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ABSTRACT The multi-attribute decision-making (MADM) technique is a dominant process for resolving
genuine real-life applications and investigating an ideal solution by considering appropriate criteria or
attributes. The operational laws of Schweizer-Sklar t-norms and t-conorms are more feasible aggregation
operators to serve this purpose. The prioritized aggregation operators also capture single-term aggregated
information from given evidence or collected data. In this article, we explore the theory of the q-rung
orthopair fuzzy (q-ROF) information to handle awkward and uncertain information of human opinion.
Motivated by the significance of the Schweizer-Sklar t-norms and prioritized aggregation operators,
we derive a family of mathematical approaches for q-rung orthopair fuzzy information, including q-rung
orthopair fuzzy Schweizer-Sklar prioritized average (q-ROFSSPA), q-rung orthopair fuzzy Schweizer-Sklar
prioritized weighted average (q-ROFSSPWA), q-rung orthopair fuzzy Schweizer-Sklar prioritized geometric
(q-ROFSSPG) and q-rung orthopair fuzzy Schweizer-Sklar prioritized weighted geometric (q-ROFSSPWG)
operators. Some notable properties and characteristics are also explored to show the applicability of
developed approaches. An application for improving the economic growth of the agriculture sector and
a decision algorithm is also discussed under the q-rung orthopair fuzzy environment. With the help of
invented mathematical approaches, we resolved a numerical example to choose a suitable crop under
reliable characteristics or attributes. To show the reliability and applicability of initiated methodologies,
we demonstrate a comparison technique to contrast the results of pioneered aggregation operators with
prevailing strategies in the literature.

INDEX TERMS q-rung orthopair fuzzy value, Schweizer-Sklar t-norms, improvement in agriculture and
multi-attribute decision-making process.

I. INTRODUCTION
In a variety of areas of life, comparison is required to address
several challenges, such as machine learning, decision-

The associate editor coordinating the review of this manuscript and
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making and multi-attribute decision-making (MADM). For
decision science, which aims to extract the optimal option
from a set of comparable options, MADM is crucial.
To achieve the evaluation’s goal, MADM first had to assess
the other possibilities using a variety of different criteria,
such as single, span, and similar ones. However, it is often
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the endeavor to lead for MADM in a novel way in a variety
of additional circumstances. There are several approaches to
address the issues mentioned above; however, excellent oper-
ators are identified when the data are fuzzy. Since the subject
under discussion is a generalized production of intuitionistic
fuzzy sets (IFSs) and fuzzy sets (FSs), it primarily relates
to picture fuzzy (PF) operators. Consequently, it is fitting
to highlight the pioneers and current research. Consequently,
in terms of the creation and uses of FS and IFS, it is important
to discuss the pioneers and contemporary research. No short-
age of imprecise, confusing, and unreliable facts exists in real
life. In order to deal with this kind of scenario, Zadeh [1]
developed FS, in which a membership grade (MG), repre-
sented by the letter ( , is given to each element of uncertainty.
In FSs, only the MG is recorded, and a one-minus grade
is recorded as a non-membership grade (NMG). Therefore,
by considering the MG, it is certain to find the NMG. How-
ever, one is uncertain about the NMG in real life because of
the understanding of MG. It is advised that there be a free
NMG function in these situations. In order to address the
circumstances, Atanassov Atanasov [2] created the concept
of IFS, whereby every element is designated with MG and
NMG, indicated as as ( , under the constraint 0 ≤ + ≤ 1.
Yager [3] presented a robust theory of the pythagorean fuzzy
set (PyFS) by exploring theMG and NMGwith the character-
istics of the sum of MG and NMG. The mathematical shape
of PyFS is described as follows: 0 ≤ + ≤ 1. Sometime,
the sum ofMG and NMG bigger than one and decision maker
unable to process given information with PyF environments.
To handle such circumstances, Yager [4] developed a new
theory of q-rung orthopair fuzzy set (q-ROFS) by general-
izing the characteristics of pythagorean fuzzy theory. The
mathematical structure of q-ROFS is characterized as 0 ≤

+ ≤ 1, η∈Z+. Motivated by aforementioned theories,
several mathematicians utilized above theories to resolve dif-
ferent crucial applications related to the real life [5], [6], [7].

An important component of MADM, AOs aggregate the
results of many criteria into a single score. Alternatives
performance is summed up using AOs across many param-
eters. They create a single score that reflects the alternative’s
overall performance by adding the individual scores for
each criterion. Because they allow decision-makers to assess
options using a single performance metric, AOs are crucial
to MADM. It would be hard to evaluate alternatives that do
well on certain criteria but badly on others without aggrega-
tion operators. Aggregation operators allow decision-makers
to balance the significance of many criteria, which is one
of their advantages. Decision-makers give each criterion in
MADM a weight according to its relative value. AOs use
these weights to aggregate the results of every criterion into a
single score. Decision makers may ensure that their priorities
and preferences are reflected in the final choice by giving
each criterion weight. First of all, Xu [8] developed important
operations and methods for intuitionistic fuzzy information.
By using the characteristics of algebraic t-norm and theoreti-

cal concepts of geometric operators, Xu andChen [9] initiated
AOs to resolve the decision-making process under the sys-
tem of interval-valued IFSs. Some attractive operational laws
of Aczel Alsina aggregation tools with intuitionistic fuzzy
rough theory presented by Ahmmad et al. [10]. Garg [11]
utilized operations of the exponential algorithm by incor-
porating q-ROF information to overcome the drawbacks of
existing approaches. Hussain et al. [12] discussed an inno-
vative algorithm for the decision-making process and also
resolved an application of vendor management enterprises.
Hussain et al. [13] demonstrated Aczel Alsina operations
for choosing the best electric cars with the system of
complex spherical fuzzy situations. The robust mathemat-
ical strategies of Aczel Alsina t-norms with Hamy mean
models were developed by Hussain et al. [14]. Character-
istics of Dombi t-norms with PyF information applied to
graph theory by Akram and Shahzadi [15]. Ali et al. [16]
resolved an application of supply chain enterprises based
on Einstein aggregation tools. In order to reduce the influ-
ence of existing mathematical approaches, Dey et al. [17]
developed new AOs for solving an application of medical
diagnosis. Ali and Mahmood [18] introduced an innovative
mathematical strategy based on Maclaurin symmetric mean
operators with complex q-ROF information. Akram et al. [19]
established aggregation approaches for complex pythagorean
fuzzy information with prioritized operators. Garg [20]
explored an advanced decision-making process for interval-
valued q-ROF information. Dong et al. [21] adopted realistic
operations of Hamacher t-norms and t-conorms to derive
mathematical approaches based on complex intuitionistic
fuzzy information. Akram and Bilal [22] deduced a series
of new AOs to obtain an analytical solution with bipo-
lar fuzzy theory and decision-making technique. Motivated
by the significance of Dombi aggregation tools, Mahmood
and Rehman [23] resolved complicated real-life applications
using the decision-making process. Garg and Chen [24]
initiated new mathematical approaches by using basic opera-
tions of neutrality aggregation tools for q-ROF information.
In order to explore closeness among different arguments,
Jiang [25] developed AOs for the decision-making process
under the q-ROF framework. Alcantud [26] also general-
ized algebraic t-norm for geometric aggregation tools with
intuitionistic fuzzy situations. Hussain et al. [27] applied
some reliable operations of Dombi aggregation operators to
resolve complicated real-life challenges. We also studied sev-
eral mathematical approaches under different fuzzy domains
developed by different research scholars [28], [29], [30].

Schweizer and Sklar [31] generalized concepts of tri-
angular norms to develop some flexible operations known
as Schweizer and Sklar t-norms by involving a param-
eter , whose range from [−∞, 0]. By changing the
parametric values of Schweizer and Sklar t-norms, we can
easily deduce the Hamacher t-norm and nilpotent t-norm.
Schweizer and Sklar [32] also explored the characteristics
of developed aggregation tools for resolving crucial real-
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life challenges. With time, the theory of Schweizer-Sklar
t-norm and t-conorm became more flexible and attracted a lot
of attention from numerous research scholars. For instance,
Chen et al. [33] developed some dominant strategies with
Schweizer-Sklar t-norm and properties of Hamy mean mod-
els. Garg et al. [34] utilized the theory of prioritized operators
for intuitionistic fuzzy domains and decision-making pro-
cesses. Based on the developed operation of Schweizer-Sklar
t-norms, Khan et al. [35] introduced new results for resolving
real-life applications under the system of the decision-making
process. To show the robustness of Schweizer-Sklar aggrega-
tion tools, Wang and Liu [36] presented AOs of maclaurin
symmetric mean operators, and Khan et al. [37] also general-
ized some flexible mathematical strategies under considering
intuitionistic fuzzy information.

It is clear that a variety of advantages of discussed
research work andmathematical aggregation operators. How-
ever, many experts may face several challenges during the
aggregation process of uncertain information and decision
analysis. To handle such situations, Schweizer-Sklar t-
norms and t-conorms have remarkable capabilities to achieve
smooth and accurate aggregated information. To overcome
the impact of limitations and drawbacks of existing strate-
gies, we invented an innovative research work of q-rung
orthopair fuzzy information with Schweizer-Sklar t-norms
and t-conorms. The key features of this research work are
initiated as follows: we explore the notion of q-rung orthopair
fuzzy theory and its reliable features. Some operational laws
of Schweizer-Sklar t-norms and t-conorms are also adopted
to aggregate ambiguous information about human opinion.
We derived a family of mathematical approaches of q-rung
orthopair fuzzy theory, namely q-ROFSSPA, q-ROFSSPWA,
q-ROFSSPG, and q-ROFSSPWG operators. It can identify
the best option, extract it from seemingly ambiguous events,
and generate a ranking without the need for weight informa-
tion. Additionally, a decision algorithm for q-rung orthopair
fuzzy information is also expressed. A numerical example is
also resolved to evaluate a suitable optimal option based on
derived mathematical approaches. Finally, a comprehensive
comparative study is proposed to contrast the aggregated
outcomes of pioneered approaches with existing aggregation
operators.

The structure of the proposed research work is main-
tained as follows: section II explores some basic notions
and fundamental rules necessary for improving this research
work. We derived new AOs in the light of Schweizer-Sklar
t-norms, namely q-ROFSSPA and q-ROFSSPWA opera-
tors, with notable characteristics in section III. Section IV
also carried out some robust mathematical approaches like
q-ROFSSPG and q-ROFSSPWG operators. Section V estab-
lished an innovative approach to the MADM technique in
the light of q-ROF information. With the help of numeri-
cal examples, we show the flexibility and effectiveness of
derived strategies. The advantages and validity of proposed
mathematical methods are verified by the contrasting results
of previous procedures with currently developed AOs in

section VI. Additionally, final remarks about our proposed
research work are presented in section VII.

II. PRELIMINARIES
The main of this section is to present fundamental notions
of IFSs and q-ROFSs with their dominant operations. These
preliminaries are useful and essential for the improvement of
this research work.
Definition 1: [2] Let T be a universal set and an IFS D is

expressed as follows:

D = { , ( ( ) , ( )) | ∈T }

Here, ( ) ∈ [0, 1] and ( ) ∈ [0, 1] represent the PV and
NV respectively with subject to the 0 ≤ ( ) + ( ) ≤

1. Moreover, the hesitancy value of D is defined as =

(1 − ( ( ) + ( ))).
Definition 2 ( [4]): Let T be a universal set and a q-ROFS

D is given by:

D = { , ( ( ) , ( )) | ∈T }

Here, ( ) ∈ [0, 1] and ( ) ∈ [0, 1] represent the PV and
NV respectively with subject to the 0 ≤ ( ) + ( ) ≤

1, η∈Z+. The hesitancy value of D is defined as =((
1 −

(
( ) + ( )

))) 1
η
. A pair ℜ = ( ( ) , ( ))

Indicates the q-rung orthopair fuzzy value (q-ROFV).
Definition 3 ( [38]): Let ℜι = ( ι ( ) , ι ( )) , ι =

1, 2 be any two q-ROFVs. Then:

a) ℜ1 ⊕ ℜ2 =

 η

√
+ − . , .


b) ℜ1 ⊗ ℜ2 =

 . ,
η

√
+ − .


c) 9 ℜ =

(
η

√
1 −

(
1 −

)9
)

, 9 > 0

d) ℜ
9

=

(
,

η

√
1 −

(
1 −

)9
)

, 9 > 0

Now, we study the notion of Schweizer-Sklar t-norm and
t-conorm given by Schweizer and Sklar [31] in 1960.
Definition 4 ( [31]): The theory of Schweizer-Sklar t-

norms is expressed as follows:

U (α, β) =

(
α + β − 1

) 1

T (α, β) = 1 −

(
(1 − α) + (1 − β) − 1

) 1

where α, β∈ [0, 1] and < 0.
Definition 5 ( [33]): Let ℜι = ( ι ( ) , ι ( )) , ι =

1, 2 be any two q-ROFVs with 9 > 0 and < 0.
Then, some basic operations of Schweizer-Sklar t-norms are
characterized as follows:
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a)

ℜ1⊕ℜ2

=



η

√√√√√√1 −

(1 −

)
+

(
1 −

)
− 1


1

,

η

√√√√√√
( )

+

( )
− 1


1


b)

ℜ1 ⊗ ℜ2

=



η

√√√√√√
( )

+

( )
− 1


1

,

η

√√√√√√1 −

(1 −

)
+

(
1 −

)
− 1


1


c)

9ℜ

=


η

√√√√1 −

(
9
(
1 −

)
− (9 − 1)

) 1

,

η

√√√√(
9
( )

− (9 − 1)

) 1

 , 9

> 0

d)

ℜ
9

=


η

√√√√(
9
( )

− (9 − 1)

) 1

,

η

√√√√1 −

(
9
(
1 −

)
− (9 − 1)

) 1

 , 9

> 0

Definition 6: For any q-ROFV ℜ = ( ( ) , ( )). The
score function ℵ (ℜ) and accuracy functionH

(
ℜ

)
are given

as follows:

ℵ

(
ℜ

)
=

1 + ( ) − ( )

2
, ℵ

(
ℜ

)
∈ [0, 1]

H
(
ℜ

)
=

( ) + ( )

2
,H

(
ℜ

)
∈ [0, 1]

Consider ℜ1 =
(

( ) , ( )
)
and ℜ2 =

(
( ) , ( )

)
are two q-ROFVs. Thenℜ1 is preferable overℜ2 ifℵ

(
ℜ1

)
>

ℵ

(
ℜ2

)
and ℜ2 is preferable over ℜ1 if ℵ

(
ℜ2

)
> ℵ

(
ℜ1

)
.

When ℵ

(
ℜ1

)
= ℵ

(
ℜ2

)
Then, we move to the accu-

racy function for the comparison technique. If ℜ1 >

ℜ2then H
(
ℜ1
)

> H
(
ℜ2

)
.

Definition 7 ( [39]): If ℜι, ι = 1, 2, . . . , n be a set of
positive integers. Then, the Prioritized average (PA) operator
is expressed as follows:

PA
(
ℜ1,ℜ2, . . . ,ℜn

)
=

n
⊕
ι=1

ι ℜι = 1 ℜ1⊕ 2 ℜ2⊕, . . . , ⊕ 2 ℜn

Note that ι =
Eι∑n

ι=1 Eι
, E1 = 1 and Eι =

⊗k−1
ι=1 ℵ (Rι) , k = 2, 3, . . . , n.

III. q-RUNG ORTHOPAIR FUZZY SCHWEIZER-SKLAR
AGGREGATION OPERATORS BASED ON q-ROF
INFORMATION
Motivated by the robustness of Schweizer-Sklar t-norm and
their operations, we developed some decent mathematical
approaches, such as q-ROFSSPA and q-ROFSSPWA opera-
tors with notable characteristics
Definition 8: For a set of q-ROFVs ℜι = ( ι ( ) , ι ( )) ,

ι = 1, 2, . . . , n. Then, the q-ROFSSPA operator is expressed
as follows:

q− ROFSSPA
(
ℜ1,ℜ2, . . . ,ℜn

)
= 1 ℜ1⊕ 2 ℜ2 ⊕, . . . , ⊕ 2 ℜn =

n
⊕
ι=1

ι ℜι

Note that ι =
Eι∑n
ι=1 Eι

, E1 = 1 and Eι =

⊗
k−1
ι=1 ℵ

(
ℜι

)
, k = 2, 3, . . . , n.

Theorem 1: For any set of q-ROFVsℜι = ( ι ( ) , ι ( )) ,

ι = 1, 2, . . . , n. the integrated values of the q-ROFSSPA
operator is still a q-ROFV are given by:

q− ROFSSPA
(

ℜ1,ℜ2, . . . ,ℜn

)

=



η

√√√√√1 −

(
n∑

ι=1
ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1

,

η

√√√√√( n∑
ι=1

ι

( η
ι

)
−

n∑
ι=1

ι + 1

) 1


Note that ι =

Eι∑n
ι=1 Eι

, E1 = 1 and Eι =

⊗
k−1
ι=1 ℵ

(
ℜι

)
, k = 2, 3, . . . , n.

Proof: Since for any set of q-ROFVs ℜι =

( ι ( ) , ι ( )) , ι = 1, 2, . . . , n. We can prove the above
expression by using basic operations of Schweizer-Sklar t-
norms as follows:
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1ℜ1

=


η

√√√√1 −

(
1
(
1 −

η
1

)
−
(

1 − 1
)) 1

,

η

√√√√(
1
( η

1

)
−
(

1 − 1
)) 1


2ℜ2

=


η

√√√√1 −

(
2
(
1 −

η
2

)
−
(

2 − 1
)) 1

,

η

√√√√(
2
( η

2

)
−
(

2 − 1
)) 1


1ℜ1⊕ 2ℜ1

=


η

√√√√1 −

(
1
(
1 −

η
1

)
−
(

1 − 1
)) 1

,

η

√√√√(
1
( η

1

)
−
(

1 − 1
)) 1

 ⊕


η

√√√√1 −

(
2
(
1 −

η
2

)
−
(

2 − 1
)) 1

,

η

√√√√(
2
( η

2

)
−
(

2 − 1
)) 1



=



η

√√√√√√√1 −

(1 − 1 +

(
1
(
1 −

η
1

)
−
(

1 − 1
)) 1 )

+

(
1 − 1 +

(
2
(
1 −

η
2

)
−
(

2 − 1
)) 1 )

− 1


1

,

η

√√√√√√√
(( 1

( η
1

)
−
(

1 − 1
)) 1 )

C
((

2
( η

2

)
−
(

2 − 1
)) 1 )

−1


1



=



η

√√√√√√√1 −

(( 1
(
1 −

η
1

)
−
(

1 − 1
)) 1 )

+

((
2
(
1 −

η
2

)
−
(

2 − 1
)) 1 )

− 1


1

,

η

√√√√((
1
( η

1

)
−
(

1 − 1
))

+

(
2
( η

2

)
−
(

2 − 1
))

− 1
) 1



=


η

√√√√1 −

((
1
(
1 −

η
1

)
−
(

1 − 1
))

+

(
2
(
1 −

η
2

)
−
(

2 − 1
))

− 1
) 1

,

η

√√√√((
1
( η

1

)
−
(

1 − 1
))

+

(
2
( η

2

)
−
(

2 − 1
))

− 1
) 1


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=


η

√√√√1 −

(
1
(
1 −

η
1

)
− 1 + 1 + 2

(
1 −

η
2

)
− 2 + 1 − 1

) 1

,

η

√√√√((
1
( η

1

)
− 1 + 1

)
+

(
2
( η

2

)
− 2 + 1

)
− 1

) 1



=


η

√√√√1 −

(
1
(
1 −

η
1

)
− 1 + 1 + 2

(
1 −

η
2

)
− 2

) 1

,

η

√√√√(
1
( η

1

)
− 1 + 1 C 2

( η
2

)
− 2

) 1



=


η

√√√√1 −

(
1
(
1 −

η
1

)
+ 2

(
1 −

η
2

)
− 1− 2 + 1

) 1

,

η

√√√√(
1
( η

1

)
C 2

( η
2

)
− 1 − 2 + 1

) 1



=


η

√√√√1 −

(∑2

ι=1 ι

(
1 −

η
ι

)
−

∑2

ι=1 ι + 1
) 1

,

η

√√√√(∑2

ι=1 ι

( η
ι

)
−

∑2

ι=1 ι + 1
) 1



Firstly, we verify for n = 2 and, based on this analysis, and
then considered it for n = k appropriately, such as:

ℜι

=
(

η
ι ( ) η

ι ( )
)
, ι = 1, 2, . . . , n

q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)

=



η

√√√√√1 −

(
k∑

ι=1
ι

(
1 −

η
ι

)
−

k∑
ι=1

ι + 1

) 1

,

η

√√√√√( k∑
ι=1

ι

( η
ι

)
−

k∑
ι=1

ι + 1

) 1


Now, we prove it for n = k + 1 such as:

q− ROFSSPA
(
ℜ1, ℜ2, . . . ,ℜn+1

)
= 1ℜ1 ⊕ 2ℜ2 ⊕ . . . ⊕ k ℜk⊕ k+1 ℜk+1

= ⊕
k
ι=1 ι ℜι ⊕ k+1 ℜk+1

=



η

√√√√√1 −

(
k∑

ι=1
ι

(
1 −

η
ι

)
−

k∑
ι=1

ι + 1

) 1

,

η

√√√√√( k∑
ι=1

ι

( η
ι

)
−

k∑
ι=1

ι + 1

) 1



⊕


η

√√√√1 −

(
k+1

(
1 −

η
k+1

)
−
(

k+1 − 1
)) 1

,

η

√√√√(
k+1

( η
k+1

)
−
(

k+1 − 1
)) 1



=



η

√√√√√1 −

(
k+1∑
ι=1

ι

(
1 −

η
ι

)
−

k+1∑
ι=1

ι + 1

) 1

,

η

√√√√√(k+1∑
ι=1

ι

( η
ι

)
−

k+1∑
ι=1

ι + 1

) 1



Property 1: Consider a finite set of q-ROFVs ℜι =

( ι, ι) , ι = 1, 2, . . . , n implies that ℜι = ℜ. Then:

q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)
= ℜ

Proof: Since a finite set of q-ROFVs ℜι = ( ι, ι) , ι =

1, 2, . . . , n implies that ℜι = ℜ. We can write:

q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)
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=



η

√√√√√1 −

(
n∑

ι=1
ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1

,

η

√√√√√( n∑
ι=1

ι

( η
ι

)
−

n∑
ι=1

ι + 1

) 1


q− ROFSSPA

(
ℜ1, ℜ2, . . . , ℜn

)

=



η

√√√√√1−

((
1 −

)
− 1 + 1

) 1

,

η

√√√√√(( )
− 1 + 1

) 1


,

n∑
ι=1

ι =1

=



η

√√√√√1 −

((
1 −

)
− 1 + 1

) 1

,

η

√√√√√(( )
− 1 + 1

) 1



=



η

√√√√√1 −

((
1 −

) ) 1

,

η

√√√√√(( ) ) 1


=

(
η

√
1 −

(
1 −

)
,

η

√( ))
( ) = ℜ

Property 2: Consider any two sets of q-ROFVs ℜι =

( ι, ι) , and 4ι = (µι, νι) (ι = 1, 2, 3, . . . , n). if ℜι ≤

4ι such that ι ≤ µι and ι ≥ νι. Then:

q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)
≤ q− ROFSSPA (41, 42, . . . , 4m)

Proof: Suppose that any two sets of q-ROFVs ℜι =

( ι, ι) , and 4ι = (µι, νι) (ι = 1, 2, 3, . . . , n). if ℜι ≤

4ι such that ι ≤ µι and ι ≥ νι. We can write:

ι ≤ µι ⇒
η
ι ≥ µη

ι

⇒ 1 −
η
ι ≥ 1 − µη

ι

⇒
(
1 −

η
ι

)
≥

(
1 − µ2

ι

)
⇒

n∑
ι=1

ι

(
1 −

η
ι

)
≥

m∑
ι=1

ι

(
1 − µη

ι

)

⇒

n∑
ι=1

ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1 ≥

m∑
ι=1

ι

(
1 − µη

ι

)
−

m∑
ι=1

ι + 1

⇒

(
n∑

ι=1
ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1

≥

(
m∑

ι=1
ι

(
1 − µη

ι

)
−

m∑
ι=1

ι + 1

) 1

⇒ 1 −

(
n∑

ι=1
ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1

≤ 1 −

(
m∑

ι=1
ι

(
1 − µη

ι

)
−

m∑
ι=1

ι + 1

) 1

×
η

√√√√√1 −

(
n∑

ι=1
ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1

≤
η

√√√√√1 −

(
m∑

ι=1
ι

(
1 − µ

η
ι

)
−

m∑
ι=1

ι + 1

) 1

Further, we assume that ι ≥ νι. Then we have:

ℜι =
(

η
ι ( ) η

ι ( )
)

≤ 4ι = (µι, νι)

ι ≥ νι ⇒
η
ι ≥ νη

ι ⇒
(

η
ι

)
≥
(
νη
ι

)
⇒

n∑
ι=1

ι

(
η
ι

)
≥

m∑
ι=1

ι

(
νη
ι

)
n∑

ι=1
ι

(
η
ι

)
−

n∑
ι=1

ι + 1

≥

m∑
ι=1

ι

(
νη
ι

)
−

m∑
ι=1

ι + 1

⇒

(
n∑

ι=1
ι

(
η
ι

)
−

n∑
ι=1

ι + 1

)

≥

(
m∑

ι=1
ι

(
νη
ι

)
−

m∑
ι=1

ι + 1

)

η

√√√√√( n∑
ι=1

ι

( η
ι

)
−

n∑
ι=1

ι + 1

)

≥
η

√√√√√( m∑
ι=1

ι

(
ν

η
ι

)
−

m∑
ι=1

ι + 1

)

q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)
≤ q− ROFSSPA (41, 42, . . . , 4m)
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Property 3: For any set of q-ROFVs ℜι = ( ι, ι) ,

(ι = 1, 2, 3, . . . , n). If ℜ
+

ι = (max { ι} ,min { ι}) and

ℜ
−

ι = (min { ι} ,max { ι}). Then we can get:

ℜ
−

ι ≤ q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)
≤ ℜ

+

ι

Proof: Here we derived the above properties, under con-
sidering of property 1 and 2, we have:

q− ROFSSPA
(

ℜ
−

1 , ℜ
−

2 , . . . , ℜ
−

n

)
≤ q− ROFSSPA

(
ℜ

+

1 , ℜ
+

2 , . . . , ℜ
+

m

)
= ℜ

+

ι q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)
≥ q− ROFSSPA

(
ℜ

−

1 , ℜ
−

2 , . . . , ℜ
−

n

)
= ℜ

−

ι

Then:

ℜ
−

ι ≤ q− ROFSSPA
(

ℜ1, ℜ2, . . . , ℜn

)
≤ ℜ

+

ι

Definition 9: For any finite set of q-ROFVs ℜι =

( ι, ι) , (ι = 1, 2, 3, . . . , n). Then, the q-ROFSSPWA
operator is characterized as follows:

q− ROFSSPWA
(

ℜ1, ℜ2, . . . , ℜn

)
= 1 ℜ1 ⊕ 2 ℜ2 ⊕, . . . , ⊕ 2 ℜn =

n
⊕
ι=1

ι ℜι

Now ι =
ẅιEι
n∑

ι=1
Eι

, where E1 = 1 and Et =

⊗
ι−1
k=1ℵ

(
ℜι

)
, (k = 1, 2, 3, . . . , n) . Moreover, the repre-

sentation of the weight vector is stated by ẅι∈ [0, 1] with
n∑

ι=1
ẅι = 1.

Theorem 2: For any finite set of q-ROFVs ℜι =

( ι, ι) , (ι = 1, 2, 3, . . . , n) with < 0. Then
the integrated values of the q-ROFSSPWA operator still q-
ROFVs are given by:

q − ROFSSPWA
(

ℜ1, ℜ2, . . . , ℜn

)

=



η

√√√√√1 −

(
n∑

ι=1
ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1

,

η

√√√√√( n∑
ι=1

ι

( η
ι

)
−

n∑
ι=1

ι + 1

) 1


Proof: Similar to the theorem 1.
Property 4: Consider a finite set of q-ROFVs ℜι =

( ι, ι) , ι = 1, 2, . . . , n implies that ℜι = ℜ. Then:

q− ROFSSPWA
(

ℜ1, ℜ2, . . . , ℜn

)
= ℜ

Property 5: Consider any two sets of q-ROFVs ℜι =

( ι, ι) , and 4ι = (µι, νι) (ι = 1, 2, 3, . . . , n). if ℜι ≤

4ι such that ι ≤ µι and ι ≥ νι. Then:

q− ROFSSPWA
(

ℜ1, ℜ2, . . . , ℜn

)
≤ q− ROFSSPWA (41, 42, . . . , 4m)

Property 6: For any set of q-ROFVs ℜι =

( ι, ι) , (ι = 1, 2, 3, . . . , n). If ℜ
+

ι = (max { ι} ,

min { ι}) and ℜ
−
ι = (min { ι} , max { ι}). Then we can

get:

R
−
ι ≤ q − ROFSSPWA

(
R1, R2, . . . , Rn

)
≤ R

C
ι

IV. q-RUNG ORTHOPAIR FUZZY SCHWEIZER-SKLAR
GEOMETRIC AGGREGATION OPERATORS BASED ON
q-ROF INFORMATION
This section aims to develop reliable strategies using the
properties of Schweizer-Sklar t-norms, namely q-ROFSSPG
and q-ROFSSPWG operators in light of q-ROF information.
Definition 10: For any set of q-ROFVs ℜι =

( ι ( ) , ι ( )) , (ι = 1, 2, 3, . . . , n). Then, the q-ROFSSPG
operator is characterized as follows:

q− ROFSSPG
(

ℜ1, ℜ2, . . . , ℜn

)
= ℜ

1

1 ⊗ ℜ
2

2 ⊗ . . . ⊗ ℜ
n

n

Now ι =
ẅιEι
n∑

ι=1
Eι

, where E1 = 1 and Et =

⊗
k−1
ι=1 ℵ

(
ℜ

)
, (k = 2, 3, . . . , n) .

Theorem 3: For any set of q-ROFVs ℜι = ( ι, ι) ,

(ι = 1, 2, 3, . . . , n) with < 0. Then, the integrated
values of the q-ROFSSPWG operator is still a q-ROFV is
given by:

q− ROFSSPG
(

ℜ1, ℜ2, . . . , ℜn

)

=



η

√√√√√( n∑
ι=1

i
( η

ι

)
−

n∑
ι=1

ι + 1

) 1

,

η

√√√√√1 −

(
n∑

ι=1
i
(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1


Similar to the theorem 1.
Property 7: Consider a finite set of q-ROFVs ℜι =

( ι, ι) , ι = 1, 2, . . . , n implies that ℜι = ℜ. Then:

q− ROFSSPG
(

ℜ1, ℜ2, . . . , ℜn

)
= ℜ

Property 8: Consider any two sets of q-ROFVs ℜι =

( ι, ι) , and 4ι = (µι, νι) (ι = 1, 2, 3, . . . , n). if ℜι ≤

4ι such that ι ≤ µι and ι ≥ νι. Then:

q− ROFSSPG
(

ℜ1, ℜ2, . . . , ℜn

)
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≤ q− ROFSSPG (41, 42, . . . , 4m)

Property 9: For any set of q-ROFVs ℜι =

( ι, ι) , (ι = 1, 2, 3, . . . , n). If ℜ
+

ι = (max { ι} ,

min { ι}) and ℜ
−
ι = (min { ι} , max { ι}). Then we can

get:

ℜ
−

ι ≤ q− ROFSSPG
(

ℜ1, ℜ2, . . . , ℜn

)
≤ ℜ

+

ι

Definition 11: For any q-ROFVs ℜι = ( ι ( ) , ι ( )) ,

ι = 1, 2, . . . , n. Then, the q-ROFSSPWG operator is char-
acterized as follows:

q− ROFSSPWG
(

ℜ1, ℜ2, . . . , ℜn

)
=

n
⊗
ι=1

ℜ
t

ι

= ℜ
1

1 ⊗ ℜ
2

2 ⊗ . . . ⊗ ℜ
n

n

Now ι =
ẅιEι
n∑

ι=1
Eι

, where E1 = 1 and Et =

⊗
ι−1
k=1ℵ

(
ℜι

)
, (k = 1, 2, 3, . . . , n) . Moreover, the repre-

sentation of the weight vector is stated by ẅι∈ [0, 1] with
n∑

ι=1
ẅι = 1.

Theorem 4: For any q-ROFVs ℜι = ( ι ( ) , ι ( )) , ι =

1, 2, . . . , n. with < 0. Then, the integrated values of the
q-ROFSSPWG operator is still a q-ROFV is given by:

q − ROFSSPWG
(

ℜ1, ℜ2, . . . , ℜn

)

=



η

√√√√√( n∑
ι=1

ι

( η
ι

)
−

n∑
ι=1

ι + 1

) 1

,

η

√√√√√1 −

(
n∑

ι=1
ι

(
1 −

η
ι

)
−

n∑
ι=1

ι + 1

) 1


Proof: Similar to the theorem 1.
Property 10: Consider a finite set of q-ROFVs ℜι =

( ι, ι) , ι = 1, 2, . . . , n implies that ℜι = ℜ. Then:

q− ROFSSPWG
(

ℜ1, ℜ2, . . . , ℜn

)
= ℜ

Property 11: Consider any two sets of q-ROFVs ℜι =

( ι, ι) , and 4ι = (µι, νι) (ι = 1, 2, 3, . . . , n). if ℜι ≤

4ι such that ι ≤ µι and ι ≥ νι. Then:

q− ROFSSPWG
(

ℜ1, ℜ2, . . . , ℜn

)
≤ q− ROFSSPWG (41, 42, . . . , 4m)

Property 12: For any set of q-ROFVs ℜι =

( ι, ι) , (ι = 1, 2, 3, . . . , n). If ℜ
+

ι = (max { ι} ,

min { ι}) and ℜ
−
ι = (min { ι} , max { ι}). Then we can

get:

R
−
ι ≤ q − ROFSSPWG

(
R1, R2, . . . , Rn

)
≤ R

+

ι

V. ASSESSMENT OF THE MADM PROCESS BASED ON
q-ROF INFORMATION
An innovative approach of the MADM technique is used to
evaluate the finest option from the different available options
under certain characteristics or attributes. The main theme
of the MADM problem is to explore alternatives or indi-
viduals under the system of specific characteristics, identify
the type of attributes, aggregate vague type information of
human opinion, and choose reliable, optimal options based on
score or accuracy values. The decision-making process faces
many complicated challenges due to redundant and incom-
plete information about any object. To address this situation,
Consider a finite class of alternative { 1, 2, . . . , n} and a
set of finite attributes

{
1, 2, . . . , m

}
. To identify a suit-

able option, we need to assign some specific degree to each
attribute in each alternative such that a set of weight vector

ẅι∈ [0, 1] and
m∑

ι=1
ẅι = 1. Furthermore, the Decision-maker

accumulates information about any object in the form of q-
ROFV ℜiι = ( iι ( ) , iι ( )) , i = 1, 2, . . . , n & ι =

1, 2, . . . , m with mathematical expression 0 ≤
η
iι ( ) +

η
iι ( ) ≤ 1. Decision-maker packed acquired q-ROF infor-

mation in a single decision matrix as followsM =

[
ℜiι

]
n×m

.

Here, we also represent the hesitancy value of ℜiι as πι =

1−
( η

iι ( ) +
η
iι ( )

)
. The decision maker integrates q-ROF

information by following a robust algorithm for the MADM
problem.

A. ALGORITHM
Step 1: First of all, the decision maker acquires information
about any object in the form of q-ROFVs. This information is
based on human opinion with attributes associated with each
alternative.
Step 2: To demonstrate the same type of given information

of attributes, follow the following expression to modify the
standard decision matrix into a normalized decision matrix:

M =

[
ℜiι

]
n×m

=

{ ( η
iι ( ) ,

η
iι ( )

)
for benefit type( η

iι ( ) ,
η
iι ( )

)
for cost type

Note that the above expression only applies if there is more
than one type of information, such as beneficial and cost type.
Step 2: Compute the degree of preferences based on score

values ι =
Eι∑n
ι=1 Eι

, E1 = 1 and Eι = ⊗
k−1
ι=1 ℵ

(
ℜι

)
, k =

2, 3, . . . , n. Additionally, the degree of weighted preferences
investigated by using ι =

ẅιEι
n∑

ι=1
Eι

, where E1 = 1 and Et =

⊗
ι−1
k=1ℵ

(
ℜ

)
, (k = 2, 3, . . . , n) .

Step 3: Aggregate given information based on derived
mathematical strategies of the q-ROFSSPA, q-ROFSSWPA,
q-ROFSSPG, and q-ROFSSWPG operators.
Step 4: Calculate score values of all alternatives with the

help of Definition 6. If the score values of individuals are the
same, then we move to the accuracy function.
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Step 5: We rank all score values and choose the most
suitable alternative.

B. POSITIVE IMPACT OF AGRICULTURE ON PAKISTAN
ECONOMY
Agriculture is the mainstay of Pakistan’s economy and way
of life. The agricultural industry employs more than half of
the labor force, contributes one-fifth of the country’s gross
domestic product (GDP), and provides raw materials to sev-
eral other industries. Despite the fact that Pakistan’s economy
clearly depends on agriculture, this sector has not received the
support or technological improvement it deserves. If major
adjustments are not made, it runs the danger of lagging
behind other businesses that are expanding more quickly. The
importance of Pakistan’s agricultural sector for the nation’s
economic growth and welfare will be covered in this article,
along with the actions that must be made to allow it to reach
its full potential and how it guarantees food security and
employment.

Pakistan’s economy has always been mostly reliant on
agriculture. It accounts for a large share of the labor force
and provides a significant contribution to the country’s GDP.
Despite a growing emphasis on other sectors, Pakistan’s farm-
ers continue to be the backbone of the country’s economy.
Pakistan’s excellent land and pleasant climate allow it to pro-
duce some of the best crops in the world. Pakistani agriculture
is a diverse and sustainable sector that includes fisheries,
animals, and crops. The Pakistani government’s recognition
of the importance of agriculture and its efforts to preserve
and encourage this vital sector should come as no surprise.
Future economic success in Pakistan will largely depend on
its ability to sustain and increase its agricultural output.

Pakistan’s agricultural sector has faced several difficul-
ties recently, making it more difficult for farmers to earn a
livelihood. Climate change has been primarily blamed for
the problem of unpredictable weather patterns and extreme
temperatures that lead to reduced agricultural output and
increasing rates of pest infestation. Anothermajor issue is that
farmers are unable to get funding, which keeps them from
investing in better equipment, technology, and agricultural
practices. These challenges, which have put a great deal of
stress on the whole agricultural industry, must be resolved if
the agricultural sector is to survive and prosper in the long
run.

C. PRACTICAL EXAMPLE
In this numerical case study, we evaluated some dominant
crops ( 1, 2, 3, 4, 5), which are highly profitable
and play an efficient role in lifting any country’s economy.
The decision maker completes this task by considering some
reliable characteristics or attributes explored as follows:

1) PROVIDING RAW MATERIALS 1

The term ‘‘crop raw materials’’ describes the plant-based
resources extracted from agricultural crops and used as the
foundation for various goods and businesses. The plant’s

seeds, leaves, stems, and roots are among the sections from
which these basic resources are derived. A vast array of goods
and commercial endeavors are built on crop basic ingredients.
Numerous sectors, including agriculture, food processing,
textiles, medicines, bioenergy, and more depend on these
basic agricultural components. They serve as the foundation
for goods that meet consumer requirements, drive economic
expansion, and develop technology.

2) JOB CREATION AND ENCOURAGING ECONOMIC
DEVELOPMENT 2

A flourishing economy and higher living standards for a
society depend on fostering economic growth and creating
jobs. These ideas are closely related since economic devel-
opment is largely dependent on the production of jobs, and
jobs themselves are created as a result of economic develop-
ment. A strong and dynamic economy depends on fostering
economic growth and creating jobs.

3) CREATING A STRONG SUPPLY CHAIN 3

Building a robust supply chain is the process of putting in
place a coordinated and effective system of people, orga-
nizations, tools, and procedures that cooperate to transfer
goods or services from suppliers to final consumers. In order
to satisfy consumer needs, manage expenses, and maintain
market competitiveness, firms need a robust supply chain.
Establishing a robust supply chain involves meticulous plan-
ning, consistent investment, and continuing improvement.
It’s a dynamic process. In addition to ensuring prompt and
economical product delivery, an organized and successful
supply chain also boosts a business’s profitability and com-
petitiveness.

4) INDUSTRIAL PRODUCTS 4

Materials, chemicals, or other substances obtained from agri-
cultural crops are referred to as industrial goods created from
crops. These products are utilized as inputs or rawmaterials in
a variety of industrial processes and production. These prod-
ucts are often converted into commodities or raw materials
for use in non-agricultural sectors.

The evaluation of a dominant crop is demonstrated without
a weight vector by using derived approaches of q-ROFSSPA
and q-ROFSSPG operators. Furthermore, we also investi-
gated a suitable crop with the help of additional weight
vectors (0.25, 0.35, 0.15, 0.25) based on q-ROFSSPWA
and q-ROFSSPWG operators. Further proceeding is explored
under the system of the MADM problem.
Step 1: To evaluate a suitable crop for economic stabil-

ity, the decision maker organizes information about different
crops under certain criteria or characteristics in Table 1.
Step 2: The discussed experimental case study carries only

one type of information, such as beneficial. So, there is no
need to normalize the standard decision matrix into a nor-
malized matrix.
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TABLE 1. Carries q-rung orthopair fuzzy information in the decision matrix.

TABLE 2. Carries score values of all alternatives and degree of preferences.

Step 3: Here, we compute the degree of preferences based
on score values by using ι =

Eι∑n
ι=1 Eι

, E1 = 1 and

Eι = ⊗k−1
ι=1 ℵ (Rι) , k = 2, 3, . . . , n and stated them in

Table 2. We also investigate the degree of weighted pref-
erences by using ι =

ẅιEι
n∑

ι=1
Eι

, where E1 = 1 and Et =

⊗ι−1
k=1ℵ

(
Rι

)
, (k = 1, 2, 3, . . . , n) shown in Table 3.

Step 4:We applied the drive strategies of the q-ROFSSPA,
q-ROFSSPWA, q-ROFSSPG, and q-ROFSSPWG operators
and aggregated the collective information, we can also see in
Table 4.
Step 5:We find the score values with the help of the given

information; we can see it in Table 5.
Step 6: Finally, rank all the preferences to find the most

appropriate optimal from the collection of available options
or individuals. After analysis raking of score values, we cap-

tured 3 and 4 are best individuals from the derived
weighted average and weighted geometric operators respec-
tively. We also explore the ranking of score values in Table 6.

Figure 1 also explored the results of score values in
a graphical shape, which are produced by the derived
approaches of q-ROFSSPA, q-ROFSSPWA, q-ROFSSPG,
and q-ROFSSPWG operators and shown in Table 6.

D. EFFECT OF DIFFERENT PARAMETRIC VALUES ON THE
RESULTS OF THE MADM PROBLEM
To see the advantages and reliability of the proposed
algorithm of the MADM technique, different mathematicians
explored it by using several methods or techniques. This
subsection aims to explore the impact of different parametric
values of the Schweizer-Sklar t-norms in the MADM tech-
nique. By setting different parametric values in the derived
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TABLE 3. covers score values and degree of weighted preferences.

TABLE 4. Aggregated results from derived strategies.

TABLE 5. Carries score values of alternatives obtained by proposed approaches.

approaches, we can reveal the effectiveness of the proposed
MADM problem algorithm under the q-ROF information
system.

Table 7 ranked score values corresponding to each alter-
native at different parametric values of the Schweizer-Sklar

t-norms in q-ROFSSPWA operators. We clearly noticed the
ranking of score values 4 > 3 > 1 > 2 > 5 at =

−1, −5. Furthermore, we can examine the ranking of all
score values for different parametric values of the Schweizer-
Sklar t-norms < −15 in Table 7.
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TABLE 6. Ranking of alternatives under considering results of score values.

TABLE 7. Covered ranking results by the q-ROFSSPWA operator at different values of < 0.

FIGURE 1. Shows the findings of derived strategies.

Table 8 also covered the ranking of score values obtained
by the q-ROFSSPWG operators for different parametric val-
ues of the Schweizer-Sklar t-norms. We noticed that 3 be an
appropriate optimal option acquired by using different para-
metric values of in q-ROFSSPWG operators. By using
this technique, decision-makers acquired results according
to their preferences. Based on the derived approaches of

the q-ROFSSPWA and q-ROFSSPWG operators, we noticed
that different parametric values play important roles in the
decision-making process.

VI. COMPARATIVE STUDY
The aim of this section is to compare the findings of currently
proposed mathematical approaches in the light of Schweizer-
Sklar t-norms with well-known existing methodologies seen
in [38], [40], [41], [42], [43], [44], and [45]. To serve this
purpose, we applied aggregation approaches under consid-
ering our proposed algorithm of the MADM problem to
show the applicability and compatibility of derived strategies.
Darko and Liang [38] elaborated the concepts of Hamacher
aggregation tools in the light of q-ROF information and
developed new AOs such as q-ROF Hamacher weighted
average (q-ROFHWA) and q-ROF Hamacher weighted geo-
metric (q-ROFHWG) operators. Some robust AOs based
on q-ROF information like q-ROF Frank weighted aver-
age (q-ROFFWA) and q-ROF Frank weighted geometric
(q-ROFFWG) operators presented by Seikh and Man-
dal [40]. Jana et al. [41] developed AOs based on the
operations of the Dombi aggregation tools, namely q-ROF
Dombi weighted average (q-ROFDWA) and q-ROF Dombi
weighted geometric (q-ROFDWG) operators. By using dom-
inant operations of Aczel Alsina t-norms q-ROF Aczel
Alsina weighted average (q-ROFAAWA) and q-ROF Aczel
Alsina weighted geometric (q-ROFAAWG) operators devel-
oped by the Khan et al. [43] and Farid and Riaz [42]
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TABLE 8. Covered ranking results by the q-ROFSSPWG operator at different values of < 0.

TABLE 9. Carries results of score values and their ranking captured by the existing strategies.

respectively. However, some previously presented mathemat-
ical approaches established by [44] and [45], cannot handle
given information discussed in an experimental case study
due to incomplete information of the human opinion. Table 9
also carried the results of all existing approaches by different
mathematicians.

We noticed that derived approaches of the q-ROFSSPWA
and q-ROFSSPWG operators based on Schweizer-Sklar t-
norms are more flexible and dominant. It also plays an
efficient role in the MADM problem and produces prefer-
able results of alternatives by using parametric values of
Schweizer-Sklar t-norms. Figure 2 and Figure 3 show the
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FIGURE 2. Shows the findings of existing strategies.

FIGURE 3. Shows the findings of existing strategies.

graphical behavior of score values obtained by the existing
weighted average and geometric operators, respectively.

VII. CONCLUSION
The crops are very important for the economy of any nation.
They are an important part of the agricultural industry and
essential to the economic growth. A nation’s economic health
largely depends on its agricultural production, which supports
millions of people’s lives across various industries. Pros-
perity in general, food security, and economic growth may
all be greatly aided by implementing sustainable farming
techniques, effective agricultural policy, and investments in
crop production. In this proposed research work, we studied
innovative approaches to the MADM problem to evaluate
a suitable crop under dominant criteria or attributes. Moti-
vated by the theory of prioritized aggregation operators and
flexible operations of Schweizer-Sklar t-norms, we devel-
oped new AOs in the light of q-ROF information including
q-rung orthopair fuzzy Schweizer-Sklar prioritized average
(q-ROFSSPA), q-rung orthopair fuzzy Schweizer-Sklar pri-

oritized weighted average (q-ROFSSPWA), q-rung orthopair
fuzzy Schweizer-Sklar prioritized geometric (q-ROFSSPG)
and q-rung orthopair fuzzy Schweizer-Sklar prioritized
weighted geometric (q-ROFSSPWG) operators. Some par-
ticular properties and characteristics are also demonstrated
to show the flexibility and robustness of derived approaches.
In order to explore the applicability of an algorithm of the
MADM technique, we established a numerical example to
select a suitable crop to improve the financial sector of farm-
ers. The feasibility and robustness of derived approaches are
revealed by contrasting the findings of previous mathematical
strategies with developed approaches.

We noticed our derived methodologies are preferable.
Sometimes, developed strategies cannot handle ambiguous
and uncertain information of human opinions when given
information in three components. To serve this situation,
we will explore proposed research on different fuzzy frame-
works like picture fuzzy sets [46], t-spherical fuzzy hypersoft
theory [47], spherical fuzzy theory [48] and complex spheri-
cal sets [49]. By utilizing developed methodologies, we try to
resolve complicated challenges of real life, such as artificial
intelligence, game theory, medical diagnosis, green supplier
selection, and many other applications.
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