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ABSTRACT In the task of fusing infrared and visible images, the extraction of features and fusion strategy
significantly impacts the outcome of the fusion. However, prevailing fusion methods are often manually
designed, unlearnable, and neglect to consider context adequately. To address these issues, this paper
introduces a distributed architecture network based on attention mechanism and dense dilated convolution,
realizing three-channel data fusion. This network employs a distributed fusion framework to fully utilize the
fusion output of the previous step, capitalizing effectively on the target and texture information in infrared and
visible images. Initially, two channels gather ample context from the source images through a dense dilated
convolution module with multiscale channel attention. Subsequently, a fusion strategy based on coordinate
mean attention is adopted to facilitate the fusion of results between the two channels. Then, the fused
features and the preceding fusion results are fed into the fusion channel, minimizing loss of target and texture
information in infrared and visible images. Furthermore, we incorporate an edge correction block, capable
of refining the edge details of the fusion results and effectively suppressing noise. The proposed method
demonstrates good fusion performance and extensive ablation experiments validate the effectiveness of the
proposed methodology. Simultaneously, both subjective qualitative and objective quantitative comparison
results, conducted on public datasets such as RoadScene, TNO, and MSRS, indicate that the visual quality
and evaluation metrics of our fusion images are comparable to those achieved by the state-of-the-art image
fusion methods.

INDEX TERMS Distributed architecture, dilated convolution, infrared and visible image fusion, edge
correction, coordinate attention.

LIST OF ABBREVIATIONS
CNN Convolutional neural network
GAN Generative adversarial network
AE Autoencoder
PID Proportional-Integral-Derivative control systems
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I. INTRODUCTION
Image fusion is a critical image processing technique
designed to address the challenge of providing a compre-
hensive depiction of a scene, a task that single-mode sensors
struggle to accomplish due to limitations in hardware, theory,
and technology. Among the current image fusion scenarios,
the most prevalent involves the fusion of visible and infrared
images. Infrared imagery can reveal the thermal distribution
of objects, enabling effective target emphasis even under
adverse weather conditions. However, infrared images lack
clarity concerning background details. On the other hand, vis-
ible images offer rich color information and high-resolution
texture details, but their visual quality and resolution are
highly dependent on lighting and environmental conditions.
By fusing infrared and visible images, one can combine the
rich detail of visible image with the target characteristics
of infrared image to create a composite image. This image
contains more useful information than any single source
image and significantly aids subsequent high-level visual
tasks such as object detection [1], [2], object tracking [3], [4],
and semantic segmentation [5], [6].
Over the past several decades, a number of image

fusion methods have been proposed, broadly classified
into two categories: traditional methods and deep learning-
based methods. Classic traditional fusion methods include
multiscale transform methods [7], [8], [9], [10], sparse rep-
resentation methods [11], [12], [13], subspace methods [14],
[15], total variation methods [16], and various hybrid meth-
ods [8], [17]. These primarily employ relevant mathematical
transformations to manually analyze the activity level of
source image information and design fusion rules in the
spatial or transform domain. Existing traditional methods
exhibit excellent performance in image fusion applications.
However, their disadvantages are becoming increasingly
pronounced [18], such as the lack of abbility of direct
evaluation and learning from data and the application of
the same transformations to extract features from different
source images, disregarding the feature differences between
the source images. Moreover, most fusion rules of traditional
fusion methods are manually designed, often overly simple or
superficial, potentially leading to subjective bias and subpar
fusion results.

In recent years, researchers have introduced deep learning
methods, currently the most popular, to overcome the
limitations of traditional image fusion methods. Typical
methods based on deep learning include those based on
Autoencoder (AE), Generative Adversarial Network (GAN),
Convolutional Neural Network (CNN) and transformer-based
method. All these methods aim to solve three sub-problems
of image fusion, namely feature extraction, feature fusion,
and image reconstruction. Specifically, AE-based methods
such as Densefuse [19] and Nestfuse [20], use pre-trained
autoencoders to accomplish the fusion task. Here the
encoder is responsible for feature extraction, the decoder
for image reconstruction, and the intermediate feature fusion

is achieved according to some simple fusion rules, such
as element-wise addition and concatenate operation. CNN
was initially combined with traditional methods for image
fusion applications [18]. Specifically, CNN-based methods
integrate CNN with traditional methods for image fusion,
utilizing traditional techniques for feature extraction and
image reconstruction, while employing well-trained CNN
to establish the fusion rules. For instance, Liu et al. [21]
proposed a CNN-basedmethod for infrared and visible image
fusion, where a pre-trained CNN is used to generate fusion
weights, and the laplacian pyramid method is used for image
fusion. There is another type of method involves the use of
CNN [18], [22], [23]. Guided by meticulously designed loss
functions and network structures, these approaches achieve
end-to-end feature extraction, feature fusion, and image
reconstruction. Zhang et al. [24] developed a general image
fusion framework based on CNN, which includes multiple
CNN blocks for feature extraction and image reconstruction.
Subsequently, feature fusion is achieved through a simple
element-wise mean method. Xu et al. [25] proposed a uni-
versal end-to-end CNN for image fusion, named U2Fusion.
U2Fusion introduced an information measurement method
to evaluate the essential information of images, which is
utilized in conjunction with the VGG model to measure
the amount of information in each modality image, aiding
in the training of CNN networks. These methods achieved
fully convolutional image fusion and yielded impressive
results. However, these methods still have some drawbacks:
(1) These methods perform feature extraction at a single
scale, neglecting multiscale local/global information, which
can reduce the quality of fusion to some extent. (2) CNN-
based approaches typically use only the final output of
the feature extraction layers as input for the fusion layers,
potentially leading to significant loss of information extracted
by the convolutional layers. (3) The fusion strategies adopted
in these methods are mostly manually designed, which
greatly limits the enhancement of fusion results.

Consequently, fusion methods based on GAN andmethods
based on Transformer are proposed. Methods based on
GAN construct a generator and a discriminator, estimating
the probability distribution of pixels in the fused image
through adversarial learning. The advantages of this method
include the ability to achieve end-to-end fusion and to
eliminate the constraints of manually designing fusion rules.
FusionGAN [26] is the first GAN-based model for fusing
infrared and visible images. It generates fused images by
simultaneously inputting infrared and visible images into the
generator, while the discriminator, through evaluating and
learning from the visible image, arrives at the classification
results between the two types of image information. However,
due to the limited ability of a single discriminator to analyze
multi-modal data, the authors of FusionGAN proposed
DDcGAN [27], which evaluates feature information through
two discriminators that assess the infrared and visible images
separately. However, due to the absence of an ideal fused
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image, balancing the generator and discriminator during the
training process poses a significant challenge. Therefore,
the performance of these fusion methods still exhibits
certain deficiencies. The new generation neural network
framework, Transformer architecture, has been applied to
image fusion, achieving remarkable results. These meth-
ods utilize the self-attention mechanism to capture global
dependencies, facilitating effective feature representation
learning. Ma et al. [28] proposed a multi-task fusion
model based on cross-domain distant learning, modeling
both intra-domain and cross-domain distant dependencies
to better integrate complementary features. Tang et al. [29]
developed a model that combines CNN and Transformer,
efficiently integrating global complementary information
with local details. However, Transformer-based methods
require significant computational resources and may perform
inefficiently on devices with limited resources [29], [30].
Recently, Proportional-Integral-Derivative (PID) control

systems have been introduced as an image fusion strategy
within a multiscale framework [31]. PID control systems
measure the difference between the fusion result and the
source images in real-time and adjust the weights of the
function accordingly, enabling adaptive fusion capabilities.
This allows source mappings to guide the fusion process,
avoiding the need for manually designed complex fusion
rules. However, the effectiveness of PID control systems
largely depends on precise tuning of their parameters.
Finding the optimal settings for the proportional, integral,
and derivative components is a complex and time-consuming
task [32].

This paper introduces a novel end-to-end method for
infrared and visible image fusion, named MDDCMA,
designed to overcome the aforementioned limitations. MDD-
CMA adopts a three-channel distributed fusion framework,
where two channels receiving source images are used for
feature extraction, and the other channel is used to fuse
these extracted features. This structure is able to effectively
utilize information from the previous step, preserving more
comprehensive source image information for the fusion
results. We construct aMultiscale Dense Dilated Convolution
Module (MDDC) and Edge Correction Block (ECB) in
the two feature extraction channels, which can help the
network to extract multiscale global features and improve
the edges of coarse features to achieve better fusion
results. Simultaneously, a meticulously designed module,
Coordinate Mean Attention Fusion Block (CMB), is utilized
to precisely fuse the information from feature extraction
channels. In the section IV, we conducted ablative analyses
and supplementary experiments on ECB and CMB to validate
the performance of the proposed module.

The contributions of this paper can be summarized as
follows:

• We propose an end-to-end framework for the fusion
of infrared and visible images. This framework adopts
a distributed structure, implemented through three
branches for image feature extraction and fusion. Two

branches are applied to feature extraction while the
other one handles feature fusion. This structure enables
maximal utilization of the output from the previous
fusion step, thereby enhancing the fusion quality.

• In a bid to capture comprehensive feature information,
we have designed a MDDC for feature extraction. The
dense dilated convolution structure extracts features
under multiple receptive fields. Furthermore, a multi-
scale channel attention block (MAT) and a spatial and
channel attention fusionmodule (SCM) are incorporated
to aid in the acquisition and merging of features from
different regions, thereby achieving superior feature
extraction results.

• To overcome drawbacks associated with manually
designed fusion strategies, CMB is designed as the
network’s fusion strategy. This module is capable
of simultaneously considering information from both
spatial levels and coordinate positions, effectively
enhancing the feature’s expressive capacity, and thereby
facilitating more precise and efficient feature merging.
Additionally, to improve the quality of fusion results,
we design an ECB to refine the edge information in
the fusion results. It can effectively suppress noise and
enhance the texture detail information in the fused
images.

• We conducted extensive experiments on publicly avail-
able infrared and visible image fusion datasets. The
experimental results indicate that, compared to existing
fusion methods, our fusion framework exhibits superior
performance in both subjective and objective evalua-
tions. Moreover, we conducted ablation experiments,
which verified the functionality and effectiveness of the
proposed method.

The arrangement for the remaining sections of the paper
is as follows. Section II presents a review and introduction
of the relevant works related to this study. In Section III,
we provide a detailed description of the proposed method.
In Section IV, we demonstrate the fusion effects of the
proposed method, compare it against advanced image fusion
methods quantitatively and qualitatively, and present the
results of the ablation experiments and some additional
experiments to attest to the method’s effectiveness. The
conclusion of this paper is given in Section V.

II. RELATED WORKS
In this chapter, we review several techniques that are closely
related to our proposed method, which include distributed
fusion structures and attention mechanisms, among others.

A. DISTRIBUTED FUSION ARCHITECTURE
Distributed architecture is initially introduced into multi-
sensor data fusion to address the drawbacks of traditional
centralized fusion frameworks [33]. In distributed fusion,
each sensor can have its own processor to fuse local data
and cooperate with other sensor nodes. This architecture can
fully utilize known prior conditions to maximize the accuracy
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FIGURE 1. Distributed fusion structure of multiple sensors.

of the fusion trajectory [34]. The distributed fusion structure
features low latency, high speed, and high survivability,
effectively integrating data from different sensors and
extracting relevant information about the target [33]. Figure 1
illustrates the principle of the distributed fusion algorithm.
Each node generates an optimal estimate given its data and
sends it to the fusion node, which subsequently combines
the local estimates to achieve the best centralized estimate.
Wu et al. [23] proposed a multi-branch image fusion network
for multi-focus image fusion. Similarly, Wu et al. [35]
proposed a distributed fusion framework specifically for
low-resolution multispectral images and panchromatic
images. Brännström et al. [36] applied distributed fusion
structures to data from ground sensor networks, measuring
data using five acoustical sensor nodes, each with three
sensors, on five different types of vehicles.

B. ATTENTION MECHANISM IN DEEP LEARNING
The attention mechanism was initially derived from machine
translation tasks, but over time, its applications have far
exceeded its original realm. Due to its ability to enhance the
interpretability of neural networks, the attention mechanism
has stood out in the field of artificial intelligence. Specifically,
it endows the model with a unique ability to globally
scrutinize the entire input sequence and then, based on
computed weights, precisely focus on key portions of
the input sequence, thus allowing selective attention to
important information. In recent years, various variants of
attention mechanisms have emerged and rapidly gained
prominence in the field of computer vision, demonstrating
their capabilities in areas such as object detection [37], [38],
semantic segmentation [39], image fusion [40], and image
restoration [41], [42]. Liu and Liu [38] proposed a new
attention-based feature aggregation module that processes
and fuses features extracted at multiple levels, resulting in
a feature map that aggregates both high-level and low-level
features. Fu et al. [39] proposed a dual attention network
that captures spatial dependencies between any two positions
in the feature map through two parallel self-attention
modules, thereby obtaining rich contextual dependencies.
Li et al. [40] achieved extensive mapping attention feature
maps by applying attention mechanisms at multiple scales.
Suganuma et al. [41] introduced a straightforward yet
efficient neural network layer structure wherein multiple
operations, governed by an attention mechanism, are stacked
in parallel. This configuration enables the selection of
appropriate operations based on the input. Qin et al. [42]
proposed an end-to-end feature fusion attention network for

defogging image restoration, which treats features and pixels
unequally through a novel feature attention module, helping
to assign more weight to important features.

III. METHODS
This section provides a detailed introduction to the frame-
work for MDDCMA. Firstly, we introduce the overall
structure of the fusion network. Then, we describe in
sequence the network structures of the MDDC, CMB, ECB,
and other modules. Lastly, we present the detailed design of
the loss function and its mathematical representation.

A. OVERALL FRAMEWORK
The overall framework of the proposed MDDCMA is shown
in the bottom-left corner of Figure 2. This network is an
end-to-end network composed of three channels. It includes
two feature extraction channels and one fusion channel.
In MDDCMA, two branches incorporating MDDC and ECB
are used for feature extraction from visible and infrared
images. The middle branch fuses the features extracted from
the two branches with the results of the previous step in a
layer-by-layer manner, with the final layer generating a fused
image. MDDCMA employs a quad-layer network structure,
continuously extracting deeper features. After the image is
input into the feature extraction channel, feature extraction is
completed through theMDDC.Within the MDDC, the image
is first processed by a MAT to obtain an enhanced feature,
which is then fed into four different convolution branches
to acquire multiscale features through convolution kernels
with different receptive fields. Subsequently, the features
extracted from each branch are aggregated through SCM to
preserve as much important information as possible from
each convolutional branch. At the end of each layer, the
features of the feature extraction channel and the fusion
channel are jointly input into the CMB. This module
obtains useful information from different features through
the Coordinate mean attention block (CMA), amplifies areas
of interest, and suppresses unnecessary noise. Then, based
on the obtained weighted information, the features extracted
from the three channels are fused and used as the input for
the next layer of the fusion channel. FM1-FM4, consisting
of 3 × 3 convolution blocks, batch norm, and activation
function layers, represent different convolution modules at
different layers in the fusion channel, used for processing
the features after fusion at each layer. After completing
the feature processing of the four layers, a fused image is
constructed through a 1 × 1 convolution layer.

B. MULTISCALE DENSE DILATED CONVOLUTION MODULE
During the fusion process of infrared and visible images,
image feature extraction is of paramount importance. This
is because the distribution of important information in
images is not regular. For example, in infrared images, high-
heat targets can appear anywhere in the image. Therefore,
it is crucial to extract comprehensive features. Traditional
deep learning methods use CNN to automatically learn and
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FIGURE 2. The overall network structure of MDDCMA.

extract features from multiple input images. However, due
to the fixed receptive field, a single convolution layer can
only extract a limited amount of local image features. For
instance, convolution layers with smaller receptive fields
can extract low-frequency pixels but fail to capture high-
frequency content. Similarly, convolution layers with larger
receptive fields extract more prominent image features, but
not the low-frequency details of the image. To address this,
we introduced dilated convolution [43]. Dilated convolution
can expand the model’s receptive field without changing the
size of the image or increasing the amount of parameters. The
dilated convolution filter fills zero elements as holes along
the spatial dimension of the standard convolution kernel.
When the hole rate of dilated convolution is 1, it becomes
a standard convolution. The calculation formula for the
equivalent convolution kernel in dilated convolution is shown
in Equation (1).

C = (d − 1)(f − 1) + f (1)

where C represents the effective kernel size and d represents
the dilation rate and f represents the standard convolution
filter size.

Inspired by dilated convolution, we propose a MDDC
which can flexibly increase the receptive field of the network,
enabling the extraction of richer features. The structure of
the MDDC is shown in the bottom-left of Figure 2, which
consists of four branches, each with different receptive fields,
used to capture feature map information at different scales.
For clarity, we define the convolution branch with a single
3×3 convolution block as the first branch, and the branchwith
three 3×3 convolution blocks and one 1×1 convolution block

TABLE 1. Input channel, output channel and channel list of each layer’s
mddc and activation function of all convolutional layers in the mddcma.

as the fourth branch. Therefore, as shown in the bottom-left
of the Figure 2, the structural diagram of MDDC is presented
with the branches arranged sequentially from top to bottom
as the first, second, third, and fourth branches. To enhance the
performance of the module, MAT is designed to weight the
input features, enabling the network to pay more attention to
important areas acrossmultiple scales.Within theMDDC, the
input features first pass through MAT, resulting in enhanced
features. These features are then input into the four branches,
which capture feature map information through branches
with different receptive fields. At the end of each convolution
branch, a 1×1 convolution is used for linear activation of the
featuremap, followed by a ReLU activation function to obtain
the results of the convolution along each convolution path.
Subsequently, SCM is introduced to handle the output of each
branch, achieving the fusion of multiscale deep features. The
detailed information of all convolutional layers in MDDC of
each layer, such as the input channels, the output channels,
the list of channel, and the activation functions, is presented
in Table 1.
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Given source images from different angles within the same
scene, objects in the image may appear at different locations,
resulting in changes in size and shape. Single-scale features
are unable to extract all the necessary spatial information,
hence the need for a multiscale mechanism to capture
multiscale features through different kernel sizes. Inspired
by the SENet [44], MAT is proposed to enable the network
to focus more on important areas and effectively capture
information across multiple scales. The structure of MAT is
shown in Figure 3. Features are inputted into MAT, followed
by average pooling with 1× 1, 2× 2, and 4× 4 respectively,
to generate multiscale features containing more necessary
spatial information. Subsequently, a fully connected layer and
an activation function are used to calculate the weights of the
global features. The weight W k

ti for the k-th feature f kti of the
t-th pooling scale in the MAT at the i-th layer of MDDCMA
which can be formulated as Equation (2):

W k
ti = σ

(
L2

(
σ
(
L1G(f kti )

)))
(2)

where G(·) represents the global average pooling operation.
L1 ∈ Rk×k and L2 ∈ Rk×k , σ denotes sigmoid function.

Then, by upsampling the extracted multiscale features and
performing element-wise multiplication with the weights,
important features within these multiscale features are
emphasized. Subsequently, an attention map is obtained
through normalization operations. In the attention mapping
operation, a maximum selection strategy is adopted to
concentrate more attention on the most prominent spatial
locations [43]. The attention map can be achieved in
Equaltion (3):

Mi =

{
△

(
W k

1i ∗

[
f k1i

])
, △

(
W k

2i ∗

[
f k2i

])
, △

(
W k

3i ∗

[
f k3i

]) }
(3)

where△ denotes the normalization operation and {·,·,·} refers
to the operation for obtaining the maximum value in the
corresponding channel and position in the feature map. ∗

represents the element-wise multiplication. [·] denotes the
upsampling operation and Mi represents the final attention
map. This result is the output of MAT.

Given that the extracted features are three-dimensional
tensors, we also incorporate a SCM based on Spatial
Attention Module (SAM) and Channel Attention Module
(CAM) to fully consider information in the spatial and
channel dimensions. This enables the fusion of multiscale
deep features that have been acquired. Specifically, the results
of the first and second convolution branches are fused using
the SCM, and the results of the third and fourth convolution
branches are also combined through SCM. Subsequently, the
two fused results are further fed into SCM for aggregation,
thereby yielding the final features. The information merged is
the output of the MDDC. The structure of SCM is illustrated
in Figure 4.
In Figure 4, 8̂n

1 and 8̂n
2 represent the feature extraction

results from two different branches in MDDC, where

n∈{1,2,3,4} denotes the layer in MDDCMA. After feeding
the inputs into SAM and CAM, the corresponding spatial
and channel attention weights are obtained. The computation
processes for channel attention weight and spatial attention
weight on input features are as follows:

β̂nk = ∂

(
Conv

(
P
(
8̂n
k
)))

(4)

α̂nk = ∂

(
Conv

(
L
(
8̂n
k
)))

(5)

where k∈{1,2}, Conv denotes the convolution operation,
∂(·) represents the ReLU activation function, P(·) signifies
the global pooling operation, and L(·) indicates the l1-norm
operation. β̂nk and α̂nk are respectively the channel attention
weight and the spatial attention weight. Then, the weighting
maps are calculated by soft-max operation from attention
weights, this process is as follows:

θ̂nk =
β̂nk∑M
i=1 β̂ni

(6)

δ̂nk =
α̂nk∑M
i=1 α̂ni

(7)

whereM = 2. In the end, the enhanced feature maps 8̂n
fc and

8̂n
fs can be represented by Equations (8) and (9), respectively.

8̂n
fc =

M∑
i=1

(θ̂ni × 8̂n
i ) (8)

8̂n
fs =

M∑
i=1

(δ̂ni × 8̂n
i ) (9)

Once 8̂n
fc and 8̂n

fs are obtained, the final features are
generated according to Equation (10).

8̂n
f =

(
8̂n
fc + 8̂n

fs

)
× 0.5 (10)

Under the collective influence of the aforementioned
modules, MDDC is capable of extracting abundant feature
information, laying the groundwork for the subsequent fusion
results to retain rich feature information from the source
images.

C. COORDINATE MEAN ATTENTION FUSION BLOCK
After feature extraction, a fusion strategy is employed to
merge the extracted multiscale features. Effective fusion of
the features are crucial for the restoration of high-quality
fused images. A good fusion strategy can preserve more
information-rich image features during the fusion process.
Current mainstream fusion strategies mainly involve direct
fusion of extracted convolution features through elemen-
tal fusion strategies, such as element-wise addition [19],
element-wise mean, and element-wise maximum [22].
However, elemental fusion strategies belong to a rather
rudimentary fusion method. This method equally merges
the feature maps of multiple input images without fully
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FIGURE 3. The network structure of multiscale channel attention block. GP, FC, SG represent the global average pooling operation,
fully connected layer, and sigmoid function respectively. ⊗ denotes the element-wise multiplication. M⃝ denotes the element-wise
max operation.

FIGURE 4. The procedure of spatial and channel attention fusion module.

FIGURE 5. The network structure of spatial attention module and channel
attention module.

taking into account the unique differences between these
feature maps. Moreover, elemental fusion strategies are
unlearnable, thus limiting the performance of the fusion
results. The attention mechanism can effectively improve
the performance of tasks based on CNN, amplifying areas
of interest, ignoring other irrelevant noise, and allowing the
network model to focus only on parts beneficial to improving
the results. Therefore, to enhance the performance of the
fusion network, inspired by the coordinate attention block
(CA) [45], we propose a novel coordinate mean attention
block as the fusion strategy, enabling the network to pay
more attention to important information features. In CMB,
we use CMA to guide feature learning so that the network can
pay more detailed and extensive attention to spatial features,
facilitating the aggregation of input features more precisely.
The coordinate attention block can effectively aggregate the

relevant information of the two coordinates of the feature
map using a one-dimensional average pooling method. It has
been proven to be very suitable in the field of image
processing. However, its extraction of spatial features is not
comprehensive, leaving room for improvement. Therefore,
we improved the original network structure and designed
CMA. The network structure of CMA is shown in Figure 6.
On the basis of the original CA using a one-dimensional
average pooling operation, we parallel a one-dimensional
maximum pooling operation to enhance feature extraction.
While average pooling can pay attention to the central area
of the significant target, maximum pooling can focus on the
edge area with prominent changes.

CMA first performs two parallel one-dimensional pooling
operations on the input X (X∈RCxHxW represents the feature
map, and C, H, W represent the number of channels, height,
and width of the feature map, respectively) and merges them,
followed by decomposing the fused features. Then, the two
extracted feature vectors containing coordinate attention are
multiplied by the original input X to locate the attention. The
pooling methods are one-dimensional average pooling and
one-dimensional maximum pooling. Each parallel pooling
method is performed in two directions: pooling along the
width direction and pooling along the height direction. The
result of pooling is transposed and concatenated for ease of
subsequent processing. Then, a 1 × 1 convolution operation,
batch normalization, and a non-linear activation operation are
performed on the feature map obtained after concatenation.
The two activated feature maps are fused through an
element-wise maximum operation that extracts the maximum
values from the corresponding channels and positions in
the feature maps, resulting in feature maps that contain
important information in the central and edge areas. The
feature vectors in the height and width directions are obtained
by decomposing the fused feature in the spatial dimension.
Subsequently, two 1 × 1 convolution transformations and
non-linear activation operations are performed on these two
vectors to obtain the attention weights in the height and width
directions. Finally, the original feature map is weighted with
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FIGURE 6. The network structure of coordinate mean attention block.

the two types of attention weights to generate the attention
map.

After obtaining the feature map through one-dimensional
average pooling and max pooling, convolution and feature
activation are applied to the feature map. This process can
be expressed by Equation (11) and Equation (12):

Favg = ∂
(
Conv1

([
avgzH ; avgzW

]))
(11)

Fmax = ∂
(
Conv1

([
maxzH ;maxzW

]))
(12)

where ∂ represents the ReLU activation function, Conv1
denotes a 1×1 convolution, and avgzH , avgzW , maxzH and
maxzW represent the feature maps obtained after pooling
operations along the height andwidth directions of the feature
map. [·;·] signifies transposition followed by concatenate
operation along the spatial dimension. Subsequently, the
element-wise maximum operation is used to fuse the features
obtained from average pooling and maximum pooling,
as shown in Equation (13)

F = max
(
Favg ,Fmax

)
(13)

Then, the feature map is decomposed into two feature
vectors along the spatial dimensions. The generated pair of
feature tensors are then transformed back to the original
channel size using a 1 × 1 convolution. Ultimately, the
positional information weights of the input features in
the two directions are obtained. They are illustrated as
follows:

SH = σ
(
Conv1

(
FH

))
(14)

SW = σ
(
Conv1

(
FW

))
(15)

where FH ∈ R(C/r)×H and FW ∈ R(C/r)×W represent two
decomposed vectors associated with the height and width of
F respectively. σ denotes the sigmoid activation function, and
Conv1 indicates a 1 × 1 convolution.

Finally, the original feature map is multiplied by the two
types of attention weights to produce the final attention map.
The formula for the output feature map of CMA is shown in

Equation (16):

O(i, j) = X (i, j) × SH (i) × SW (j) (16)

where i∈{1, 2, . . . , H}, j∈{1, 2, . . . , W}. The network
structure of CMB is shown in Figure 7. Input the two features
that need to be fused into CMB, obtain the weight attention
map through CMA. Subsequently, perform a soft-max
operation on these features to adaptively generate respective
probability weights, and multiply them with the inputs to
weight the important features. This process can be expressed
by Equation (17):

Xout = XA × ωA + XB × ωB (17)

where ωA and ωB are attention weights generated by
soft-max after the inputs undergo processing through CMA.
Xout is the final output result. The feature map processed
by the CMA possesses spatial hierarchical information along
the height direction and coordinate position information
along the width direction. simultaneously. Compared to the
original coordinate attention block, the addition of a parallel
one-dimensional maximum pooling module in the coordinate
mean attention block does not significantly increase the
model’s parameter quantity. However, it can extract richer
edge feature information. Therefore, by enhancing features
through the coordinate mean attention block, it is possible
to comprehensively capture the information of the input
features, improving fusion quality.

FIGURE 7. The network structure of coordinate mean attention fusion
block. ⊗ represents element-wise multiplication operation, ⊕ indicates
element-wise addition operation.
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D. EDGE CORRECTION BLOCK
When we talk about edge information in an image, we are
actually referring to those features in the image that exhibit
sudden changes at certain locations. These changes could
involve abrupt variations in grayscale, brightness, color,
or texture. Within an image, edge information essentially
serves as key markers, helping us in distinguishing between
different objects or regions in the image. Therefore, before
outputting the fused image, the coarse features extracted by
the neural network are fed into an edge correction module
to adjust the edge textures, reducing the impact of noise on
the image and improving the quality of fusion. As shown in
Figure 2, after the fourth layer’s MDDC completes feature
extraction, the output features are individually placed into
ECB for edge revision. First, edge information for image
correction is obtained. The edge gradient map ∇E , of size
m × n, can be represented by Equaltion (18)

∇E =

i=1∑
mn

√(
∇
h
i u

)2
+

(
∇
v
i u

)2 (18)

where ∇
h
i u = ui −ul(i) and ∇

v
i u = ui −ub(i) represent linear

operators used for calculating the first layer of horizontal
and vertical differences respectively, while ul(i) and ub(i)
correspond to the nearest neighbor pixels to the left and below
the source pixel i, respectively.

Subsequently, a spatial gradient filter (SG) is utilized to
optimize the texture details of the edges, yielding more
pronounced gradient information. The output of SG can be
represented by Equation (19):

SGout = max
i∈M

(
max
j∈N

(
∇E(i+ 1, j+ 1), ∇E(i, j)

))
(19)

where M = {1, . . . , m-1}, N = {1, . . . , n-1}. I is the horizontal
pixel of the map, and j is the vertical pixel. The structure
of the edge correction block is shown in the Figure 8. The
coarse features extracted are input into the edge correction
block. After being processed by SG , the edge features used
for repair are obtained. These features are then placed into
the connected convolutional layer to enhance the features.
Ultimately, the enhanced feature map is combined with
the output of the fourth layer from the feature extraction
channel.

FIGURE 8. The network structure of edge correction block.

E. LOSS FUNCTION
Determining the valid information to retain from the source
image is key to the task of image fusion. The content of
the loss function determines the optimization direction of the

fusion network and the type and proportion of information
included in the fused image. Therefore, designing a good
loss function is critically important for improving the quality
of the fused image. The fusion objective is to enhance the
preservation of key information from the source image as
much as possible. In this research, the fused image should
retain both the texture details in the visible image and
highlight the infrared thermal information of the target of
interest. Therefore, we adopted intensity loss and detail loss
to jointly constrain the fusion target. The total loss function
is shown in Equation (20):

Lfusion = αLintensity + βLdetail (20)

The pixel intensity loss Lintensity is used to constrain the
image to contain more heat information, while the detail loss
Ldetail is used to constrain the image to contain more texture
details. α and β are set as hyperparameters to balance pixel
intensity loss and detail loss, in order to achieve better visual
quality and higher evaluation indicators. The calculation
methods for Lintensity and Ldetail are as follows:

Lintensity =
1
HW

H∑
i

W∑
j

∣∣∣I (i,j)f − max
(
I (i,j)ir , I (i,j)vis

)∣∣∣ (21)

Ldetail =
1
HW

H∑
i

W∑
j

∣∣∣∇I (i,j)f − max
(
∇I (i,j)ir , ∇I (i,j)vis

)∣∣∣
(22)

where H denotes the image height, W represents the
image width, max(·) signifies the operation of selecting
the maximum element, and | · | represents absolute value.
In theLintensity loss function, the maximum selection strategy
is employed to highlight significant target information in
the infrared image, making it more prominent in the fused
image. ∇ denotes the sobel gradient operator. In the Ldetail
loss function, the maximum gradient operation is performed
to ensure that the most prominent texture detail information
from the source image is retained in the fused image.
In summary, under the joint constraint of pixel intensity loss
and detail loss, the fusion result of the proposed method
achieves optimal pixel distribution and the richest detail
information. The fused image presents good visual effects
and favorable objective evaluation indicators.

IV. EXPERIMENTAL VALIDATION
In this section, we will provide a detailed overview of
the experimental configurations and implementation details
of this study. On this basis, we present a qualitative
and quantitative comparison of our method with state-
of-the-art techniques to validate its superiority. Moreover,
we conducted several ablation studies to help demonstrate
the effectiveness and advancements of the specific designs
within our method. Lastly, an efficiency analysis experiment
and a research on object detection are conducted to further
demonstrate the effectiveness of the proposed method.
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A. EXPERIMENTAL CONFIGURATIONS
To comprehensively and accurately evaluate the performance
of the fusion network, we conducted numerous qualitative
and quantitative experiments on the OSU [46], TNO [47],
RoadScene [25], and MSRS [48] datasets. In the testing
phase, we compared the fusion results of our proposed
model with those of current advanced fusion methods,
including STDFusionNet [1], SeAfusion [6], DenseFuse [19],
Nestfuse [20], IFCNN [24], U2Fusion [25], DDcGAN [27],
SwinFusion [28], RFN-Nest [49], and SDNet [50]. To ensure
fairness, these methods all used the parameter configurations
recommended in the corresponding literature, and were
fine-tuned for optimal performance before experimentation.
Of note, in the replication of methods such as DenseFuse,
NestFuse, IFCNN, RFN-Nest, which utilize various fusion
strategies, we respectively adopted element-wise addition,
average attention fusion strategy, element-wise maximum
fusion strategy, and Residual fusion network for deep feature
fusion.

Subjective visual perception systems can easily be influ-
enced by individual emotions and visual environments,
among other human factors. Therefore, it is unreliable
to solely evaluate image fusion performance based on
subjective qualitative visual effects. To more objectively
and fairly evaluate the performance of the fusion net-
work, we selected six commonly-used objective evaluation
indicators from various perspectives, including: Mutual
Information (MI) [51], Entropy (EN) [52], Visual Information
Fidelity (VIF) [53], Standard Deviation (SD) [54], Spatial
Frequency (SF) [55], and Average Gradient (AG) [56].
MI quantifies the amount of information the fused image
obtains from the source image, while EN evaluates the
amount of information contained in the fused image based on
information theory. VIF primarily calculates the information
fidelity in the fused image, indicating whether it aligns with
human visual perception. SD reflects the image contrast
based on static concepts. The larger the SD value, the
better the contrast distribution in the image, and the more
information the image carries. SF reflects the rate of change
in image grayscale, while AG can measure the clarity of
the fused image. The higher these indicators, the better the
performance of the fusion network.

B. IMPLEMENTATION DETAILS
During the model training process, we used images from
the OSU dataset to construct the training dataset. Due to
differences in imaging sensors, the images in the OSU
dataset are not strictly registered, leading to the presence of
black edges in the infrared images. We therefore cropped
the infrared and visible images to the same size of
280 × 200. This provided us with 8544 pairs of images to
train the model. Since the visible images in the OSU dataset
are colored and the infrared images are grayscale, fusing
them as such would be meaningless. To make the channel
count of the input image pairs identical, we preprocessed
the visible images into grayscale. Additionally, all images

FIGURE 9. Process of processing RGB-images. C⃝ denotes the concatenate
operation.

were normalized to [0,1] before being fed into the network
to accelerate model convergence. The batch size was set to 4.
The fusion model was optimized using the Adam optimizer
with parameters β1 set to 0.9, β2 set to 0.999, epsilon set
to 10−8, weight decay of 0.0002, and an initial learning
rate of 0.001. The hyperparameters for loss were set at
α = 1, β =1, and the fusion model was optimized under
the guidance of the loss function Lfusion . The entire training
process was performed using the Pytorch framework. The
RoadScene and TNO datasets used for testing contain colored
visible images, but we trained the proposed network using
input grayscale images. To achieve better visual results at
the testing stage, we adopted the strategy [57] to process
the colored images, instead of converting the input colored
images into grayscale. Specifically, we first converted the
colored images into YCbCr color space, then input the Y
channels of the infrared and visible images into the model.
Finally, the fusion results were channel-wise concatenated
with the Cb and Cr channels from the visible image, then
converted into an RGB color image, which is the final output
result of the network. The process of the study handling the
fusion of RGB images is shown in Figure 9.

C. COMPARATIVE EXPERIMENT
To thoroughly assess the performance of the fusion network,
we conducted comparative experiments with ten other
methods on the TNO and RoadScene datasets. In this
section, we will analyze and compare the performance of
different fusion methods in both qualitative and quantitative
experiments.

1) QUALITATIVE RESULTS
The qualitative comparison of different methods on the TNO
dataset is shown in Figure 10. We selected six different
scenes from TNO as representative examples, including:
(1) bunker; (2) kaptein_1123; (3) kaptein_1654; (4) lake;
(5) man in door; (6) marne etc., to demonstrate the superiority
of the proposed method compared to others. Key targets
in the fusion results are identified and enlarged by red
boxes. From the comparison images in the bunker scene,
it can be seen that DenseFuse, NestFuse, RFN-Nest, and
U2Fusion did not effectively retain the heat information
from the infrared images. Their fusion results have weaker
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target information at the location indicated by the red box
in the image. The DDcGAN method preserved the heat
information well, but the texture details at the location
indicated by the red box are blurry, indicating a lack of
preservation of features from the visible images. In contrast,
SeAFusion, IFCNN, and MDDCMA retained almost all the
texture details from the visible images, and important heat
targets were well preserved. Furthermore, it is easy to find
that the fusion results of MDDCMA also have the clearest
texture details. In the Kaptein_1123 image pair, RFN-Nest,
DenseFuse, STDFusion, and NestFuse retain most of the
texture information, but the fusion results do not exhibit
the brightness factor present in the visible images, leading
to a nearly uniform brightness in the grass. In the fusion
results of IFCNN, U2Fusion, and SeAFusion, the grass’s
edge textures are blurred, resembling enhanced features of an
infrared image. DDcGAN display prominent thermal infor-
mation but suffer from significant noise and loss of detail.
SwinFusion and MDDCMA almost completely preserve
the grass background from the visible images, appearing
more natural and in line with human visual perception.
In Kaptein_1654, SeAFusion, SwinFusion, NestFuse, and
IFCNN exhibit less clarity in the grassy background’s edge
textures. Moreover, U2Fusion, STDFusion, and RFN-Nest
struggle to preserve salient targets effectively. MDDCMA
nearly retain all texture details and salient information, with
clear visibility of grass and street lamps, resulting in a more
natural appearance. In the lake scene, the bush textures in
IFCNN, U2Fusion, SeAFusion, NestFuse, and SwinFusion
were blurry. DDcGAN’s bushes had superior contrast and
clear edge textures but miss information on the wooden
bench and the letters in the top right corner. By contrast,
MDDCMA’s fusion results feature noticeable contrast and
clearer edge textures, as indicated in the red boxes in the
images.

Qualitative comparisons of different methods on the Road-
Scene dataset are shown in Figure 11, where key targets in the
fusion results are highlighted with red boxes and magnified.
The RoadScene dataset primarily includes daytime and night-
time road scenes with pedestrians and vehicles. Subjective
evaluations are conducted on both daytime and nighttime
images for intuitive comparative assessments. In the first
column of Figure 11, it is evident that, except for SeAFusion,
SwinFusion, and MDDCMA, other methods dimmed the
street lamps to some extent, leading to information loss.
Additionally, MDDCMA own the most distinct color contrast
and the clearest edge textures, making objects in its fusion
results more easily recognizable. In nighttime scenes, the
information-providing capacity of infrared and visible images
is limited, resulting in some redundant information, such
as the glare of lights and blurred objects. As seen in the
second column, all methods inevitably retain the glare of
lights, thus reducing visual quality. Among these methods,
DenseFuse and NestFuse’s wires and cables nearly vanish
against the black sky background, and the road signs in
IFCNN,U2Fusion, SDNet, SeAFusion, and SwinFusion have

TABLE 2. Quantitative comparisons of the six metrics, I.E., AG, EN, MI, SD,
SF, VIF, on 20 image pairs from the tno dataset (unit: red indicates the
best result and blue represents the second best result).

unclear edge textures. MDDCMA’s fusion results preserve
rich texture details and salient information, with road signs
being most prominent compared to other methods. Overall,
this method effectively utilize the information from infrared
and visible images to generate high-quality fusion images.
MDDCMA show commendable fusion performance, though
it still has its shortcomings. In the Kaptein_1654 scene
in Figure 10, the fusion results of MDDCMA lose the
information of the smoke, and in the marne scene, the results
of MDDCMA results miss cloud features. This indicates that
while MDDCMA own a robust feature extraction capability,
it still falls short in distinguishing important information.

2) QUANTITATIVE RESULTS
We conducted a quantitative assessment on 20 images from
the TNO dataset and 221 images from the RoadScene dataset.
We calculated the average scores of nine fusion methods
across various objective evaluation metrics, as shown in
Table 2 and Table 3. The best results are highlighted in red,
and the second-best results in blue, providing an intuitive
analysis of the evaluation. It is clear to see from Table 2
that MDDCMA achieves the best results in terms of AG
and EN, signifying the strong ability of MDDCMA to
retain information from source images. Additionally, the
superior result on VIF indicates that the proposed method
can generate high-quality images that align well with human
visual systems. Although the proposed method is not the best
in terms of MI and SD, multiple objective metrics indicate
that the proposed method offers superior fusion performance,
maintaining the feature information of the source images and
presenting excellent visual quality, consistent with subjective
evaluation results. Similarly, for the RoadScene dataset,
MDDCMA also achieve better performance in AG, EN,
SD, SF, and VIF metrics. As shown in the Table 3, the
fusion results of MDDCMA are the best in terms of SD,
EN, and AG, indicating that our fusion results have higher
contrast and retain more edge details from the source images.
Additionally, MDDCMA has the best SF scores, suggesting
high image quality and clarity in our fusion results. The
highest VIF further validates that our fusion results present
excellent visual effects with low distortion. Considering the
multiple objective evaluation metrics, MDDCMA has the
best fusion performance, which is in line with the subjective
evaluation and substantiates the effectiveness of our method.
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FIGURE 10. The comparison results of different methods on the TNO dataset.

D. ABLATION STUDIES
We conducted ablation experiments to determine the optimal
parameters for the loss function and to validate the effective-
ness of the CMB and ECB in enhancing the fusion network.

All ablation studies were carried out on the RoadScene
dataset. To ensure a fair comparison, the network was trained
using the same parameters and iterations, with the exception
of the ablation parameters.
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FIGURE 11. The comparison results of different methods on the RoadScene dataset.

1) ANALYSIS ON LOSS FUNCTION PARAMETERS
In the loss function proposed in this paper, which consists
of Lintenity and Ldetail , we employed parameters α and β to
control the weight of the two parts of the loss function. To this

end, this research analyzed the impact of varying weights
of pixel intensity loss and detail loss on the performance of
the fusion network. The experimental results are presented
in Table 4, which displays the calculated objective metrics
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FIGURE 12. Representative examples of ablation results under different parameters. The first and second columns are infrared and visible images
respectively, while the last three columns are subjective ablation results with hyperparameters α = 10, β = 1, α = 1, β = 10 and α = 1, β = 1 respectively.

TABLE 3. Quantitative comparisons of the six metrics, I.E., AG, EN, MI, SD,
SF, VIF, on 221 image pairs from the roadscene dataset (unit: red indicates
the best result and blue represents the second best result).

TABLE 4. Quantitative average fusion performance of different group of
loss parameter on the roadscene dataset (unit: red indicates the best
result and blue represents the second best result).

of the fusion results under different parameters. The optimal
results are indicated in bold, while the suboptimal results
are underlined. It can be intuitively observed that among
the six objective evaluation metrics, when the combination
of α =1 and β =1 is chosen, several metrics of the fusion
results, such as EN, MI, SD, and VIF, are optimal and
exhibit excellent performance in visual quality. Therefore,
compared with other loss parameters, this set of parameters
possesses better fusion performance, and we adopted this
set of parameters in subsequent experiments. Moreover,
to facilitate the observation of the impact of loss parameters
on fusion performance, Figure 12 provides a comparison of
the images of the fusion results from different parameter
groups. When the parameter combination is α=10, β=1, the
weight of the intensity loss is larger, hence more intensity
information features are retained. It can be observed that the
edges of the utility poles and tree leaves are covered by strong
light. When the parameter combination is α =1, β=10, the
edge details are quite blurry, and the overall image becomes
darker, with less preservation of pixel intensity information.
When the parameter combination is α =1, β=1, the edge
details of utility poles and tree leaves are clearer in the fused
image, the image contrast is higher, and it possesses better
visual quality. In summary, compared with the other two

sets of parameters, the parameter combination α=1, β=1 has
better fusion performance, which is the parameter used in
subsequent experiments.

2) ANALYSIS ON COORDINATE MEAN ATTENTION FUSION
BLOCK
In image fusion, an appropriate fusion strategy is crucial for
enhancing fusion performance. A good fusion strategy can
retain more information-rich image features during the fusion
process. We designed a fusion module based on coordinate
attention, termed as the CMB, to enhance the utilization of
more meaningful features. To validate the effectiveness of
CMB, we conducted ablation studies. Specifically, we set
up two groups of comparative experiments. In the first
group of experiments, we used concatenate operations to
replace CMB to complete the fusion of features extracted
from different branches. In the second group of experiments,
we used element-wise operations including element-wise
addition, element-wise maximum, and element-wise mean as
the fusion strategy. In each group of experiments, we used the
same images as input, followed by quantitative calculation
of objective metrics for the fusion results. Table 5 presents
the fusion results and the objective metric calculation results
of the methods used in the first and second group of
experiments, along with this study’s method. The optimal
results are indicated in red, and the suboptimal results
are in blue. It can be seen that the fusion results of the
network using CMB to execute fusion operations have the
best effects on metrics such as EN, MI, SD, and VIF. This
demonstrates the key influence of the fusion strategy on
network performance and validates the effectiveness of the
coordinatemean attention fusion block, which canwidely and
accurately guide feature fusion, yielding significant effects in
improving fusion quality. Figure 13 provides a comparison
of images of fusion results under different fusion strategies,
with key areas marked and enlarged in red and green. Fusion
results using element-wise addition, element-wise maximum,
and concatenate operations as fusion strategies all contain
a large amount of noise, and there is certain information
missing in the areas marked in red, severely affecting visual
quality. Fusion images using CMB and element-wise mean
as fusion strategies retain most of the key features and
allows clear identification of the street lamp while observing
its texture details. However, in the fused image using the
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FIGURE 13. Ablation results using different fusion strategies on the
RoadScene dataset. The fusion strategy for different images is as follows:
(a) Visible image (b) Infrared image (c) Element-wise addition
(d) Element-wise max (e) Element-wise mean (f) concatenate (g) CMB.

TABLE 5. Quantitative average fusion performance of different fusion
strategy on the roadscene dataset (unit: red indicates the best result and
blue represents the second best result).

element-wise mean as the fusion strategy, the features of
power lines in the sky are lost, and the texture details of
manhole covers on the road are unclear while the fused
image using CMB as the fusion strategy allows for clear
observation of the texture features of street lamps, power
lines, and manhole covers, with no noticeable distortion or
noise. Therefore, CMB can effectively enhance the quality of
fusion results.

3) ANALYSIS ON EDGE CORRECTION BLOCK
Given that the features extracted by the feature extraction
branches are coarse, we designed an edge correction block
to supplement the extracted features in order to ensure the
visual performance of the fusion results. The edge correction
block can reduce the impact of noise on fusion results and
enhance the visual quality of feature maps. To validate the
role of ECB in improving the fusion results of the network,
we tested the differences between models with and without
edge correction block under the same input. Specifically,
we used a visible image and an infrared image of a streetscape
from the RoadScene dataset as input to obtain fusion results.
Figure 14 presents the fusion results of the two models
and their regional comparisons. From comparison images
on the first row, it can be seen that due to the features
in the red box area of the source image being relatively
blurry, the letters in this area are difficult to observe and
recognize. In such cases, the letters in the fusion image
after ECB processing are clearer and contain less noise
compared to those without ECB processing. This is because
ECB effectively suppresses noise. In comparison images on
the second row, as indicated by the red box, the edges of
buildings without ECB processing are mostly covered by

FIGURE 14. Ablation results corresponding to different network
structures. The first and second columns represent visible and infrared
images respectively, while the third and fourth columns represent fusion
results without ECB processing and fusion results using our method
respectively.

TABLE 6. Quantitive average fusion performance of different network
structures on the roadscene dataset (unit: red indicates the best result).

halos, making them difficult to observe. In contrast, after
ECB processing, the buildings exhibit clearer edge textures.
In addition, we also calculated objective metrics to eliminate
the influence of human subjective factors, as shown in
Table 6. The results processed by ECB have higher EN,
SCD, AG, SD, and SF values on the RoadScene dataset,
which is consistent with the subjective evaluation results.
Therefore, experimental results indicate that the model with
ECB has better fusion effects compared to the network model
that removed ECB, proving that edge correction block can
improve the quality of fusion images.

E. EFFICIENCY COMPARISON
In order to evaluate the overall efficiency of different
methods, we present the average runtime of various methods
in Table 7. The runtime refers to the duration from the
input of the image into the model to the generation of the
final fused image. Notably, the DenseFuse method takes
a longer time to produce fusion results. We attribute this
to its use of a dense structure, which involves a signifi-
cant amount of model parameters, and its implementation
based on TensorFlow, which requires more time. IFCNN
demonstrates the shortest runtime across all datasets, which
we believe is due to its use of a pretrained residual
network for feature extraction and a network structure with
better generalization capabilities. DDcGAN, representing the
GAN-based methods, also takes longer compared to CNN-
based approaches. Our fusion model employs a four-layer
feature extraction structure to comprehensively capture
features from source images, thereby involving substantial
computational load. Fortunately, in comparison to other
methods, our approach still maintains competitive runtime
efficiency.
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TABLE 7. Mean of the running times of all methods on 500 image pairs
with a size of 256 × 256 and 500 image pairs with a size of 512 × 512
(unit: red indicates the best result and blue represents the second best
result).

F. OBJECT DETECTION APPLICATIONS
As previously mentioned, fused images encompass more
useful information than any individual source image, sub-
stantially benefiting subsequent advanced visual tasks, such
as object detection, tracking, and semantic segmentation.
To validate this, we employed both infrared and visible source
images, along with our fused images, in object detection
tasks. Specifically, we utilized YOLOv8, one of the most
sophisticated object detection networks currently available,
pretrained on the COCO dataset, to demonstrate the enhanced
detection performance of our fused images. The object
detection experiments were conducted on the MSRS dataset,
which depicts high quality urban scenes. We randomly chose
200 images from this dataset and manually annotated them,
identifying people and vehicles as the primary subjects for
detection. Visible images, infrared images, and the fused
images of our method are put into the YOLOv8 detector,
respectively.

1) QUALITATIVE ANALYSIS
We selected three representative scenes for a qualitative
comparison of our experiment results, as depicted in the
Figure 15. In the 00054N scene, the lighting is dim,
rendering the model unable to detect pedestrian information
in the visible image. Simultaneously, the thermal information
emitted by the inactive car is too scant for detection in the
infrared image. In the 01042N scene, the detector yields low
confidence in identifying pedestrians in the dark areas of the
visible image. Similarly, the minimal thermal emission from
the car in the infrared image leads to poor detection results.
In contrast, our fused images demonstrate superior detection
performance. As can be seen in the last column of images,
both pedestrians and cars are correctly detected with high
confidence in the fusion results.

2) QUANTITATIVE ANALYSIS
To objectively assess the performance of our monitoring
tasks, we conducted a detailed analysis using quantitative

FIGURE 15. Results of object detection. (Top to bottom) 00689N, 01042N,
and 00054N. (Left to right) visible images, infrared images and fused
images of our method, respectively.

TABLE 8. Object evaluation metrics of 80 images in the msrs dataset for
object detection (unit: red indicates the best result, blue indicates the
second best result).

metrics, the results of which are presented in the Table 8.
Precision, defined as the percentage of correctly predicted
data, and recall, indicating the number of accurately pre-
dicted positive class instances, represent all positive classes
in the sample. For both precision and recall, we set a
threshold of 0.5. The mean average precision (mAP),
which ranges from 0 to 1, evaluates model performance
by combining accuracy and recall. mAP@0.5 denotes the
mAP value at a confidence threshold of 0.5. The F1 score,
a crucial metric in classification problems, balances recall
and precision, considering them equally important. It is
the harmonic mean of precision and recall, with possible
values ranging from 0 to 1. As shown in the Table 8,
the quantitative results reveal that our method, MDDCMA,
ranks first in precision and F1 score for detecting people,
and exhibits the best recall, F1, and mAP@0.5 for vehicle
detection. When it comes to the average performance
across all categories, MDDCMA consistently shows the
best results, in line with subjective evaluation outcomes.
These objective analyses lead us to conclude that our fusion
results can enhance the performance of object detection
tasks.
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V. CONCLUSION
To address the existing challenges in image fusion methods,
such as manual design of fusion strategies and insufficient
feature extraction, we propose a novel unsupervised deep
learning model for the fusion of infrared and visible images.
Specifically, we introduce a distributed image fusion network
called MDDCMA. This network employs three branches to
achieve image fusion, using MDDC in two feature extraction
branches to capture rich image features from source images.
Subsequently, CMB is utilized to precisely fuse the features
from the feature extraction branches with those from the
fusion branch. Then, the extracted features and the fusion
results from the previous step are fed into the fusion branch
to reduce the loss of target information in the infrared
image and the loss of texture information in the visible
image. Additionally, in order to minimize the impact of
noise on the fused image, we design ECB to complement
the extracted coarse features. The proposed method can
most retain the salient target information in the infrared
image and the textural details information in the visible
image. Extensive quantitative and qualitative experiments
conducted on multiple public datasets demonstrate that the
proposed method exhibits performance comparable to the
state-of-the-art image fusion methods. Although MDDCMA
demonstrates good fusion performance, there is still room for
improvement in its visual capabilities. We attribute this to the
model’s limitations in capturing complementary information
within the source images. Once the fusion loss function
is determined, the output results become fixed, leading to
inherent limitations in the fusion results of fusion model.
In the future, we plan to consider cascading additional
downstream tasks to guide the training of the fusion model,
further enhancing fusion performance.
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