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ABSTRACT Attificial Intelligence (Al) is a key component in Industry 4.0. Rotating machines are critical
components in manufacturing industries. In the vast world of Industry 4.0, where an IoT network acts as a
monitoring and decision-making system, predictive maintenance is quickly gaining importance. Predictive
maintenance is a method that uses Al to handle potential problems before they cause breakdowns in
operations, processes or systems. However, there is a significant issue with the Al models’ (also known
as “black boxes”) inability to explain their decisions. This interpretability is vital for making maintenance
decisions and validating the model’s reliability, leading to improved trust and acceptance of Al-driven
predictive maintenance strategies. Explainable Al is the solution because it provides human-understandable
insights into how the AI model arrives at its predictions. In this regard, the paper presents Explain-
able Al-based predictive maintenance of Industrial rotating machines. The proposed approach unfolds in
four comprehensive stages: 1) Multi-sensor based multi-fault (5 different fault classes) data acquisition;
2) frequency-domain statistical feature extraction; and c) comparison of results for multiple Al algorithms,
and d) XAI integration using “Local Interpretable Model Agnostic Explanation (LIME)”, ‘“SHapley
Additive exPlanation (SHAP)”, ““Partial Dependence Plot (PDP)”” and “‘Individual Conditional Expectation
(ICE)” to interpret the results.

INDEX TERMS Explainable Al, ICE, Industry 4.0, industrial rotating machines, LIME, PDP, predictive
maintenance, SHAP.

I. INTRODUCTION

In the realm of industrial operations, the implementation
of predictive maintenance strategies has become pivotal for
ensuring the optimal performance and longevity of rotat-
ing machines [1]. However, the black-box nature of many
predictive maintenance models can present challenges in

article delves into the realm of Explainable Predictive Main-
tenance (XPM) for rotating machines, employing advanced
techniques such as Local Interpretable Model-agnostic
Explanations (LIME), SHapley Additive exPlanations
(SHAP), Partial Dependence Plots (PDP), and Individual
Conditional Expectation (ICE) to shed light on the intricate

understanding the reasoning behind their predictions, poten-
tially hindering their adoption in critical applications. This
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decision-making processes within these models. We aim to
enhance trust in Al decisions by unraveling the complexity of
Machine Learning (ML) or Deep Learning (DL) algorithms.
This will ultimately lead to the empowering of industry pro-
fessionals to make informed decisions about the maintenance
of the rotating machinery.
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Rotating machines are critical components in manufac-
turing industries [2]. The uninterrupted functioning of these
machines is the top priority of maintenance engineers.
Various condition-monitoring techniques are available to
maintain these critical machines; however, they demand a
maintenance expert to interpret the analysis. Researchers
have been working to create a generalised method for fault
diagnosis in rotating machines for the past few years [3],
focussing mainly on a) fault pattern identification and
b) developing a classification algorithm to distinguish the
faults based on the patterns. Recently, predictive maintenance
techniques have been getting important where multiple sen-
sors’ data is used to predict the machinery condition using
various Al algorithms [4]. Online condition monitoring is
another rising technique that allows online access to the
health data of these machines [5].

To implement predictive maintenance, the first step is data
collection, where the researchers have used either online
data [6] or manually collected data [7]. The latter is a better
option, as collecting data manually on the test setup allows
more faults to be incorporated under different conditions.
Multiple sensors and multiple types of sensors used for
data collection give room for better condition monitoring of
machines. Sensors such as accelerometers, acoustic, temper-
ature, and current sensors are effective while doing predictive
maintenance of rotating machines [7]. After data collection,
the next step is signal processing and feature engineering,
extracting meaningful information from the raw data. Each
fault type gives a unique vibration pattern that can be anal-
ysed in the time or frequency domain. Compared to the time
domain signals, the signals in the frequency domain are better
interpretable by maintenance engineers due to their reduced
complexity [8], [9] and Fault Characteristic Frequencies [10].
For example, an unbalance in the machinery is depicted
in the FFT spectrum by a 1x peak at rotational frequency.
Similarly, Misalignment in the machinery is depicted by 1x
and 2x peaks at the rotational frequency. However, there is
no such clear distinction in the time-domain signal. Hence,
the maintenance engineers prefer analysis by collecting data
in the frequency domain or converting time domain data to
the frequency domain using Fast Fourier Transform (FFT).
It is also seen that some statistical features such as RMS,
Kurtosis, Crest Factor, Standard deviation, Shape Factor,
peak frequency and corresponding amplitude, etc., are also
effective in identifying different faults in rotating machines—
for example, the more the crest factor, the healthier the
bearing. The crest factor also provides early signs of fault
occurrence. Also, the Kurtosis value is less than or equal to
3 for healthy bearings. The level of skewness increases as
the faults rise. Increased RMS denotes faulty condition. The
increased amplitude at 1Xrpm denotes Unbalance.

Extracted features provide quantifiable information that
aids maintenance engineers in making informed decisions
about the machinery’s condition and the appropriate course
of action based on their experience and training [11]. Feature
extraction plays a significant role in manual fault diagnosis by
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maintenance engineers. However, feature extraction is also
an important step in automated fault diagnosis. Automated
systems can uncover subtle relationships in the data that
might not be identifiable by human operators [9]. By using
advanced algorithms, these systems can detect patterns that
could go unnoticed in manual analysis. Different algorithms
used by the researchers for data-driven predictive mainte-
nance are Machine Learning (ML) algorithms and Deep
Learning (DL) algorithms. Examples of ML algorithms are
Support Vector Machine (SVM) [13], [14], [15], [16], Ran-
dom Forest (RF) [17] [18], [19] [20], K-Nearest Neighbour
(KNN) [17], [21], [22], [23], Decision Tree (DT) [24], [25],
[26], and Artificial Neural Network (ANN) [12], [27], [28],
[29]. Examples of DL algorithms are Deep Neural Network
(DNN) [27], [30], [31], [32], Recurrent Neural Network
(RNN) [33], [34], Convolutional Neural Network (CNN)
[35], [36], [37], Long Short-Term Memory (LSTM) [38],
[34], [39], [40], Auto Encoder (AE) [6], [41], [42], [43],
etc. Some researchers have also used the hybrid of ML and
DL algorithms for better results [16]. A systematic litera-
ture review on multi-fault diagnosis in rotating machines is
addressed by authors in [4] and [44].

Different ML and DL algorithms are used for fault
detection, classification, or Remaining Useful Life (RUL)
Prediction. Results also show that the accuracy is very high
using these algorithms. However, some issues or research
gaps still need to be addressed.

« Rotating machines are a group of driver and driven
machines comprising multiple components, which tend
to possess multiple faults. When a fault is simulated
on the test setup for data collection, it is imperative to
validate it with the help of condition monitoring experts.
It is seen from the maximum literature that there is no
proof of data validation at the data acquisition stage.

o Most literature mentions the data being extracted in
the time domain, which is difficult to validate due to
the signal complexity. The data can be easily validated
using the FFT Spectrum by mapping the unique fault
frequencies. Hence, frequency-domain raw FFT data is
needed for data validation.

o Also, when PdM systems employing Al predict that a
component will fail and must be replaced, the engineer
or the customer has many concerns since a considerable
amount of cost is associated with the maintenance or
replacement of machines or components. These tradi-
tional black box models do not offer clear explanations
for their predictions on the health and condition of
industrial machinery. This lack of transparency makes
it difficult for maintenance personnel to understand why
a machine is flagged as faulty or when maintenance is
needed.

The eXplainable Al (XAI), an emerging field, provides
a clear and understandable method and assists in solving
all of the company’s issues. Explainable Artificial Intelli-
gence (XAI) in Predictive Maintenance refers to integrating
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TABLE 1. Applications of some XAl techniques related to predictive
maintenance in different domains.

Application of XAI Techniques
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Ref. Domain 3 E S ES 58 SH
[45] PdM in Hard Disk v v
Drives
[46] PdM in Battery, v v v v v
Engine, Gearbox
[34] PdM in Bearings 4
[47] PdM in Bearings v v
[48] Predictive Business v v
Process Monitoring
[49] PdM in Healthcare v
[50] PdM in Aerospace v v
Industry
[51] PdM in Water v
Pumping Ind.
[52] Prediction in Banking v
[53] Prediction in v v
[54] Healthcare
[55] Prediction in 4
Healthcare

interpretability techniques into Al models for predicting
and detecting faults in industrial machinery. When an Al
model detects a fault in a machine, maintenance experts
need to understand the root causes behind the prediction.
XAI techniques offer interpretable insights into the features
and factors contributing to the prediction, enabling accurate
root cause analysis and targeted maintenance interventions.
Maintenance engineers can complement the insights given by
Al 'model along with their domain knowledge. This will result
in a more reliable maintenance strategy. Understanding the
decision-making process of the Al model can also identify
potential errors, that will improve the overall performance
of the model. Table 1 analyses the Applications of some
XAl techniques related to Predictive Maintenance in different
domains.
The contribution of the study is as follows:

o The study posit an Explainable Predictive Maintenance
technique designed to address key issues identified in the
existing research gaps.

o A comprehensive case study is presented that uses
FFT raw data and employs multi-sensor data fusion for
multi-fault diagnosis in Industrial Rotating Machines.
To assess the efficiency of the proposed technique, com-
parison of various Al algorithms, including SVM, Ran-
dom Forest (RF), Decision Tree (DT), and K-Nearest
Neighbour (KNN) is also implemented.

o Advanced explainability techniques such as ‘“Local
Interpretable Model Agnostic Explanation (LIME),”
“SHapley Additive exPlanation (SHAP),” ‘‘Partial
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FIGURE 1. Block diagram of the proposed study.

Dependence Plot (PDP),” and “Individual Conditional
Expectation (ICE)”” are implemented in order to enhance
the interpretability of the AI models. These method-
ologies not only contribute to the transparency of the
predictive maintenance approach but also provide valu-
able insights into the inner workings of the Al models,
addressing a critical aspect often overlooked in tradi-
tional predictive maintenance strategies.

This study proposes a comprehensive approach to predic-
tive maintenance for industrial rotating machines. By com-
bining innovative techniques with thorough analysis of Al
algorithms and a focus on interpretability, we bridge gaps in
existing research and set a new standard for Explainable Pre-
dictive Maintenance in this field. Fig. 1 shows the graphical
representation of the study proposed.

The rest of the paper is organised as follows: Section II
gives the methodology related to Explainable Predictive
Maintenance, covering topics such as Al Algorithms,
Explainable Al models using LIME, SHAP, PDP and ICE,
Fast Fourier Transform (FFT) Data Generation. The results
of the case study are presented in Section III. Section IV is a
Discussion section that presents a comprehensive analysis of
results while addressing significant challenges and the future
scope of the work. Section V concludes the paper.

Il. METHODOLOGY
Let us analyse the materials and methods required in the
present study.

A. MULTI-CLASS CLASSIFICATION ALGORITHMS

Several algorithms can be used for multi-class classifica-
tion in the context of fault diagnosis or fault classification.
The choice of algorithm depends on various factors such as
the dataset’s size and nature, the fault patterns’ complexity,
interpretability, and available resources. It is recommended
to experiment with different algorithms and compare their
performance on the specific fault classification task at hand.
The algorithms that were used for multiclass classification
are Support Vector Machine (SVM), k-Nearest Neighbors
(KNN), Decision Tree (DT) and Random Forest (RF).
This paper refrains from explanations of these algorithms,
given their widely recognized standard definitions avail-
able in existing literature [4], [15], [17], [26]. Readers are
encouraged to consult established sources for comprehensive
insights into these well-known machine learning techniques.
This approach streamlines content, allowing a focus on the
core aspects of the proposed methodology.
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B. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)
Explainable Al, also known as interpretable Al, refers to the
concept of developing and designing artificial intelligence
systems and algorithms that can provide understandable
explanations for their decisions and predictions. The XAI
aims to provide a collection of new or enhanced ML
approaches that produce explainable models that, when
combined with strong explanation methodologies, allow
end-users to grasp, effectively trust, and ensure the successful
management of the next generation of Al technologies [56].
Explanation techniques may be classified according to a set
of criteria. The first is the Traditional techniques for data
explanation. This comprises exploratory analysis and visu-
alisation techniques (such as dimensionality reduction and
clustering) as well as model performance evaluation met-
rics (such as accuracy, precision, recall, ROC curve, mean
absolute error for regression models, AUC for classification
models, and coefficient of determination (R-square), root-
mean-square error). These traditional approaches are quite
useful in better understanding our data (Data explanation),
characteristics, and which models are most likely to be pro-
ductive. However, they are extremely limited when it comes
to attempting to figure out how a model works in a way that
humans will understand. Hence, as discussed below, we go
for new approaches for a better model explanation.

The new XAI techniques for Model explanation are of two
types. The first is to use algorithms that produce explain-
able models. Such models are called Interpretable models
or Transparent Models [57]. This approach is also called
the Intrinsic approach. Linear Regression, Logistic Regres-
sion, tree-based models, rule-fits, k-NN, and Naive Bayes
are frequently employed in this approach [58]. These algo-
rithms are explainable by themselves. These models provide
competitive accuracy, but their performance depends on data
quality, model complexity, and tuning. However, in some
cases, these models may yield low accuracy due to their
inherent simplicity, which can struggle to capture complex
relationships in data and underfitting. Some of these models
may be too simple, necessitating the development of new
methods for building and interpreting more complicated and
high-performing models. This can be achieved by separating
the explanations from ML Models. These second types of
techniques involve the models that can be explained using
external XAl techniques called extrinsic or post-hoc explain-
able approaches [57]. Since the interpretation techniques may
be applied to any ML model after the model training, the
extrinsic approach provides a significant benefit over the
intrinsic approach in terms of flexibility, as the developers
are free to use any ML algorithms [58]. Post-hoc Explain-
ability can be applied to the intrinsically explainable model,
which is model-specific, and also to other black-box Al
models, which are Model-Agnostic. Model-agnostic tech-
niques may be used on any machine learning model and are
utilised after the model has been trained (post hoc). Post-hoc
explainable techniques include explanations based on text
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FIGURE 2. Concept of explainable Al

or visual explanations, local explanations, using an exam-
ple, by simplification, and also by giving feature-relevant
explanations [59]. Functional Decomposition, Partial Depen-
dence Plot (PDP), Individual Conditional Expectation (ICE),
Accumulated Local Effects (ALE) Plot, Feature Interaction,
Permutation Feature Importance, Global Surrogate, Local
Surrogate (LIME), Scoped Rules (Anchors), Shapley Values,
SHAP (SHapley Additive exPlanations), etc. are some exam-
ples of Post-hoc explainability techniques. Another broad
way of classification of XAl techniques is based on the scope
of Explanation, that is, Local (explaining a single prediction)
or Global (explaining the entire model) [60]. The XAI con-
cept is illustrated in Fig. 2.

The AI Model takes input from the current task to rec-
ommend or decide. Model structure can aim for direct
knowledge of model architecture (by using directly explain-
able models) or use the black box models to explain the model
after studying model behaviour (post-hoc Explainability).
Post-hoc explainability techniques are either model-specific
(applied to transparent models) or model-agnostic (applied
to other Al models). Furthermore, post-hoc explainability
approaches are characterised as global or local (global: for
explaining what the model learned from the entire variable
space; local: for explaining how each prediction is made
based on the values at the instance). Finally, the user makes
the decision based on the Explanation. In this article, four of
the post-hoc explainable models are studied for a local and
global explanation as follows:

1) LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATIONS (LIME)
LIME (Local Interpretable Model-agnostic Explanations)
provides local explanations by approximating a complex
model’s decision boundaries with a simpler, more inter-
pretable model near a specific data instance. LIME can be
applied to any machine learning model, regardless of its
underlying algorithm or architecture. LIME supports three
types of input formats: tabular data, text data and image data.
Let us understand the working of LIME for tabular data
as the data to be analysed in this article is in the tabular
form: Select a specific data sample or an instance from the
feature set that you want to explain the program’s diagnosis,
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FUNCTION LIME(tabular_data, black_box_model, instance_to_explain, num_samples, num_features):
selected_instance = tabular_data[instance_to_explain]

#Create Perturbations
perturbations = create_perturbations(selected_instance, num_samples, num_features)

#Generate Perturbed Instances
perturbed_instances = apply_perturbations(selected_instance, perturbations)

#Obtain Predictions for Perturbed Instances

perturbed_predictions = []

FOR each perturbed_instance IN perturbed_instances:
perturbed_predictions.append(black_box_model.predict(perturbed_instance))

#Train an Interpretable Model (Linear Regression)
interpretable_model = train_interpretable_model(perturbed_instances, perturbed_predictions)

#Calculate Feature Importance
feature_importance = compute_feature_importance(interpretable_model)

RETURN feature_importance

FIGURE 3. Pseudocode format for working of LIME.

say “Machine Data A.” LIME will create slightly different
versions of ‘“Machine Data A” by making small changes
to its values (Perturbations). For example, it might slightly
increase the temperature or change the RMS level. These
new data samples are different versions of ‘“Machine Data
A.” LIME uses a simple, easy-to-understand model (like a
linear model or decision tree) to explain what is happening
with the complex model. LIME fits the simple interpretable
model using the perturbed data points and the corresponding
complex model predictions. Essentially, it creates a simplified
model that represents how the complex model behaves near
“Machine Data A”. Next, LIME looks at all the fault predic-
tions to find patterns. It wants to understand which features
(like temperature or RMS) influenced the program’s diagno-
sis the most. Based on these patterns, LIME will tell you
which feature values were most important in the program’s
decision for “Machine Data A.” It might say, “The high
RMS levels and the increased temperature had the biggest
impact on predicting Fault Type X for this machine.” By
using LIME, you can get a clear explanation of why the
program diagnosed a specific fault for “Machine Data A.”
This helps you understand which sensor/feature values are
critical in determining the fault and why the program made
that diagnosis. It makes the program’s fault diagnosis more
understandable and helps maintenance experts make better
decisions to keep the rotating machines running smoothly.
Fig. 3 gives the pseudocode format for working of LIME.

2) SHAPLEY ADDITIVE EXPLANATIONS (SHAP)

SHAP (Shapley Additive Explanations) is an interpretabil-
ity technique that can be used to explain the predictions
of machine learning models. SHAP values are based on
cooperative game theory. They provide a framework for
explaining the contribution of each feature to the prediction
outcome. SHAP can be applied to various types of mod-
els, including tree-based models, linear models, and deep
neural networks. SHAP can generate local explanations by
calculating the SHAP values for individual data instances.
These local SHAP values represent the contribution of each
feature to the prediction outcome for a specific instance.
By aggregating the SHAP values across multiple instances,
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FUNCTION SHAP(instance_to_explain, black_box_model):

#Generate all possible coalitions of features
coalitions = generate_coalitions(instance_to_explain)

#Calculate SHAP values for each feature

shap_values =[]

FOR each feature IN instance_to_explain:
shap_value = calculate_shap_value(feature, coalitions, black_box_model)
shap_values.append(shap_value)

RETURN shap_values

FIGURE 4. Pseudocode format for working of SHAP.

SHAP can also provide global explanations. This allows for
understanding each feature’s overall importance and impact
across the entire dataset. SHAP can be applied to explain
predictions in multi-class classification scenarios for tabular
data. When working with tabular data and multi-class classi-
fication, SHAP extends its methodology to handle multiple
classes and provide explanations specific to each class.

Let us understand the working of SHAP: First step is
to choose a specific data sample from a rotating machine
that you want to explain the program’s diagnosis. Let us
call it “Machine Data A.” SHAP will consider all possible
combinations of features (or sensor readings) for “Machine
Data A” to understand how each feature affects the fault
prediction. For each combination of features, SHAP calcu-
lates a “SHAP value” for each feature. This value tells us
how much each feature influenced the program’s predic-
tion for “Machine Data A.” By considering all the SHAP
values, SHAP shows you which features were most crucial
in the program’s decision for “Machine Data A.” it might
say, “The high kurtosis level and the increased temperature
had the biggest impact on predicting Fault Type X for this
rotating machine.” SHAP also considers how each feature’s
absence in a combination affects the prediction. This helps
you understand the importance of each feature when it is not
present along with others. The SHAP values obtained for each
feature and each class are used to generate explanations for
the model’s prediction on the selected instance in the multi-
class context. Visualisation techniques such as Shapley value
plots, summary plots, or individual feature importance plots
can be employed to present the SHAP values for each class
separately. These plots illustrate the impact of each feature on
the prediction outcome for each class, helping to understand
the model’s decision-making process and feature importance
across multiple classes in a multi-class classification prob-
lem. Fig. 4 is the pseudocode format for working of SHAP.

3) PARTIAL DEPENDENCE PLOT (PDP)
A Partial Dependence Plot (PDP) is a data visualisation tool
used in machine learning and statistical analysis to under-
stand the relationship between a specific feature (variable)
and the predicted outcome (target) while keeping other fea-
tures fixed or at a constant value. Using PDPs, we can analyse
how change in one feature affect the model’s predictions.

In PDP, first step is to choose one feature (e.g., vibration
amplitude at a certain frequency) as the feature of interest.
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# Load the dataset, encode labels, and train a Random Forest classifier
# Fit the model to the data
# Define the feature of interest

# Define a range of values for the feature

feature_range = linsp: in(X[feature_of_i 1), max(X[feature_of_interest]), num=100)
# Initialize an array to store PDP values
pdp_values =[]
# Calculate the PDP values for each value in the feature range
for value in feature_range:
X_pdp = copy(X)
X_pdplfeature_of_interest] = value
# Predict class probabilities for this modified data point
class_probs = clf.predict_proba(X_pdp)
# Calculate the mean class probabilities across all classes
pdp_value = mean(class_probs, axis=0) # Replace 0 with the index of the class you are interested in
append pdp_value to pdp_values
# Plot the PDP
plot(feature_range, pdp_values)

FIGURE 5. Pseudocode format for the working of PDP.

Next, determine a range of values for the selected feature.
This range could span from the minimum to the maximum
observed values in your dataset. For each value within the
defined range of the feature, synthetic data points are created
by keeping all other features fixed. Then the trained model is
used to predict the probability of a fault occurring for each
synthetic data point. The average prediction for each value
of the feature is calculated. This provides an estimate of how
the probability of a fault changes as the feature of interest
varies, while keeping other factors constant. Finally, a PDP
plot is generated where the x-axis represents the values of
the chosen feature, and the y-axis represents the average pre-
dicted probability of a fault occurring. The plot will show how
changes in the selected feature influence the likelihood of a
fault. Analysis is done to understand the relationship between
the selected feature and fault occurrence. It is recommended
to look for patterns, thresholds, or non-linearities indicating
specific conditions or values associated with higher fault
probabilities. Based on the PDP analysis, you can determine
thresholds for the feature that, when exceeded or fallen below,
indicate an increased likelihood of a fault. These thresholds
can be used for real-time fault detection. This trained model
and the PDP-derived thresholds can be deployed in a mon-
itoring system for continuous fault detection in the rotating
machine. The system can issue alerts or trigger maintenance
actions when feature values exceed specified thresholds.

By using PDPs in this way, you can gain a deeper under-
standing of the relationships between machine features and
fault occurrences, enabling more effective fault detection and
predictive maintenance in rotating machines. Fig. 5 shows the
working of PDP in pseudocode format.

4) INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

An Individual Conditional Expectation (ICE) plot is a data
visualisation technique used in machine learning and sta-
tistical analysis to understand how a single feature affects
the predicted outcome of a model for individual data points.
ICE plots provide a more granular view of the relation-
ship between a feature and predictions by showing multiple
curves, each representing the effect of the feature on the
outcome for different data instances.
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# Load the dataset, encode labels, and train a Random Forest classifier
# Choose a specific feature for which you want to plot ICE curves
# Find the unique values of the feature
unique_values = unique_values_in_column(df[feature_of_interest])
# Create an empty array to store ICE values
ice_values = empty_array(shape=(len(unique_values), number_of_classes))
# Calculate ICE values for each unique value of the feature
for i, value in enumerate(unique_values):
# Create a copy of the original data with the feature set to the current value
X_ice = copy(X)
X_ice[feature_of_interest] = value
# Predict class probabilities for this modified data point using the Random Forest model
class_probs = predict_proba(RandomForestClassifier, X_ice)
# Store the class probabilities for each class
ice_valuesli, :] = class_probs[0]
# Plot the ICE curves for each class
for class_index, class_label in enumerate(class_labels):
plot(unique_values, ice_valuesl[:, class_index], label='Class ' + class_label)

FIGURE 6. Pseudocode format for working of ICE.

In ICE, the first step is to select one feature as the “feature
of interest.” This could be, for example, the vibration ampli-
tude at a specific frequency or the temperature at a certain
location in the machine. For each instance in the dataset,
a separate ICE curve is generated. To do this, all other features
are held constant, and only the chosen feature of interest is
varied within its range. An AI/ML model is used for each data
point to make a prediction. For each data point, an ICE curve
is plotted. The x-axis represents the variations in the chosen
feature, and the y-axis represents the predicted values as the
feature changes. Each ICE curve shows how the predicted
outcome changes with different values of the feature while
keeping other features fixed. The abrupt changes in the curves
may indicate fault-related behaviours. For example, you may
find that certain vibration frequencies are strongly correlated
with specific types of machine faults. ICE plots can also be
used to validate and interpret the performance of the Al model
used. If the ICE curves align with expectations and known
fault behaviours, it builds confidence in the correctness of the
model. Applying ICE analysis to fault detection in rotating
machines can gain insights into the relationship between
individual sensor measurements and the presence of faults.
Fig. 6 shows the working of ICE in pseudocode format.

C. FREQUENCY DOMAIN ANALYSIS USING FFT SPECTRUM
FFT transforms a time-domain signal into its frequency-
domain representation. By analysing the frequency content
of a signal, you can identify specific patterns or signatures
associated with faults or anomalies. Different faults often
produce distinct frequency components, such as harmonics,
which can be detected through FFT analysis. The traditional
practice is to regularly monitor a machine or system’s FFT
data to identify early signs of developing faults. Changes
in the frequency spectrum, such as the appearance of new
frequencies or variations in the amplitude of existing fre-
quencies, can indicate the presence of a fault even before
it becomes severe enough to cause noticeable issues. This
early detection allows for timely intervention and preventive
maintenance.

Sampling in both time- and frequency domains is equiv-
alent as long as the Nyquist-Shannon theorem conditions
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FIGURE 7. Data validation using FFT spectrum generated by VibXpert II.

are met. However, the data in the frequency domain is pre-
ferred in this study to highlight its utility in certain scenarios
where specific frequency-related patterns are of particular
interest, primararily while validating the data being collected
in “real-time” and diagnosing the type of fault in predictive
maintenance. Firstly, collecting frequency-domain raw data
enables the researchers to validate the data being collected at
the very important data acquisition stage in real-time, which
may not be as feasible if time-domain raw data is collected.
The FFT spectrum generated by Industrial VibeXpert II was
used to validate the FFT spectrum generated by the Data
Acquisition (DAQ) setup acquired from the test setup while
the data was being collected in real-time. The top 5 frequency
peaks were validated on both the Data Acquisition devices,
which were found to be similar at the respective frequencies.
Fig. 7 compares the FFT Spectrum on VibXpert II and the
data acquisition technique used. Secondly, the decisions of
Black-box AI models or the faults predicted by Al models
can also be validated using the input FFT data since FFT
data is human-interpretable. Fault characteristic frequencies
in the FFT spectrum enable maintenance engineers to diag-
nose the type of fault in the machinery, which is difficult in
time-domain representation due to signal complexity. Hence,
in the case of fault prediction by Al model, the predicted
fault can be validated in using the FFT data. From the above-
mentioned perspective, FFT data analysis can be preferred
over time-domain data.

While time-domain data still holds value in certain appli-
cations, FFT data provides a more comprehensive, insightful
and human-understandable representation of the underlying
machinery behaviour, making it a preferred choice in predic-
tive maintenance. There are two ways to obtain the frequency
domain data from an accelerometer. One is to collect time
domain data and convert it into FFT data using steps such as
Data Acquisition, preprocessing, applying the FFT algorithm,
getting the FFT Spectrum, and analysis. The other way is
to use an accelerometer that would give direct FFT output.
In this article, FFT Data was acquired using four Indus-
trial grade, screw lock-type, stainless steel, triaxial vibration
gauge VB-310 SCB with built-in signal processing capabil-
ities to convert the raw acceleration data into the frequency
domain. With the direct FFT output, you can directly anal-
yse the frequency content of the accelerometer data without
explicitly performing the FFT calculation yourself. However,
it’s important to note that the features of accelerometers can
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FIGURE 8. The test setup used for experimentation.

vary depending on the specific model or manufacturer. So, it’s
recommended to refer to the accelerometer’s specifications to
understand the details of its FFT output and how to interpret
the provided frequency domain information.

D. MULTI-FAULT DATASET GENERATION USING
MULTI-SENSOR DATA FUSION

Generating a multi-fault dataset involves creating a dataset
with multiple types of faults or anomalies. As shown in Fig. §,
the test setup was used for data collection. It consists of
3 phase induction motor, Variable Frequency Drive (VFD),
shaft with a diameter of 3 cm and a total length of 95 cm,
three-Jaw spider Coupling connecting the driver and driven
shafts, two Timken 22207KEJW33C3 double-row spherical
bearings, two Deep groove ball bearings within the induction
motor, two rotors: Simply supported rotor with a diameter of
25 cm and over-hung rotor with a diameter of 35 cm. The
setup is mounted on a Mild Steel (MS) foundation supported
by a concrete base. The test setup is designed to simulate mul-
tiple faults such as bearing faults, unbalance, Misalignment,
and structural Looseness.

The test setup is employed with four VB-310 SCB
accelerometers mounted at each bearing location. Multiple
sensors enable more precise diagnosis, and the use of mul-
tiple “types” of sensors enables fusing multiple condition
monitoring techniques, giving scope to accurately diagnose
multiple faults at early stages. To achieve this, along with
accelerometers, four MAX6675 thermocouple temperature
sensors are mounted at each bearing location and one PZEM
004T current sensor around the electrical cable of the motor.
The connection diagram for various sensors is as shown in
Fig. 8.

The VB-310 SCB accelerometer features an all-in-one
integrated design that combines both the sensor and trans-
ducer within a compact package. Its output signals are in an
industrial RS-485 format. The output data includes three-axis
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velocity-acceleration RMS (Root Mean Square), three-axis
velocity-acceleration FFT (Fast Fourier Transform), and
three-axis displacement peak-to-peak measurements. The
VB-310 SCB internally collects time-domain data and pro-
vides direct FFT raw data as the output. This accelerometer
can be seamlessly connected to third-party Programmable
Logic Controllers (PLCs) and Distributed Control Systems
(DCS) without the need for Data Acquisition (DAQ) devices,
as it supports open signal protocols like MODBUS Remote
Terminal Unit (RTU). When connecting the sensor to a Per-
sonal Computer (PC), an RS485 to Universal Serial Bus
(USB) converter is employed. This accelerometer can be
configured to obtain FFT velocity data in X, Y, or Z direction.
Similarly, PZEM 004T current sensor facilitates data transfer
via an RS485 communication interface, making it compatible
with a PC for data acquisition. Additionally, the MAX6675
thermocouple temperature sensor can be easily affixed to
the bearing housing for temperature monitoring. MAX6675
is connected to Arduino via SPI protocol. Arduino UNO
has been configured to be a Modbus client using Modbus
libraries. Arduino UNO is connected to PC directly without
any converter. Python application connects to Arduino to
collect the temperature data. Hence, the VB310 SCB and
PZEM 004 T are connected to PC via USB to RS485 conver-
tor and MAX6675 is connected to PC via Arduino UNO. All
sensors in this system employ the Modbus-RTU protocol at
the application layer for communication. Python application
is developed to interface and collect data from all the above
mentioned devices and store it in csv file so that it can fed to
Al algorithm for further processing.

Data is collected from multiple types of multiple sensors
for 5 different fault types (single plane unbalance, two plane
unbalance, misalignment, looseness and no-fault) at three
different speeds (800 rpm, 1000 rpm and 1200 rpm). Multiple
sensor data fusion is achieved using feature-level fusion.
Feature-level fusion is a key process that involves combining
the features obtained from multiple sensors into a unified
feature vector. This amalgamation necessitates careful data
mapping during the data acquisition phase. In our case,
we collected FFT data (equal to 2000 datapoints) from four
sensors, each measuring data along three axis, temperature
data from four sensors, and current data from one sensor
making a Total = ((4 * 3) + 4 + 1) = 17 datapoints as one set.
From this set, various features were extracted. It is important
to note here that, although the data was collected from four
different locations, however, data from that sensor nearest to
the fault location for that particular fault type was considered
for further evaluation. 10 Standard statistical features are
extracted from FFT data (of 2000 datapoints) such as RMS,
Mean, Standard Deviation, Variance, Kurtosis, Crest Factor,
Shape Factor, Impulsion Factor, Sum of Squares, and Skew-
ness from all three axis along with Current and Temperature
(Total = (10 features * 3 axis) + 1 temp + 1 current =
32 features). These features from one set are mapped into
a single feature vector, thus achieving feature-level fusion.
Likewise, 150 sets are collected at each speed, 450 sets at
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TABLE 2. Results by various multi-class classification algorithms.

Algorithms Results

Accuracy Precision Recall F1I score
SVM 85% 0.89 0.85 0.84
KNN 93% 0.93 0.93 0.93
Decision Tree 93% 0.93 0.93 0.93
Random Forest ~ 96% 0.96 0.96 0.96

3 speeds (one fault condition), 2250 sets for all the 5 fault
conditions. The final feature set consists of 2250 rows and
32 features columns. The final feature set is analysed using
multiple AI models, followed by XAI models’ explanations.

Ill. RESULTS

This section discusses the results obtained after using Al
models for multi-fault classification. Multi-fault classifica-
tion is explained using LIME and SHAP in subsequent
subsections.

A. MULTI-FAULT CLASSIFICATION USING Al MODELS

The final feature set obtained after multi-sensor data fusion
is further processed using feature scaling techniques such
as Standardization and Normalization. These techniques are
essential when features have a diverse range. Further feature
ranking techniques were employed to select the essential
features. Random Forest and XGBoost techniques were used
for feature ranking. Fig. 9 and Fig. 10 show the visualisation
of important features using Random Forest and XGBoost,
respectively.

Finally, 9 features out of 32 were selected for further
classification using AI Models. Multi-class classification
algorithms such as SVM, KNN, Decision Tree and Random
Forest are applied, and the results are analysed in Table 2.

The algorithm was run 10 times for each model, and
the average accuracy is displayed in the table. It is
seen that Random Forest gives the highest Accuracy of
96%, followed by Decision Tree and KNN, giving 93%
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FIGURE 10. Feature importance using XGBoost.

accuracy, and SVM, giving 85% accuracy. Fig. 11 shows
the confusion matrix of all four classification models. It can
be seen that the Accuracy has reduced due to the misclas-
sification of 15t and 2" classes, that is, Single-plane and
Two-plane Unbalance classes. A one-way ANOVA test was
conducted to compare the performance of different machine
learning algorithms. The result obtained from running the
one-way ANOVA test indicates that there are statistically
significant differences in the performance of the different
machine learning algorithms. The F-statistic is a measure of
the variation between the means of the algorithms relative to
the variation within each group. A larger F-statistic indicates
a greater difference between group means compared to the
variation within each group. The F-statistic was 1520.00 in
this case, indicating substantial variation between the algo-
rithms’ performances. The P-value represents the probability
of observing extreme variation in group means (or more
extreme) if there were no real differences between the groups.
The P-value obtained was 5.997389484070222¢-38, indicat-
ing strong statistical evidence suggesting that at least one
of the algorithms performs differently in accuracy compared
to the others. In summary, the result indicates that there
are statistically significant differences in the accuracy of the
machine learning algorithms.

B. LOCAL EXPLANATIONS USING LIME

To understand the classification implemented by the Al mod-
els, LIME is used. LIME gives local explanations. This means
it will explain why an instance was classified as a particular
class based on its features. Fig. 12 is a typical output that is
explained by the LIME interpreter for the 300" instance of
a Random Forest Classifier. It can be seen that the model
predicts the output of the 300%™ instance as Misalignment
with 100% confidence (prediction probability). LIME also
identifies the most influential features that contribute to the
prediction for the specific instance. To quantify the relevance
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of the selected features, LIME gives weights to them. These
weights represent the influence of each feature on the model’s
prediction for the instance. Higher weights imply a greater
effect, whereas weights near zero or zero indicate less influ-
ence. In this situation, the feature RMS and Mean impact the
predicted outcome most. To visually display the impact of
these features, the weights are also depicted using various
graphic elements such as bar lengths or colour intensity.
In addition to the weights, LIME also provides an explanation
based on the value of features, as shown below. The feature
representation and its associated value may not precisely
correlate to the original dataset’s feature values since LIME
generates and manipulates these values during the perturba-
tion process.

Fig. 13 depicts the prediction probability of the 300"
instance explained by LIME for the KNN, Decision Tree and
SVM model. It is seen that SVM classifies the 300™ instance
as Misalignment with 28% confidence and the instance as
Looseness with 72% confidence.

Fig. 14 depicts the local Explanation by presenting feature
contributions to each class using LIME. This method allows
you to see the explanations for each class independently,
obtaining insights into the feature relevance for each class
prediction in a multi-class classification scenario. Fig. 15
depicts the real global feature significance weights generated
from random forest and decision tree models. The signif-
icance is arranged in descending order to show the most
significant elements at the top.

C. LOCAL AND GLOBAL EXPLANATIONS USING SHAP

Let us analyse the prediction locally and globally using a
SHAP interpreter. Fig. 16 explains the 301%" instance pre-
dicted by the RF model. It is predicted that the output is class 3
(Misalignment). The results of the SHAP explainer include
the Shapley values for each feature in the model. Positive
Shapley values indicate that a feature positively contributes
to the prediction, while negative values indicate a negative
contribution. The magnitude of the Shapley value represents
the strength of the contribution. This is called a force plot of
SHAP.

Additionally, the SHAP explainer can produce summary
plots such as bar charts or scatter plots to visualise the
impact of features on individual predictions or on the overall
model behaviour. Fig. 17 shows the SHAP summary plot for
the 301% instance. This plot shows the Shapley values for
each feature, allowing us to understand each feature’s rela-
tive importance and direction of influence. This was locally
explaining an instance using SHAP. Now, let us consider the
Global Explanation for all the instances from the feature set
using SHAP. Fig. 18 is a screenshot of the interactive Global
Explanation given by SHAP (Force plot). As the cursor
moves from left to right, the output changes corresponding
to each instance. Currently, the cursor is placed on the 113t
instance (highlighted dark black), and the output predicted by
the RF model is 1 (No fault). Fig. 19 shows the global SHAP
summary plot for all the instances. Fig. 20 is a dependency
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FIGURE 11. Confusion matrix for SVM, KNN, DT, RF.

plot in the context of SHAP. It is a visual representation that
helps to understand the relationship between a feature and
its corresponding SHAP values. The x-axis represents the
feature values, and the y-axis represents the SHAP values.
Each data point on the plot represents an instance from the
dataset. By analysing a dependency plot, we can identify
different patterns and understand the impact of a specific
feature on the model’s predictions. Fig. 21 is a SHAP water-
fall plot which is a visual representation of the contributions
of different features to the prediction made by a machine
learning model. The plot is structured like a waterfall, with
each step representing the contribution of a specific feature.
The baseline prediction is at the top, and the final prediction
for the instance is at the bottom. The plot shows the cumula-
tive effect of adding or subtracting the contributions of each
feature.

D. EXPLANATIONS USING ICE AND PDP PLOT
Let us analyse the ICE and PDP pots. Fig. 22 gives the ICE
plot of feature IF_Z3 for multiple classes. The underlying
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prediction model is a Random Forest. There is an ICE curve
for each class in a multi-class classification problem. The
feature is plotted on the x-axis of the ICE plot, and the y-axis
represents the probability of a particular class being assigned
to a data point as you vary a specific feature while keeping
all other features constant. Each ICE curve shows how the
predicted probability of that class changes as the feature of
interest varies. The ICE curves are typically centred around a
base rate. This base rate represents the predicted probability
for the class when all other features are held constant at their
average or some other reference value. If the ICE curve for
a class is mostly increasing as the feature value increases,
it indicates that higher values of the feature are associated
with a higher probability of that class. If the ICE curve is
mostly decreasing, it suggests that higher feature values are
associated with a lower probability of that class. A flat ICE
curve suggests that the feature does not strongly influence
the predicted probability for that class. Crossing ICE curves
indicates that the relative importance of the analysed fea-
ture changes along its range. It suggests that the feature has
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FIGURE 12. Explanation by LIME for 300t instance of RF classifier.

different effects on class probabilities for different classes
at different points. In other words, at those specific feature
values, the predicted probability for one class becomes higher
than the predicted probability for another class.

Fig. 23 gives the PDP of the IF_Z3 feature for Class 2.
The x-axis represents the range of values for the feature being
analysed. The y-axis represents the effect of the feature on the
model’s prediction. The horizontal line (usually at y = 0) on
the PDP plot represents the base rate. The curve shows how
predictions deviate from this base rate as the feature changes.
If the PDP curve slopes upward as you move along the x-axis,
it indicates that increasing the feature value leads to higher
model predictions. Conversely, if the curve slopes downward,
it suggests that increasing the feature value leads to lower
model predictions. A flat PDP curve means the feature has
little to no impact on the model’s predictions. PDPs help
understand how the model arrives at its predictions and can
guide feature engineering and model improvement.
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IV. DISCUSSION

The analysis of the results shows that Explanation inter-
faces such as LIME, SHAP, PDP, and ICE can aid in
the decision-making of maintenance activities for Rotating
Machines. Following can be the possible inferences that can
be taken from XAI models:

« For a specific rotating machine flagged for maintenance,
LIME can highlight which sensor readings or features
significantly influenced the prediction. Maintenance
personnel can easily identify the specific indicators that
led to the maintenance recommendation. For example,
LIME might reveal that high RMS levels and increased
temperature strongly influenced the prediction of a par-
ticular fault.

o SHAP might show that temperature readings have the
highest overall impact on predicting faults in rotating
machines, making temperature monitoring a top priority.
This way, Explainable Al can aid in trust towards the
black-box model’s decisions.

o PDP and ALE can further add to analysing how a change
in feature value leads to a change in prediction. They
show how model predictions change as specific param-
eters change, making it easier to justify and understand
diagnosis decisions.

When comparing LIME and SHAP to other explainable Al
techniques, LIME and SHAP both provide local explanations,
focusing on explaining individual predictions for specific
data instance. They are highly interpretable on a case-by-case
basis, giving insights into how specific factors affect a given
prediction. Other explainable Al techniques, such as Feature
Importance from Trees or even SHAP, offer global explana-
tions. Secondly, both LIME and SHAP are model-agnostic
and can be used with any black box model without requiring
knowledge of the internal model architecture. This flexibility
makes them widely applicable in various scenarios. Addition-
ally, LIME approximates the black box model locally using
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FIGURE 14. Local explanation by LIME for individual fault class.

interpretable models, such as decision trees or linear mod-
els. Although this simplicity makes explanations easier to
understand, there may be some fidelity loss when compared
to the original model. LIME might also not capture complex
feature interactions since it relies on simple models. SHAP
is based on cooperative game theory, provides consistent fea-
ture attributions, and is more effective at capturing complex
feature interactions. However, SHAP explanations might be
more complex to understand due to the use of Shapley values
and the inclusion of interaction effects between features.
PDPs are often used to interpret global models. In this
context, PDPs provide insights into how changing one fea-
ture affects predictions across the entire dataset. ICE plots
are particularly useful for interpreting local models. ICE
plots visualise how the predictions of a local model change
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for individual data points within a specified region of fea-
ture space. However, it’s important to note that PDPs and
ICE plots can also be applied to global models for feature
interpretation. However, PDPs assume that the features are
independent of each other, which may not be the case in
complex real-world datasets. When features are correlated
or interact with each other, PDPs can provide incomplete or
misleading insights. Hence, using them in conjunction with
other interpretability techniques is essential.

Comparing the available literature on applications of XAI
in predictive maintenance, several researchers have published
related work as discussed in Table 1. However, a very selec-
tive literature focusses on XAl in predictive maintenance
of rotating machines. A study presented in [61] implements
LIME on prediction of bearing faults. Study in [3], [47],

VOLUME 12, 2024



S. Gawde et al.: XPM of Rotating Machines Using LIME, SHAP, PDP, ICE

IEEE Access

Global Feature Importance Weights of Random Forest Model

0.200 A

0.175 A

0.150 A

0.125 A

0.100

0.075 A

Feature Importance

0.050 A

0.025 A

0.000 -

Mean_Z3
sS_73
RMS_Y3
IF_Z3

CF z3
Skewness_Z3
RMS_Z3
SF_Z3
Variance_Z3

Features

Global Feature Importance Weights of Decision Tree Model

0.5 4

Feature Importance

Mean_zZ3
RMS_Y3
IF_Z3
Variance_Z3
ss_73

SF 73

CF.Z3
Skewness_Z3
RMS_Z3

Features

FIGURE 15. Global explanation by LIME showing feature importance for
random forest and decision tree.

@
The RF predicted: 3.8

X has feature nanes, but DecisionTreeClassifier was f
ligher

d without feature names

$S23=3487'  RMS_Z3=0.2641 RMS_Y3=99.36 Variance_23=0.0499 | IF_23=14.47 'Mean_23 =0.1407

FIGURE 16. Local explanation by SHAP for 3015 instance of RF model.

and [62] presents the use of SHAP in explaining predic-
tions made for bearing faults. Another study [46] proposes
Grad-CAM method superior in comparison with LIME and
SHAP in explaining the predictions made for gearbox faults
in rotating machines. In most comparable studies, researchers
predominantly concentrate on a singular fault type, such as
bearings, rather than addressing multiple faults. Additionally,
the majority of studies assess a single eXplainable Artifi-
cial Intelligence (XAI) technique, overlooking the potential
benefits derived from leveraging a combination of multiple
techniques to enhance decision-making processes. It is essen-
tial to note that due to the limited literature available on
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FIGURE 19. Global explanation by SHAP showing the summary plot of all
the instances of the RF model.

this specific topic, generalizations should be approached with
caution.

A. LIMITATIONS AND CHALLENGES IN EXPLAINABLE
PREDICTIVE MAINTENANCE
The choice of the feature representation used may influence
the interpretation. Therefore, it is crucial to interpret the
results from LIME, SHAP, PDP, and ICE cautiously and
consider them in association with domain knowledge and
other interpretability techniques. Also, these techniques can
only explain “why” a prediction was given. However, it is
crucial to know “what next?” step to be taken to rectify the
predicted output.

Considering these limitations, the following can be the
future scope in the evolving Explainable Predictive Mainte-
nance field.
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B. FUTURE DIRECTION IN EXPLAINABLE PREDICTIVE
MAINTENANCE

Researchers can explore or develop new techniques that
provide more comprehensive and accurate explanations for
predictive maintenance models. This could involve improv-
ing existing methods like LIME, SHAP, PDP, and ICE or
exploring alternative explainability approaches.

The current models lack in giving explanations that can be
used to take corrective actions if a fault is predicted. Counter-
factual Explanation is another aspect of Explainability that,
if used with a set of right feature sets, can revolutionise
the field of Predictive Maintenance concerning possible fault
rectification factors.
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V. CONCLUSION

Predictive maintenance is an important application of
machine learning in various industries, aiming to optimise
maintenance operations and reduce equipment downtime.
LIME, SHAP, PDP and ICE are popular techniques used to
interpret the predictions of machine learning models. They
provide insights into the features’ contributions and their
impact on the model’s predictions, helping us understand the
reasoning behind the maintenance recommendations made by
the model. While these techniques serve a similar purpose,
they differ in their approach and the types of explanations they
offer. LIME generates explanations for individual predic-
tions by locally approximating the model’s behaviour. LIME
explanations can provide valuable insights into how specific
features influence the prediction for a given instance. On the
other hand, SHAP offers a more holistic view of feature
importance by considering all possible feature combinations.
SHAP explanations provide a comprehensive understanding
of the relative importance and direction of influence for each
feature in the model. Finally, PDP and ICE aid in analysing
“the point” where the feature value changes the prediction.

LIME, SHAP, PDP and ICE can help identify the critical
features that contribute significantly to the maintenance rec-
ommendations in Predictive maintenance. By understanding
the importance of different features, maintenance teams can
prioritise their actions accordingly, focusing on the most
influential factors affecting equipment failure. However, due
to the novelty of this XAl field, there are some limitations and
challenges related to Explainable Predictive Maintenance.

In summary, the future of explainable predictive main-
tenance lies in advancing the sophistication and usability
of explanation techniques. These advancements will enable
organisations to make informed maintenance decisions,
improve equipment reliability, and optimise resource alloca-
tion based on a deep understanding of the underlying machine
learning models.
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