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ABSTRACT The dynamic behavior of pedestrians causes a misalignment problem between the sensor
orientation and the walking direction, which hinders the performance of pedestrian dead reckoning (PDR)
systems. Pedestrians wearing smartwatches are constantly faced with this problem when running. In this
paper, we propose a novel kinematic modeling of arm swing that segments arm swing motion from the
movement of the center of mass of the body. The proposed decomposition method allows for effective
negation of the sensor outputs due to the redundant motion that obstructs the estimation of the true walking
direction. The correct direction vector is computed by deducting the direction vector of the arm swing from
that of the entire motion, which are both derived from performing two separate principal component analyses
(PCA). The performance of the proposed method was evaluated through several experiments. In the running
track experiment, the proposed method demonstrates the best performance, with 57% — 70% performance
improvement compared to the existing methods. In the general scenario involving both walking and running,
the proposed method outperforms the baseline method by 56%, improving the generality of the PCA-based
methods.

INDEX TERMS Gait kinematics, inertial sensors, pedestrian dead reckoning (PDR), principal component

analysis (PCA), smartwatch, walking direction estimation.

I. INTRODUCTION Bluetooth [10], and RFID [11] have been studied, but they

Pedestrian localization stands as a fundamental technology
for services based on the location of pedestrians [1], [2], [3].
Recently, services that provide the trajectory for people exer-
cising with wearable devices have gained attention. While
outdoor localization systems relying on global navigation
satellite system (GNSS) have been widely commercial-
ized [4], they face limitations when multi-path phenomena
occur in urban areas [5] and require external infrastructure
such as satellites. In addition, indoor localization systems
that utilize Wi-Fi [6], [7], [8], Ultra-Wide Band (UWB) [9],
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also require pre-installed infrastructure.

Therefore, pedestrian localization methods that do not rely
on infrastructure have been continuously researched, and
the most representative one is pedestrian dead reckoning
(PDR) [12]. In an inertial sensor-based PDR system, the
current position is estimated recursively using the step length
and the walking direction. Between the two parameters, the
latter poses a greater importance in achieving an accurate
pedestrian localization [13].

Generally, the attitude and heading reference systems
(AHRS) have been mainly used for walking direction
estimation [14], [15], [16], [17]. However, these algorithms
assume that the direction pointed by the sensor aligns with the
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FIGURE 1. Directional misalignment between the direction pointed by the
sensor and the actual walking direction of the pedestrian.

actual walking direction of the pedestrian. This assumption
is not appropriate in situations where the two directions are
inconsistent as shown in Fig. 1. Moreover, this misalignment
often occurs in PDR where pedestrians wear sensors on their
hands or wrists. Various studies have been conducted to
address this problem [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32] and one of the
most popular methods is the principal component analysis
(PCA)-based method.

The PCA-based methods estimate the walking direction
by performing a PCA on the distribution of the acceleration
measurements from a few steps of walking, resulting
in the estimation of the actual walking direction of the
pedestrian [18], [19], [20]. However, previous studies in [33],
[34], and [35] have highlighted that the effectiveness of
the PCA-based methods diminishes when the distribution
includes acceleration components that do not align with the
walking direction. This problem is prevalent during running,
as depicted in Fig. 1, where the swing motions of the arms
deviate from the walking direction, leading to an increase in
the estimation error.

In this paper, we propose a solution to this problem by
first calculating the direction vectors of the entire motion and
the swing motion of the arms using two PCAs, hence from
the title: paired PCA. Furthermore, by modeling the swing
motion of the arms, we eliminate the movements that do not
correspond to the true walking direction, thereby enhancing
the accuracy and stability of the walking direction estimation.

The contributions of this paper can be summarized as
follows.

1) Analysis on human motion is performed, aiming
to decompose the intricate movements into two
categories: those that yield acceleration components
aligned with the walking direction and those that do
not.

2) A novel method of eliminating the influence of
misaligned acceleration components is proposed. The
method utilizes paired PCA to derive direction vectors
from both the acceleration and the angular rate mea-
surements, which are then combined with kinematic
modeling of the arm swing.
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FIGURE 2. The impact of non-forward acceleration, represented by the
red area, in the PCA-based methods.

3) Comprehensive experiments, including a running-only
sequence, on pedestrians wearing smartwatches are
conducted. The evaluation shows that our method
outperforms the existing methods in estimating an
accurate walking direction.

The paper is organized as follows. Section II provides an
overview of existing studies on walking direction estimation.
In Section III, an analysis of human motion is con-
ducted. Building upon the insights gained from Section III,
Section IV proposes a novel method for estimating walking
direction by decomposing human motion through the mod-
eling of arm swing. Section V presents experimental results
and performance validation of the proposed method. Finally,
Section VI suggests conclusions of this study.

Il. RELATED WORKS

Inertial sensor-based walking direction estimation methods
can be divided into two main approaches: analyzing the
primary components and modeling the human gait character-
istics. Recently, methods incorporating neural networks have
also been investigated [27].

One of the representative methods that analyze the primary
components is the method that utilizes the acceleration
measured during walking [19]. This method operates under
the assumption that the direction that maximizes the variance
of the acceleration distribution is consistent with the actual
walking direction of the pedestrian. The method performs
PCA on the projected acceleration onto the navigation
frame or the horizontal plane. However, this method implies
limitations in its assumption. As pointed out in [33], the
inclusion of non-forward acceleration, i.e., accelerations that
are not aligned with the walking direction, undermines the
assumption of this method, resulting in a degradation of the
estimation performance as shown in Fig. 2. As mentioned
in Section I, this concern is a critical limitation of the
PCA-based methods since it is a problem that persists even
in ordinary running situations.

Another method for analyzing the primary components is
to use the angular rate measured during walking [32]. This
method introduces a constraint that the angular rate in the
walking direction should be zero, based on the intuition that
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FIGURE 3. Distribution of acceleration with inertial sensors attached to
(a) the center of mass of the body while walking and (b) the wrist while
swinging an arm as if walking.

the swing of the arms or legs is aligned with the walking
direction. However, if the swing direction is no longer
aligned with the walking direction, the estimated direction
will deviate from the actual walking direction. As there is
no guarantee that the swing and walking direction will be
aligned, this can be considered as a limitation of this method.

As for the approach of modeling human gait charac-
teristics, a method introduces a kinematic modeling of
the acceleration measured during walking. The key idea
underlying this method, proposed by Leonardo et al. [24],
is that the acceleration of the center of mass of the
pedestrian during walking follows a rolling-foot model [36].
Unlike other methods, they emphasize the strengths of their
method, which does not require step detection, has no
0°/180° ambiguity, does not require algorithm customization
depending on users, and does not rely on the pre-trained
model. However, the rolling-foot model loses its validity if the
sensor is not positioned at the center of mass of the pedestrian.
As they mentioned, when holding the sensor in the hand and
swinging, the performance of the method is degraded.

Another method for modeling gait characteristics is to
model acceleration measured during walking as a Gaussian
mixture [30]. This method, called WAlking direction estima-
tion based on Inertial Signal Statistics (WAISS), considers
that the distribution of the acceleration measurements can
be characterized with two Gaussian distributions, each repre-
senting the frontal and the lateral acceleration. This method
consists of two phases. In the training phase, a Gaussian
mixture model (GMM) is constructed using the Expectation-
Maximization (EM) algorithm. In the subsequent walking
direction estimation phase, the direction that maximizes
the log-likelihood of the GMM is deemed as the walking
direction. However, this method requires a pre-trained model,
which may vary depending on the individual and the
motion, and thus, the key lies in creating a personalized and
sophisticated model [35].
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FIGURE 4. Distribution of acceleration with inertial sensors attached to
(a) the center of mass of the body while running and (b) the wrist while
swinging an arm as if running.

Our proposed method combines two main approaches:
one that analyzes the primary components and one that
models human gait characteristics, specifically the difference
in arm swing patterns between walking and running. The
former approach actively utilizes the intrinsic features of the
inertial measurements but does not exploit the characteristics
of human gaits, and vice versa for the latter approach.
Our method integrates the strengths of both approaches and
mitigates their limitations by employing PCAs on the inertial
measurements, and also incorporating kinematic modeling of
arm swing.

Ill. HUMAN MOTION ANALYSIS
Walking and running are the most basic human behavior.
During walking, a person alternates their feet while syn-
chronously moving their arms to maintain balance [37].
Humans repeat these cyclic movements while walking and
running. Humans can also raise their arms to look at the
watch, wave their hands and so on while walking, but for
the purpose of this paper, these possibilities are excluded
and only normal walking is considered. In the context of
wearing an inertial sensor on the wrist during these motions,
the sensor output reflects a combination of the center of mass
motion and arm swing. To empirically validate this intuitive
understanding and gain a deeper knowledge of human gaits,
a series of experiments was conducted. A detailed description
of the experimental setup can be found in Section V.
Intuitively speaking, humans tend to swing their arms in a
back-and-forth manner rather than diagonally when walking.
In Fig. 3(a), the distribution of acceleration is shown when
the inertial sensor is attached to the center of mass of the
body (chest) during several steps of walking. Fig. 3(b) shows
the distribution of acceleration when the inertial sensor is
attached to the wrist while the participant stands still but only
swings the arm as if were walking to exclude the effect of
the body transition. It is shown that the variance maximizing
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FIGURE 5. Schematic diagram of each direction vector during running.

direction of Fig. 3(a) and that of Fig. 3(b) both coincide
with the true walking direction. This finding substantiates our
initial intuition that the direction of the center of mass of the
body and the direction of arm swing align during walking.

Unfortunately, the outcomes are different for running.
Fig. 4(a) presents the distribution of the acceleration mea-
sured with an inertial sensor attached to the center of mass
of the body (chest) during running. Fig. 4(b) shows the
distribution of the acceleration measured with an inertial
sensor attached to the wrist while the participant stands still
but only swings the arm as if were running to exclude the
effect of the body movement.

In this case, the variance maximizing direction of Fig. 4(a)
aligns with the true walking direction, while that of Fig. 4(b)
no longer coincides with the true walking direction. That
is, when humans run, as depicted in Fig. 1, the arm swing
occurs in a “diagonal” manner with the arms held closer
to the body [38], deviating from the true walking direction,
unlike in walking. While the acceleration components
generated by the movement of the center of mass of the
body provide valuable cues for estimating the true walking
direction, the acceleration components generated by the arm
swing consequently impede accurate estimation due to their
misalignment. With continued arm swings, the distribution of
acceleration measured with inertial sensor on the wrist while
running would be somewhat skewed compared to Fig. 4(a).

Starting this section, we stated that the most basic human
motion is walking and running. However, even in the case of
running, the skewing of the acceleration distribution occurs
due to the influence of arm swing-induced acceleration
components. As mentioned in Section II, these acceleration
components have been identified as a critical limitation of
the PCA-based methods. Our analysis on the human motion
decomposition serves as the motivation of our research, and
we hence aim to establish a broader applicability of the
PCA-based methods.

IV. PEDESTRIAN WALKING DIRECTION ESTIMATION
USING MOTION DECOMPOSITION

The fundamental concept of our proposed method is based
on the premise that human motion is comprised of two
distinct components: the movement associated with the center
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of mass (COM) of the body and the swing of the arms,
as elucidated in Section III. Thus, the problem can be defined
as follows.

U = ccoMUCOM + CswingWswing (D

where ¢ and u represent the coefficient and the unit direction
vector, respectively, whereas the subscripts COM and swing
represent the motion of the center of mass of the body and the
arm swing, respectively.

The ultimate goal of the proposed method is to determine
the walking direction through an accurate estimation of
ucom, of which the direct calculation is unfeasible as the
inertial sensor is attached to the wrist, not to the center of
mass of the body. Fig. 5 provides a conceptual illustration of
the direction vectors in the human running motion, depicting
how wu is comprised of both ucoy and wgying.

A. DERIVATION OF THE DIRECTION VECTOR OF THE
ENTIRE MOTION

The unit vector w is derived from é, which is the direction that
maximizes the variance of the distribution of the acceleration
measurements from a few steps. 6 is estimated through
performing PCA as follows.

M
6 = argmax (Y (B - a"()) ©)

i=1
u = [cosé siné]T 3)

where B = [cos 6 sinf], a” is the acceleration measurement
in the north-east plane of the navigation frame(n), and M
is the number of data samples generated in a few steps.
However, as discussed in Section III, the direction vector u
includes the arm swing, and hence cannot represent the true
walking direction: the direction of the center of mass.

However, PCA alone still leaves with 0°/180° ambiguity
of the estimated direction vector, meaning the forward and
backward walking along the 6 direction line cannot be
distinguished. To resolve this ambiguity, we leverage the
angular rate measurements [19]. The forward and backward
swings are differentiated using the sign of the angular rate
of the axis orthogonal to the swing. Then, the chronological
order of the acceleration measurements of the forward swing
reveals the “forward” direction.

B. DERIVATION OF THE DIRECTION VECTOR OF THE ARM
SWING

The vector gy, is derived from the angular rate mea-
surements. When humans swing their arms while moving,
the arms rotate around an axis orthogonal to the swing
direction. As a result, the angular rates corresponding to
the orthogonal axis exhibit relatively larger values, while
the angular rates along the swing direction display relatively
smaller values [32]. Exploiting this swing characteristic, the
unit vector gy ing is derived from ésw,-ng, which is the direction
that minimizes the variance of the distribution of the angular
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v

FIGURE 6. Kinematic modeling of arm swing motion.

rate measurements from a few steps. éswing is estimated
through performing PCA as follows.

M
Orving = argmin(Y (8 - &"(0))?) )

i=1
R oA T
Uswing = [COS eswing S eswing] Q)

where ®" is the angular rate measurement in the north-east
plane of the navigation frame.

C. DERIVATION OF THE COEFFICIENTS WITH KINEMATIC
MODELING OF ARM SWING

The coefficients ccoy and csying, Which are multiplied with
each direction vector in (1), are defined in this subsection.
Based on the analysis in Section III, the following assumption
can be derived.

n__ .n n
a’ = acoy + a’swing (6)

n n L —
where ag-(,, and a;, . . are the acceleration in the navigation

frame due to the movement of the center of mass of the body
and the arm swing, respectively.

From (6), the coefficient cying is defined as the proportion
of a” in a". The definition of the coefficient cyyig can be

swing . .
expressed as the following equation.

M .
=M la e D12

=Mam @)l

Cswing = @)
where M is the number of data samples generated over several
swing cycles, and || - ||» denotes the />-norm of a vector. a” is
already known from the acceleration measurement, but a?wm <
is not directly known and has to be found through modeling.
From (1), w is a unit vector, hence the following relation can
be derived. The detailed derivation of (8) is presented in the
Appendix.

ccom + Cswing = L. (8

The arm swing is a periodic circular motion around a
specific point in the shoulder and primarily occurs within a
specific plane. Therefore, we model the swing of the arm
as a two-dimensional circular motion of an object, as shown
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in Fig. 6. In polar coordinates, the position of an object in
two-dimensional circular motion is as follows.

r=rr )

where r is the radial distance between the object and the
origin and # is the unit vector along the radial direction from
the origin to the object. The velocity of an object is the time
derivative of (9).

d dr v dr n 10
U—Er—gr—i—rz_ar—i—rwtp (10)

where qAS is the time-varying unit vector associated with
the changing ¢, ¢ is the angle between the vertical axis
and the radial line from the origin to the object, and
o is the magnitude of the angular rate of the object.
Differentiating (10) once more with respect to time, the
acceleration of an object in two-dimensional circular motion
in polar coordinates can be derived as follows.

d d*r A dr do_x

The first term on the right-hand side of (11) represents the
centripetal acceleration, while the second term represents
the tangential acceleration. Consequently, (11) serves as the
kinematic model of a{,; ..

From a physical perspective, r represents the distance
between a specific point on the shoulder and the location
where the sensor is attached, so we assume fi—; = 0. Also,
since the Cartesian coordinates & and ¢ can be represented
in polar coordinates as # = cos¢ & + sin¢ y and é =

—sin¢ & + cos ¢ g, we can simplify af, ¢ as follows.

n 2 do A
Qgying = (—1r®"COS P — r—osin p)x

d
F(—re?sing + rd—‘:cosmgj. (12)

n
swing

d 2
w
||agwing||2 =r |o* + (E) . (13)

As indicated by (7), the final expression for cyying is
derived as:

Hence, ||a
expression:

|| can be determined using the following

N\ 2
E;M r w(i)4+(dc;(l))

=M1am()l2

(14)

Cswing =

where o is the magnitude of the angular rate measurement
and ||a" ||, is the magnitude of the acceleration measurement

VOLUME 12, 2024



J. W. Park et al.: Smartwatch-Based Kinematic Walking Direction Estimation Using Paired PCA

IEEE Access

TABLE 1. Test user profile.

Test User  Height [cm] Age Gender r* [m]
Subject1 174 27 male 0.35
Subject2 177 26 male 0.35
Subject3 167 31 male 0.30
Subject4 163 24 female 0.30
Subject5 159 34 female 0.30
Subject6 185 28 male 0.40

* r: assumed linear distance from the shoulder to the smartwatch

(©)
) X . ,
() (e (®
FIGURE 7. (a) Participant wearing experimental equipment
(b) Experimental setup worn on the left wrist (c) A smartwatch, MTi-680G,

and antenna mounted on the platform (d) Smartwatch (e) MTi-680G
(f) Antenna for GNSS information acquisition.

in the navigation frame. Additionally, considering the rela-
tionship presented in (8), we can obtain ccops as follows.

2
dw(i)
M N4
S o +( o

ccom =1-— (15)

=Mlar ()l
D. WALKING DIRECTION ESTIMATION

Finally, as the objective of the proposed method is to estimate
the direction vector of the center of mass of the body, wcou,
we rearrange (1) as follows:

1 Cswing
u—

ucomM = Uswing - (16)

ccom ccom
Using (16) along with (3), (5), (14) and (15), we can
eventually estimate ucopys while eliminating the influence
of the arm swing, isolating the acceleration components
associated with the center of mass of the body.

V. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, we con-
ducted three experiments. The first experiment aims to
validate the rationality of the swing modeling by estimating
the coefficients for various motions. The second experiment
is a running-only scenario that serves to quantitatively
evaluate the proposed method in comparison with the
existing methods. In the third experiment, we conduct a
comprehensive evaluation of both the proposed method
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FIGURE 8. Cumulative estimates of 5y ng and ccopy-

TABLE 2. Estimation of the coefficient for each motion.

Cswing
Swinging Walking
w/o w/o Walking Running

walking swinging
Mean 0.94 0.03 0.36 0.26
Std 0.02 0.01 0.03 0.01
Min 0.90 0.03 0.30 0.23
Max 0.96 0.04 0.42 0.27

and the existing methods in a more general scenario. The
compared methods include:

1) The PCA-based method, Rotation Matrix and PCA
(RMPCA) [19]: This method utilizes PCA and
shares similarities with the proposed method in terms
of exploiting the characteristics of the acceleration
distribution. Thus, it serves as a baseline method;

2) The Least Square-based Method (LSM) [32];

3) WAIking direction estimation based on Inertial Signal
Statistics (WAISS) [30].

A. EXPERIMENTAL SETUP

Six participants engaged in natural walking while wearing
a Samsung Galaxy Watch 5 Pro, XSens MTi-680G, and
antenna on a platform on their left wrist. Information
regarding the participants involved in the experiments is
presented in Table 1. The experimental setup of the partic-
ipant with the devices is shown in Fig. 7. The smartwatch
outputs acceleration, angular rate, magnetism, and barometric
pressure at 100Hz. Among these raw data, we utilized the
X, y, and z-axis acceleration and angular rate. The three
axes of the smartwatch, x, y, and z, are shown in Fig. 7(d).
Each measurement is stored on the smartwatch in the form
of a CSV file, and after the experiment, the smartwatch
is directly connected to a laptop to transfer the CSV file
to the laptop. On the laptop, our algorithm implemented
in MATLAB works and processes the measurements in the
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FIGURE 9. Estimated walking direction and estimation error for subject1
in running track experiment.

CSV file. To exclude the error of transforming the inertial
sensor outputs of the smartwatch from the body frame to the
navigation frame, we used the AHRS solution provided by
the MTi-680G, which has an accuracy of 0.2° RMS for roll
and pitch and 0.5° RMS for yaw. The step detection algorithm
in [39] was also used.

The true walking direction was calculated by differentiat-
ing the position obtained from the inertial navigation system
(INS)/GNSS(RTK) solution of the MTi-680G at 1-second
intervals, and the position was measured with an accuracy of
CEP lcm + lppm. Although the antenna is attached to the
wrist, the wrist moves with the movement of the participant
in close proximity to the body, and the changes caused by the
wrist movement can be cancelled out by differentiating the
change in position over 1-second period, thus the true walking
direction can be calculated.

B. VALIDATION OF THE COEFFICIENTS FOR MOTION
DECOMPOSITION

We proceed to validate cyying and ccom, which were intro-
duced to facilitate the motion decomposition. The experiment
was conducted on a straight 80m track. To verify whether
Cswing and ccom successfully reflect the decomposition of
the motion, additional motions besides walking and running
were included: only swinging the arms without walking and
walking with the arms fixed to the body. It is anticipated that
Cswing should be close to 1 in the arm swing-only motion,
while cgyine should be close to 0 in the walking motion where
the arms fixed to the body.

Fig. 8 and Table 2 compares the estimates of cyyne, and
ccoum for the four different motions. As anticipated, as shown
in Table 2, the arm swing-only scenario yielded an average
Cswing estimate of 0.94, closely approaching 1. Conversely,
when walking with the arms fixed to the body, the average
Cswing estimate was 0.03, closely approaching 0. The slight
deviations from exact values of 1 and O for the coefficient
can be attributed to modeling inaccuracies stemming from
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FIGURE 10. Error bars of the proposed method against the average speed
of each subject.

the kinematic modeling of the arm swing, sensor noise, and
imperfect control over the motions of the participant. In the
case of normal walking, the average estimate of cgying Was
0.36, ranging between 0.3 and 0.42, and in the case of
running, the average estimate of cgying Was 0.26, ranging
between 0.23 and 0.27. Based on the experimental results
presented in Fig. 8 and Table 2, it can be concluded that
our kinematic modeling of the arm swing accurately captures
the nature of the motions, thus apt for estimating the actual
walking direction.

C. COMPARATIVE ANALYSIS ON RUNNING TRACK
EXPERIMENT

To evaluate the performance of the proposed method,
the participants engaged in running track experiment. The
total distance of the experimental track is about 230m,
which includes some curved sections. Table 3 summarizes
the statistical analysis of RMPCA, LSM, WAISS, and
the proposed method, including the mean error, standard
deviation(std), and 90" percentile. The 90" percentile is the
value corresponding to the 90" percentile of the absolute
estimation error when sorted in ascending order.

As shown in Table 3, the proposed method shows the
best performance among the presented methods, achieving
a mean error of 6.07°. It can be seen that the proposed
method maintains the lowest error level compared to all
other methods, as shown in Fig. 9, which compares the
estimated walking direction and the corresponding estimation
error for each method. Fig. 10 shows the mean error and
standard deviation of the proposed method for each of the
subjects running fast or slow at different speeds. Although the
average speed of the subjects varies from 2.9m/s to 4.2m/s,
the proposed method does not show significant performance
differences for all subjects. This can be inferred as the running
speed is synchronized with the amplitude of the arm swing,
thus the coefficient cyying reflects their speed through the
angular rate measurement and adjusts the direction vector.
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TABLE 3. Comparison of the walking direction estimation error on running track experiment.

Test U RMPCA LSM WAISS Proposed
est User
Mean [°]  Std[°] 90" percentile [°]  Mean [°]  Std [°] 90" percentile [°]  Mean [°]  Std [°] 90" percentile [°]  Mean [°]  Std [°] 90" percentile [°]
Subjectl 21.10 5.92 28.03 14.69 5.68 22.99 14.88 4.58 20.52 5.34 3.97 10.87
Subject2 20.47 4.46 26.14 12.05 4.42 17.91 16.65 3.87 21.20 6.04 4.16 11.80
Subject3 20.01 6.56 28.14 13.69 7.58 21.46 18.17 6.21 25.15 4.97 4.18 9.72
Subject4 18.52 6.88 27.03 16.16 4.66 21.53 16.41 5.18 23.03 6.52 4.96 13.69
Subject5 19.53 7.33 28.20 13.49 7.72 2223 15.62 4.26 21.10 6.48 5.24 13.13
Subject6 22.40 5.66 29.84 14.99 6.80 23.59 14.52 6.92 23.98 6.84 442 14.12
Overall 20.15 6.27 27.95 14.15 6.45 21.81 16.11 5.45 22.52 6.07 4.66 12.20
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FIGURE 11. Empirical cumulative distribution function (CDF) of absolute
estimation error for each method.

Moreover, in terms of the 90'h percentile in Table 3,
RMPCA gives 27.95°, LSM gives 21.81°, WAISS gives
22.52°, and the proposed method gives 12.20°. Given that
the estimation error of the walking direction has a significant
impact on positioning accuracy, maintaining an acceptable
level of error is crucial, meaning even the 90" percentile
should be reasonably small. In this regard, the results show
that the proposed method keeps the errors in check. The
empirical cumulative distribution function (CDF) presented
in Fig. 11 also shows that the proposed method is superior to
the other methods.

The performance of the proposed method is affected by the
parameter r, which is the linear distance from a point on the
shoulder to the point where the sensor is mounted. In this
experiment, the value of r for each subject was measured
directly beforehand and is presented in Table 1. As shown
in Fig. 12, the ratio of the change in the estimated walking
direction to the change in r is 0.38 on average, indicating that
the proposed method is not highly sensitive to .

The results of the baseline method, RMPCA, suggest that
this experimental conditions partially violate the underlying
assumption of RMPCA. RMPCA assumes that the direction
that maximizes the variance of the acceleration distribution
aligns with the walking direction. While this assumption is
appropriate for walking, it becomes disrupted during running,
where the arm swings deviate from the actual walking
direction. As shown in Fig. 9, RMPCA produces biased
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FIGURE 12. Change in the estimated walking direction as r changes.

estimations characterized by the accumulation of non-forward
acceleration resulting from the arm swing, thereby directly
contributing to the estimation error. In contrast, the method
proposed in this paper solves this problem and consistently
demonstrates smaller estimation errors compared to RMPCA
in Fig. 9.

LSM employs the concept of minimizing the angular
rate in the walking direction. This concept is suitable for
walking scenarios where the swing direction aligns with
the walking direction. However, it becomes a significant
source of estimation error during running, as the swing
direction and walking direction deviate from each other.
Meanwhile, WAISS requires an appropriate amount of data
in a constrained setting to construct a GMM during the
training phase. Furthermore, since the GMM is likely to
vary for each individual and each motion, a personalized and
finely segmented model is needed for accurate estimation
of the walking direction [35]. In this experiment, the same
participant generated a GMM using running data on a straight
trajectory, but a separate GMM would be required for walking
motion.

D. COMPARATIVE ANALYSIS ON GENERAL SCENARIO

The participants performed walking and running on an
extended and more challenging course in natural terrain. The
total distance of the trajectory reaches approximately 800m.
The 370-second scenario consists of two walking phases
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TABLE 4. Comparison of the walking direction estimation error on general scenario.

Test User RMPCA LSM WAISS Proposed
Mean [°]  Std[°] 90" percentile [°]  Mean [°]  Std [°] 90" percentile [°]  Mean [°]  Std [°] 90" percentile [°]  Mean [°]  Std [°] 90" percentile [°]
Subject]  10.05 6.40 19.89 10.03 723 21.33 1663 13.92 37.50 6.13 4.02 10.18
Subject2  11.19 6.50 20.64 11.13 777 22.10 1825 1385 37.25 6.30 427 11.59
Subject3  14.01 12,05 29.09 10.56 9.1 23.01 2023 1252 3443 488 5.18 10.37
Subjectd 1193 10.68 26.35 1247 9.01 2331 1652 1220 33.64 553 5.60 12.23
Subjects 1331 11.69 29.68 1424 1192 32,65 16.00 8.41 28.15 468 431 10.17
Subject6 1573 13.19 3275 1349 1081 30.23 1423 1194 29.64 5.90 5.03 12.99
Overall 1272 10.53 28.53 12.00 9.54 25.52 1698 1237 35.27 558 479 1130
TABLE 5. Overall performance by motion phase. = 100f T‘rue —]
g
k=) ——— Baseline(RMPCA)
Mean error [© ] S g
Phase ]
RMPCA LSM WAISS Proposed =
Walking 5.17 5.52 745 477 2-100
Running 22.77 20.06 28.45 6.41 = s
50
and two running phases. The walking phases are from O to 340
100 seconds and from 200 to 310 seconds, whereas the 530
running phases are from 100 to 200 seconds and from 310 to .3.320
370 seconds. £

Based on the analysis of human motion presented in
Section III, the walking motion differs from running in that
the arm swing is aligned with the walking direction. Given
this characteristic, the walking direction for walking can be
estimated from the results of the PCA on the acceleration
given in Section I'V-A alone. Thus, a module was incorporated
to distinguish between walking and running prior to initiating
the walking direction estimation process. This module
examines the frequency of the magnitude of the acceleration
measurements over a few steps [40] and classifies it as
walking if the frequency is less than a certain threshold
and as running if it is greater. Therefore, for walking, only
Section IV-A, which involves PCA on the acceleration,
is executed, while for running, the entire method is executed.
The classifying module enhances the robustness of our
method by ensuring accurate estimation when applied to
general scenarios, such as running-walking-mixed situations.

Table 4 summarizes the estimation performance of each
method in the general scenario of alternating walking and
running. As shown in Table 4, the proposed method achieves
a mean error of 5.58°, which is the best performance in
comparison to the other methods. The proposed method also
maintains the lowest error level of 11.30° in terms of the
90" percentile. For a more detailed performance analysis,
Table 5 shows the performance differences depending on
the motion phase. It can be observed that all methods
have similar estimation results in the two walking phases,
whereas in the two running phases, the proposed method
outperforms the other methods. In the running phase, the
proposed method surpasses the other methods by more than
68%. These results can also be seen in Fig. 13 and Fig. 14,
which present the walking direction estimation for subjectl
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FIGURE 13. Estimated walking direction and estimation error for subject1
in general scenario which consists of two walking phases and two
running phases.
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FIGURE 14. Estimated walking direction and estimation error for subject5
in general scenario.

and 5, respectively. This outperformance is not only owed
to our accurate modeling of arm swing, but also to the
inclusion of the classifying module explained in the previous
paragraph, as it enabled the method to adapt to changing
motion dynamics.

The baseline method, RMPCA, estimates the walking
direction in the running phase as biased against the true
walking direction due to the acceleration component caused
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FIGURE 15. Pseudo-trajectory constructed by the estimated walking
direction for subject1.
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FIGURE 16. Pseudo-trajectory for subject5.

by the swing of the arm. It can be seen that the error
of LSM increased in the running phase since the swing
direction and the walking direction were not aligned during
running. Meanwhile, for WAISS, a personalised GMM was
created for each subject using their own walking data. As a
result, WAISS performed comparably to other methods for
walking, but had an increased error for running due to poor
model fit. Furthermore, as shown in Fig. 13 and Fig. 14,
the performance degradation due to model misfit can vary
from person to person. This shows that WAISS is affected by
the degree of granularity of the GMM, both individual and
motion.

Finally, Fig. 15 and Fig. 16 present the pseudo-trajectory
derived from the estimated walking direction by each
method for subjectl and 5, respectively. The step length was
calculated using the step detection time and walking speed,
assumed to be 1.4m/s for walking and 3m/s for running.
Notably, the proposed method follows the true trajectory
more accurately than the other methods. In Table 6, the RMSE
of the pseudo-trajectory estimated by the proposed method
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TABLE 6. Overall positional accuracy for pseudo-trajectory.

RMPCA LSM WAISS Proposed
RMSE [m] 61.43 59.48 84.07 17.44
Final* [%] 8.58 8.00 9.74 242

* Final = (final position error / total distance) * 100

for all subjects is 17.44m, and the final position error with
respect to the total distance is 2.42%, which is the smallest
error. Therefore, the proposed method has broadened the
applicability of the PCA-based walking direction estimation
method by accommodating fundamental human motions,
namely walking and running.

VI. CONCLUSION

This paper proposed a novel walking direction estimation
method that effectively isolates movement of the center of
mass of the body from the swing movement of the arm,
an inevitable misalignment problem when using smartwatch
data collected while running. The method employs a combi-
nation of PCAs for acceleration and angular rate, alongside
motion decomposition based on human gait kinematics.
The performance of the proposed method was evaluated
through real-world experiments, particularly with general
scenario involving both walking and running to ensure the
broad applicability of the method. While the experiments
were conducted with a smartwatch-wearing participants,
the method can also be applied to other platforms held
in the hand, such as smartphones, to capture the swing
motion of the arm. Furthermore, although the experiments
were conducted outdoors to obtain true walking direction
using GNSS(RTK) information, the method can be equally
effective indoors as the inertial sensor itself does not rely on
external infrastructure.

APPENDIX

DERIVATION OF THE RELATION BETWEEN THE
COEFFICIENTS

The relationship between ccoym and csying given in (8) in
Section IV is derived from the fact that w is a unit vector in (1).
Expressing (1) in terms of its components, we have

un ccuc,N + Csis N
u = = ’ ’ 17
|: i| |:CCMC,E +Csus,Ei| an

where N, E are the North and East axes, respectively, and the
subscripts C, s are COM and swing, respectively. Since u is
a unit vector, we have

un

Ug

= Ju} +uk =1 (19)

2

=1. (18)
2

llull2 =

By definition of /2-norm,

]
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where
2 = clul 2 20
Uy = cclg N+C“5N+ ccCsUc NUs N (20)
u%:c%uzcE—}—cu g T 2cccsuc Eus E- 21)

Since ||u(;||2 = uCN+uCE =1, ||uS|I2 =u N+u E= =1,
UC - Ug = UC NUs N + UC EUsE = ||uc||2||u lacosa =
cos o, we have

c2C +cf+2cccs cosa = 1 (22)

where « is the angle between uc and wuy. If we solve (22)
for cc,
cc = —cycosa +4/1 — c2sin®a. (23)

Hence, the relation between the coefficients is derived as

follows.
cc +cs =cs(1 —cosa) +4/1 — c2sin .

Considering the condition that occurs in the case of running,
the sum of the two coefficients can be approximated as

(24)

cctes =1 (25)

which confirms (8).
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