm, respectively, where⌊

N ≡ kgm/s2
⌋
, representing newtons, is the unit of force.

Consider the case where a wave source is positioned near
the central point of our spherical coordinate framework. This
source generates electric and magnetic fields, symbolized
by E⃗ (r,t) and H⃗ (r,t), in addition to electric and magnetic
current densities, represented by J⃗ (r,t) and M⃗ (r,t), along
the surfaces of our conical structure. These generated
quantities serve as auxiliary sources, instigating transient
electromagnetic fields around the primary wave source.

In this specific case, to accurately address the problem, it’s
necessary to supplement Maxwell’s equations, as referenced
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in (2), with well-defined boundary conditions suitable for
PEC cone surfaces:

l⃗ · E⃗|L = 0; n⃗ · H⃗|L = 0;r⃗0 · E⃗|L = 0 (3)

where the normal vector relative to the conical geometry’s
side surface is denoted as n⃗, the unit tangential vector along
the contour is represented by l⃗, and the radial unit vector is
indicated as r⃗0. The problem also necessitates the addition
of initial conditions, which specify the starting state of the
electromagnetic fields in the conical geometry as

E⃗ (r, t) |t =0 = 0,H⃗ (r, t) |t =0 = 0. (4)

III. MODAL BASIS AND FIELD DECOMPOSITIONS
A. MAXWELL’S EQUATIONS IN ANGULAR-RADIAL FORM
The new field vectors, E⃗ (r,t) and H⃗ (r,t), and the new
density vectors, J⃗ (r,t), and M⃗ (r,t), are decomposed into
two parts: a two-dimensional angular (transverse) vector with
subscript ⊥ and a separate radial component with subscript r
as:

E⃗ = E⃗⊥ + r⃗0Er ; H⃗ = H⃗⊥ + r⃗0Hr ;

J⃗ = J⃗⊥ + r⃗0Jr ; M⃗ = M⃗⊥ + r⃗0Mr (5)

for the problem under study defined in the spherical
coordinate system. The operator ∇ is also divided into a
combination of the angular derivative operator ∇⊥ and the
radial derivative ∂

∂r as:

∇ = θ⃗0
1
r

∂

∂θ
+ ϕ⃗0

1
r sin θ

∂

∂ϕ
+ r⃗0

∂

∂r
=

1
r
∇⊥ + r⃗0

∂

∂r
(6)

where

∇⊥ = θ⃗0∂θ + ϕ⃗0
1

sin θ
∂ϕ . (7)

When reformulated in angular-radial terms, the divergent
Maxwell’s equations (2c) yields the following:

r−2∂r

(
r2Er

)
+ r−1

∇⊥ · E⃗⊥ = ϱ

r−2∂r

(
r2Hr

)
+ r−1

∇⊥ · H⃗⊥ = ϱm. (8)

Projecting curl Maxwell’s equations (2a)-(2b) in the radial
direction yields the following:

r−1
∇⊥ ·

[
H⃗⊥ × r⃗0

]
=

1
c
∂tEr + Jr

−r−1
∇⊥ ·

[
E⃗⊥ × r⃗0

]
=

1
c
∂tHr + Mr , (9)

and projecting of them (2a)-(2b) in the angular direction
yields:

− r−1
(
∂r

(
r
[
H⃗⊥ × r⃗0

])
+
[
r⃗0 × ∇⊥Hr

])
=

1
c
∂t E⃗⊥ + J⃗⊥

r−1
(
∂r

(
r
[
E⃗⊥ × r⃗0

])
+
[
r⃗0 × ∇⊥Er

])
=

1
c
∂tH⃗⊥ + M⃗⊥. (10)

By applying Equations (8) and (9), we can eliminate the
radial field components in Equation (10). This process leads
to a set of second-order equations primarily involving the
angular components:[

r⃗0 × ∇⊥

]
∇⊥ · H⃗⊥

= r−1∂rr3
{
1
c
∂t E⃗⊥ + r−1∂r

[
rH⃗⊥ × r⃗0

]}
+

{
r−1∂rr3J⃗⊥ + r

[
r⃗0 × ∇⊥ϱm

]}
(11)[

∇⊥ × r⃗0
]
∇⊥ · E⃗⊥

= r−1∂rr3
{
1
c
∂tH⃗⊥ + r−1∂r

[
r⃗0 × rE⃗⊥

]}
+

{
r−1∂r

(
r3M⃗⊥

)
+ r

[
∇⊥ϱ × r⃗0

]}
(12)

∇⊥

[
r⃗0 × ∇⊥

]
· E⃗⊥

= −r2∂t

{
1
c
r−1∂r

(
rH⃗⊥

)
+

1
c2

∂t

([
r⃗0 × E⃗⊥

])}
− r

{
1
c
r∂t

[
r⃗0 × J⃗⊥

]
+ ∇⊥Mr

}
(13)

∇⊥

[
∇⊥ × r⃗0

]
· H⃗⊥

= −r2∂t

{
1
c
r−1∂r

(
rE⃗⊥

)
+

1
c2

∂t

[
H⃗⊥ × r⃗0

]}
− r

{
∇⊥Jr + r

1
c
∂t

[
M⃗⊥ × r⃗0

]}
. (14)

Correspondingly, the boundary conditions detailed in (3)
are represented as follows

l⃗ · E⃗⊥|L = 0, n⃗ · H⃗⊥|L = 0,

∇⊥ · E⃗⊥|L = 0, ∇⊥ ·

[
H⃗⊥ × r⃗0

]
|L = 0. (15)

By combining the two-dimensional angular vector compo-
nents into a single four-dimensional vector, labeled as X⃗⊥

which is formed by the collation of X⃗⊥ = col(E⃗⊥,H⃗⊥),
the Hilbert space L4

2(S), where S is the sphere surface with
the center in the origin, is introduced. This space serves as the
domain for resolutions to the initial boundary value problem
outlined in this study, as referenced in (18) of [11].

The reformulation of the novel format of Maxwell’s
equations presented in (2) into an operator framework in the
spherical coordinates of the problem, while integrating the
boundary conditions (15), leads to the development of two
distinct linear operators, designated as WH and WE :

WH X⃗⊥ =

(
0

[
r⃗0 × ∇⊥

]
∇⊥·

∇⊥

[
r⃗0 × ∇⊥

]
· 0

)(
E⃗⊥

H⃗⊥

)
(16)

WE X⃗⊥ =

(
0 ∇⊥

[
∇⊥ × r⃗0

]
·[

∇⊥ × r⃗0
]
∇⊥· 0

)(
E⃗⊥

H⃗⊥

)
.

(17)

The equations from (11)-(15) are arranged into a com-
pact operator format, placing transverse (angular) deriva-
tives (16)-(17) to the left side, and radial and time derivatives
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along with sources (18)-(19), on the right side:

WH X⃗⊥ =



r−1∂rr3
{
1
c ∂t E⃗⊥ + r−1∂r

[
rH⃗⊥ × r⃗0

]}
+

{
r−1∂r

(
r3J⃗⊥

)
+ r

[
r⃗0 × ∇⊥ϱm

]}
−r2∂t

{
1
c r

−1∂r

(
rH⃗⊥

)
+

1
c ∂t

[
r⃗0 × E⃗⊥

]}
−r

{
1
c r∂t

[
r⃗0 × J⃗⊥

]
+ ∇⊥Mr

}


(18)

WE X⃗⊥ =


−r2∂t

{
1
c r

−1∂r

(
rE⃗⊥

)
+

1
c ∂t

[
H⃗⊥ × r⃗0

]}
−r

{
∇⊥Jr + r 1c ∂t

[
M⃗⊥ × r⃗0

]}
r−1∂rr3

{
1
c ∂tH⃗⊥ + r−1∂r

[
r⃗0 × rE⃗⊥

]}
+

{
r−1∂r

(
r3M⃗⊥

)
+ r

[
∇⊥ϱ × r⃗0

]}


(19)

This structure simplifies the equations’ representation and
facilitates a clearer understanding of their interplay and
implications. Note that equation (18) corresponds directly to
equations (11), (13), and (15), while equation (19) aligns with
equations (12), (14), and (15).

B. MODAL BASIS FOR THE CONICAL GEOMETRY
It is demonstrated that operators WH and WE exhibit self-
adjoint properties [11]. The eigenfunctions corresponding to
these operators constitute the modal basis within the Hilbert
functional space L4

2(S).

1) MODAL BASIS FOR THE TE-WAVES
The eigenvalue equation holds for operator WH as

WH X⃗H
⊥m = p2mX⃗H

⊥m (20)

where pm signifies an eigenvalue associated with the eigen-
function X⃗H

⊥m. The eigenvalue problem (20) can be simplified
into a scalar one by introducing two scalar functions
8H
m and 9H

m , which are connected to the corresponding
eigenfunctions E⃗H

⊥m and H⃗H
⊥m as follows:

E⃗H
⊥m = p−1

m

[
∇⊥8H

m × r⃗0
]
;H⃗H

⊥m = p−1
m ∇⊥9H

m . (21)

The basis for TE-waves is constituted by the eigenfunctions of
the operator WH . Substituting the scalar functions from (21)
into (20), a scalar boundary eigenvalue problem emerges,
focusing on TE-waves particularly when Er equals zero:

∇⊥ · ∇⊥9H
m + p2m8H

m = 0
∇⊥ · ∇⊥8H

m + p2m9H
m = 0

∂8H
m

∂ n⃗
|L = 0,

∂9H
m

∂ n⃗
|L = 0.

(22)

2) MODAL BASIS FOR THE TM-WAVES
Similarly, the eigenvalue equation holds for operator WE as

WE X⃗E
⊥n = q2nX⃗

E
⊥n (23)

where qn signifies an eigenvalue associated with the eigen-
function X⃗E

⊥n. The eigenvalue problem (23) can be simplified
into a scalar one by introducing scalar functions 9E

n and 8E
n ,

which are connected to the corresponding eigenfunctions E⃗E
⊥n

and H⃗E
⊥n as follows:

E⃗E
⊥n = q−1

n ∇⊥9E
n ;H⃗E

⊥n = q−1
n

[
r⃗0 × ∇⊥8E

n

]
. (24)

The basis for TM-waves is constituted by the eigenfunc-
tions of the operator WE . Substituting the scalar functions
from (24) into (23), a scalar boundary eigenvalue problem
emerges, focusing on TM-waves particularly when Hr equals
zero: 

∇⊥ · ∇⊥8E
n + q2n9

E
n = 0

∇⊥ · ∇⊥9E
n + q2n8

E
n = 0

9E
n |L = 0, 8E

n |L = 0.

(25)

Consequently, the angular components of the electric, E⊥,
and magnetic, H⊥, fields can be expressed in the following
manner:

E⃗⊥ (r, θ, ϕ, t) = r−1

(∑
m

eHm (r, t) E⃗H
⊥m (θ, ϕ)

+

∑
n

eEn (r, t) E⃗E
⊥n (θ, ϕ)

)
(26)

H⃗⊥ (r, θ, ϕ, t) = r−1

(∑
m

hHm (r, t) H⃗H
⊥m (θ, ϕ)

+

∑
n

hEn (r, t) H⃗E
⊥n (θ, ϕ)

)
(27)

The component of the electric field in the radial direction,
denoted as Er , is expressed via an expansion using the basis
functions 8E

n , where 9E
n serving as projectors:

Er (r, θ, ϕ, t) = r−2
∑
n

ern (r, t) qn8E
n (θ, ϕ) . (28)

Similarly, the component of the magnetic field in the radial
direction, denoted as Hr , is expressed via an expansion using
the basis functions 8H

m , where 9H
n serving as projectors:

Hr (r, θ, ϕ, t) = r−2
∑
m

hrm (r, t) pm8H
m (θ, ϕ) . (29)

The coefficients dependent on time and radial coordinates,
designated as eHm , e

E
n , h

H
m , h

E
n , e

r
n, and hrm in equations

(26)-(29), can be determined later following the derivation
and solution of the evolutionary equations.

IV. EVOLUTIONARY EQUATIONS
The coefficients eHm , e

E
n , h

H
m , h

E
n , e

r
n, and hrm represent the

modal amplitudes in the electromagnetic field expansion
on modal bases, as detailed in equations (26)-(29). These
coefficients are key to the expansion and characterization of
electromagnetic fields within the specifiedmodal framework.
By projecting Maxwell’s equations (2) onto the bases

defined in (21) and (24), a set of evolutionary equations,
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specifically (30) and (31), emerges. Solving these evolution-
ary equations enables the determination of the magnitudes of
the modes for the angular and radial elements of the transient
electromagnetic fields, eHm , e

E
n , h

H
m , h

E
n , e

r
n, and h

r
m, offering

insights into their dynamic properties:

∂

∂r

(
ern
)

= eEn + r2
1
4π

∫
S
ϱq−1

n 9E
n dS

∂

∂r

(
hrm
)

= hHm + r2
1
4π

∫
S
ϱmp−1

m 9H
m dS (30)

1
c

∂

∂t

(
ern
)

= −

∑
n′

LEEnn′ hEn′ − r2
1
4π

∫
S

Jrq−1
n 9E

n dS

1
c

∂

∂t

(
hrm
)

= −

∑
m′

LHHm′me
H
m′ − r2

1
4π

∫
S

Mrp−1
m 9H

m dS.

(31)

In the presented equations, (30) and (31), the matrices
denoted as L represent the coupling of modes influenced
by the inhomogeneity of the medium. In situations where
the medium’s structure is homogeneous, these matrices
simplify to identity matrices. Consequently, the evolutionary
equations become a set of uncoupled equations, reducing the
complexity of the problem.

The analysis of TE- and TM-waves, in light of evolutionary
equations (30) and (31), leads to specific sets of equations:
(32)-(36) for TE-waves, and (37)-(41) for TM-waves.

A. FOR THE TE-WAVES{
1
c2

∂2

∂t2
−

∂2

∂r2
+
pmk
r2

}(
r2eHm

)
= −

1
2π

{
∂

∂r

(
r2
∫
S
ϱm9H

m dS
)

− r
∫
S

J⃗⊥ ·
[
∇⊥ × r⃗0

]
9H
m dS

+
r2

c2
∂

∂t

(∫
S

Mr9
H
m dS

)}
(32){

1
c2

∂2

∂t2
−

∂2

∂r2

}(
r2eH0

)
= −

1
4π

∂

∂r

(
r2
∫
S
ϱmdS

)
−

r2

4π
∂

∂t

(∫
S

MrdS
)

(33)

E⃗⊥ =

∞∑
m=1

m∑
k=−m

[
∇⊥9mk × r⃗0

] {
−r

∂

∂t

(
eHm
)

−
r
2π

∫
S

Mr9
∗
mkdS

}
(34)

H⃗⊥ =
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1
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−
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2π

∫
S
ϱm9∗

mkdS
}

(35)

Hr =

∞∑
m=1

m∑
k=−m

hrmpm9mk + eH0 (36)

B. FOR THE TM-WAVES{
1
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}(
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= −

1
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∂
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nldS

)}
(37){

1
c2

∂2

∂t2
−
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∂r2

}(
r2hE0

)
= −

1
4π

∂

∂r

(
r2
∫
S
ϱdS

)
−

r2

4π
∂
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(∫
S

JrdS
)

(38)

E⃗⊥ =

∞∑
n=1

n∑
l=−n

∇⊥9nl

{
1
r

∂

∂r

(
r2hEn

)
−

r
2π

∫
S
ϱ9∗

nldS
}

(39)

H⃗⊥ =

∞∑
n=1

n∑
l=−n

[
r⃗0 × ∇⊥9nl

] {
−r

∂

∂t

(
hEn
)

−
r
2π

∫
S

Jr9∗
nldS

}
(40)

Er =

∞∑
n=1

n∑
l=−n

ernqn9nl + hE0 (41)

where p±m and q±n are defined as ±m(m+ 1) and ±n(n+ 1)
respectively, n and m take values from the set 1, 2, . . . . The
variables k and l range over −m to m and −n to n, denoted
as k = −m,m and l = −n, n. The function 9mk is given by√

2m+1
2

(m−|k|)!
(m+|k|)!Pm

|k|(cos θeikϕ), where P|k|
m (x) represents the

associated Legendre functions.

V. CONCLUSION
The Evolutionary Approach to Electrodynamics (EAE),
developed initially by Tretyakov in the early 1990s [27], [28],
has been acknowledged as an alternative to the time-harmonic
field method [29]. The EAE has seen successful applications
across various cavity [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39], and waveguide problems [40], [41],
[42], [43], [44], [45], [46], [47]. This includes both hollow
structures and thosewith diversemedia, with surfaces ranging
from electrically perfect conducting to lossy [48], [49].
Recently, with the introduction of a novel format of
Maxwell’s equations in SI units [19], the EAE has been
enhanced to address complexities within cavity problems
more effectively [50].
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In this study, we present an innovative method that
employs revised Maxwell’s equations for deriving evolution-
ary equations of transient electromagnetic field amplitudes
in conical cavities. This approach offers new perspectives
in analyzing complex electromagnetic behaviors, enhancing
our understanding of their dynamics in these structures.
This paper focuses mainly on developing the foundational
evolutionary equations and the theoretical framework of our
method.

The resolution of these equations will pave the way
for revealing the modal amplitudes of the fields, enabling
a more nuanced illustration of the temporal dynamics
of both electric and magnetic fields in conical cavities.
These modal amplitudes are crucial for understanding the
mechanical properties of electromagnetic fields [51], partic-
ularly in exploring the inertial characteristics within these
geometries.

This analysis not only enhances our comprehension of the
time-dependent behavior of electromagnetic fields in special-
ized structures but also sets a foundation for future advance-
ments in electromagnetic research. The insights gained
from this study have potential applications in advanced
electromagnetic systems. This application of factorization
of physical dimensions can also be used to further develop
modern topics such as the quantization of electromagnetic
fields [52].
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