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ABSTRACT In terms of digital transformation, organizations today are aware of the critical role that data and
information play in their expansion and development in light of the Internet of Things. To increase network
performance and stability, many applications are moving from cloud computing to edge computing (EC).
However, in order to satisfy customers, applications like intelligent transportation systems, smart grids, smart
cities, and healthcare call for even more effective services. This survey addresses extensive research on
two aspects: firstly, we present the advancements of two application domains namely maritime areas and
aerial systems in terms of integration with EC architecture. Secondly, we cover the most recent technologies,
artificial intelligence (AI) and blockchain, combined into the EC paradigm by discussing several experiments
conducted in various fields to demonstrate the value of utilizing them in the edge computing architecture.
We analyze the results of eleven experiments in each technology from 2015 to 2023.

INDEX TERMS Edge computing, maritime domain, aerial systems, IoT, Industry 4.0, artificial intelligence,
blockchain.

I. INTRODUCTION
The integration of edge computing (EC) with the most
recent digital technologies, such as artificial intelligence
(AI), machine learning (ML), data analytics, big data,
immersive interaction technology, decentralized network
ecological technology [1], and blockchain has become
necessary due to the rapidly growing number of Internet
of Things (IoT) devices and the massive amount of data
they generate in order to improve network performance.
This combination is thought to be a crucial part of the
ongoing IoT revolution domain [2]. For instance, integrating
AI into EC systems enables the real-time, lowest latency
collection, archival, and processing of data from IoT devices,
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facilitating the best possible data analytics and decision-
making. In fact, there is a mutually beneficial relationship
between AI and EC, as AI offers EC technologies and
methods to improve its performance, while EC enables its
potential and scalability with the help of AI [3]. Additionally,
EC provides AI with platforms and scenarios to enhance
its applicability, leading to a symbiotic relationship between
the two technologies. Furthermore, the combination of AI,
cloud computing (CC) services and IoT is anticipated to bring
about several benefits, including the emergence of advanced
AI applications with greater capabilities, enhancements in
quality of service (QoS), increased resource utilization, and
reduced operational costs [4], [5].

Moreover, an intelligent EC system can address mobility,
security, and reliability challenges while reducing bandwidth
consumption and improving response time. The integration
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of EC with AI and blockchain technologies has led to the
creation of innovative solutions, enabling businesses to take
advantage of faster response times and lower latency. The
use of AI in EC has allowed for the creation of smart
devices capable of learning and adapting to new situations.
As an example, Google has initiated a project for self-driving
cars that utilize AI [6]. To precisely detect objects and
forecast behavior, they make use of pictures, radar beams,
lidar, ultrasound, GPS navigation, and central computers.
The number of smart vehicles within the internet of vehicles
(IoV) will rise dramatically as a result in the upcoming years.
Hence, there is a need for careful consideration to efficiently
manage the IoV infrastructure [7].
On the other hand, the use of blockchain technology has

sparked the creation of secure, decentralized, and dependable
data processing and storage platforms. The decentralized data
management architecture known as the blockchain, which
powers the well-known digital currency Bitcoin, has emerged
as having great promise. The use of blockchain in mobile
services is still sparse, despite the fact that it has been
extensively employed in a variety of applications, including
finance, healthcare, and logistics. This is so that blockchain
users can add fresh data (a block) to the chain by resolving
specified proof-of-work problems [8], [9]. In the context of
aerial systems, EC is being used to process data closer to the
source, reducing bandwidth requirements and increasing data
transmission efficiency. Similarly, in maritime applications,
EC is being used to reduce latency and improve data
processing for real-time decision-making. Notable that data
scarcity is a predominant issue for edge devices, for which
transfer learning is a commonly recommended solution [10].
Overall, integrating EC, AI, and blockchain technologies
has led to significant advancements in various industries,
providing faster and more efficient services while improving
security and privacy [11].
Our structured taxonomy is shown in Figure 1. We display

our taxonomy under the name of the primary field in
this survey which is EC, and from that, we present two
branches of investigation, namely applications domains and
features. We split up the features branch into two parts
which are security, QoS and cost: blockchain is listed
under the security part, and AI is listed under the QoS
and cost. Finally, we present the most recent applications
that are utilizing the EC paradigm, nevertheless, we just
address four of them which are the maritime domain,
aerial system, IoT, and Industry 4.0. As a future direction,
we can address the remaining domains that are mentioned
in our taxonomy namely, augmented reality (AR), virtual
reality (VR), extended reality (XR), and telecommunications
domain.

The rest of this paper is structured as follows. Section II
introduces the background of EC. Section III introduces the
methodology we used to collect the surveyed papers in this
work and our contribution in comparison to related surveys.
Section IV introduces the specification of the features of
EC. Section V presents the recent application domains in

EC. Section VI addresses AI and blockchain techniques
deployed and applied in EC. Section VII displays the future
directions. Finally, Section VIII concludes the work.

II. THE EDGE COMPUTING PARADIGM
Nowadays, using cloud computing (CC) to centrally consol-
idate computer tasks, storage, and network administration
is typical. The usual practice in modern circumstances
is the cloud computing-based centralization of network
administration, storage, and computing duties. In particular,
this method helps to optimize network performance in areas
such as automotive networks by facilitating the provision
of compute and storage resources. In this perspective, the
addition of privacy-preserving reputation updating (PPRU)
to CC serves as an example and enhances the overall
efficiency of the network [12]. In terms of the preformance
of networks, federated learning is a technique that shows
promise for performing model training in Digital Twin
for Mobile Networks (DTMN) virtual twins. It is always
expected that the users participating in federated learning
will exhibit trustworthy behaviors to enhance the model’s
reliability. Yet, the existing federated learning trust evaluation
techniques suffer from the issues of taking into account the
simplex evaluation factor and employing a coarse-grained
trust computation method [13].

However, architectures solely based on a centralized cloud
must contendwith some difficulties as they are unable tomeet
the requirements of the current IoT paradigm and mobile
Internet applications, and they are incapable of handling the
enormous amount of data produced by these applications.
This is due to the explosive growth of IoT devices and the
massive data they generate at the network’s edge. The issue
becomes more obvious and serious as a growing number of
smart devices and things are incorporated into daily life, as is
the case with smart cities or the IoT. The low latency, location
awareness, and mobility assistance needs cannot be met by
the present CC paradigm [14].

This is due to limitations in bandwidth and constrained
resources in the CC architecture. The limitations of CC have
opened the door to the emergence of EC, a technology that
is expected to handle the requirements of the continuously
expanding IoT and mobile devices [15]. It’s worth emphasiz-
ing that EC does not seek to replace CC; rather, it aims to
supplement it [16]. There is no doubt that EC has recently
garnered significant attention in various fields, particularly
in academia and industry. By exploiting the services and
resources offered by EC, it varies from traditional CC and
is seen as a significant enabler for a number of promising
technologies, including 6G, IoT, augmented reality, and
smart cities. Additionally, the EC method allows for the
processing of computationally demanding activities on IoT
devices with limited resources that are unable to carry them
out locally [17], [18]. Moreover, EC provides an alternative
mechanism for processing and filtering large data sets at the
network’s edge before transferring them to the cloud. As a
result, the ability to store and process data near the network’s
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FIGURE 1. Our proposed taxonomy.

edge makes this mechanism advantageous in that it lowers
bandwidth costs, storage needs, and energy usage [19], [20].

To put it another way, the core idea of EC is to shift
computational data, applications, and services from the CC
model to the network’s edge, as seen in Fig. 2. This will
bring services closer to users and shorten the time it takes
for data to be processed. Since some operations that don’t
require the capacity of cloud servers can be handled directly
by edge nodes. On the other hand, in order to relieve the
bandwidth demand on the cloud server, the EC mechanism
can preprocess the tasks and data that must be delivered.
Additionally, by reducing the likelihood that user data will
be sent on the core network, EC can improve the security
and control of sensitive data as well as user privacy. This is
achieved by putting encryption and anonymization systems
in place at the edge [21]. Extremely low latency, large
bandwidth, and real-time access to network information
that can be used by numerous applications characterize the
EC approach. Additionally, EC offers services and runs
calculations at the network’s edge to provide dependable
services that satisfy industry demands for real-time data
optimization, security, and privacy as well as for extremely
low latency and high network bandwidth [22], [23], [24],
[25].

By establishing a virtualization platform, extending the
corporate service base, and providing network congestion
management protocols, EC’s central tenet is to improve

FIGURE 2. Edge computing architecture.

network efficiency. By locating its computer and storage
resources closer to its clients, EC dramatically decreases
processing hold-ups. On the one hand, edge nodes have the
ability to do some tasks independently of cloud servers.
To ease the burden on the cloud server’s bandwidth, these
nodes can process the data and tasks that must be transferred
to it. By reducing the possibility that user data will be
sent over the core network and applying encryption and
anonymization methods locally, EC can simultaneously
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secure sensitive data and uphold user privacy. The aforemen-
tioned advantages have fueled the recent explosive rise of
EC [21].

On the other hand, terms such as fog computing (FC) and
mobile edge computing (MEC) which are related concepts
have developed in recent years. The current server- and
mobile-based methods either increase latency or decrease
inference accuracy. Notable that deep neural networks
(DNNs) are widely adopted for mobile systems, thus by
dividing the (DNNs) at the right layer and operating the
two components independently on the mobile and server,
respectively, a hybrid solution can instead include the best
features of both approaches [26], [27]. Furthermore, in order
to provide delay-sensitive and context-aware apps, a CC
platform is being extended to mobile base stations adjacent
to mobile users inMEC, a developing architecture. Moreover,
MCC is an architecture that permits users of mobile devices
to outsource data processing and storage to the cloud. It was
primarily developed to address applications that require
intensive computing and strict latency constraints [28], [29].
On the other hand, most of the heterogeneous and decentral-
ized fog nodes are considered to be capable of interacting and
cooperating in the mechanism of fog computing to carry out
data processing and storage activities without dependency on
external parties. As FC can also offer improved Quality of
Service (QoS) concerning energy consumption, delay, and
reduced data traffic over the internet [30].

These concepts are all put out to extend the possibilities of
cloud servers [31]. On the other hand, secure data processing
is yet another urgent problem that a topic that EC will tackle.
Typically, EC servers are used to host sensitive user data
in ciphertext format. The largest obstacle in this situation
is conducting a secure data search, which requires the user
to find a solution for conducting a keyword search over
encrypted data files. Researchers have worked to present
a number of searchable encryption techniques that enable
secure keyword searches over encrypted material without
requiring decryption [20].

In addition to the above, there is a promising paradigm
named Edge Intelligence (EI) which is a combination of EC
and AI technology. The integration of AI and EC is a natural
fit because there is a significant overlap between the two.
The main goal of EC is to coordinate several concurrent
servers and edge devices to handle the created data nearby,
whereas the goal of AI is to replicate human intelligence
in machines and devices by taking instructions from the
data. Additionally, edge intelligence is a cutting-edge strategy
that uses the potential of network edges to offer services
in real-time. The advantage of fusing the AI paradigm with
EC is that the servers at the intelligent edge can obtain
a thorough understanding of the working surroundings,
including the resource correlation between heterogeneous
kinds and the viability of collaboration with neighboring
nodes. Furthermore, because the services in EC frequently
employ local resources to estimate the environment, edge
resource scheduling does not require the full data network

to be obtained from the centralized cloud. Instead of relying
on resource allocation rules from far-off central AI nodes,
it is more dependable to impart locally gained information
to distributed AI processing entities [32], [33], [34].

III. OUR SURVEY METHODOLOGY AND CONTRIBUTIONS
In this survey, we adopt a systematic strategy to compile
pertinent scholarly literature and research findings for this
in-depth survey on the integration of EC with AI and
Blockchain in the fields of aerial systems, maritime, IoT,
and Industry 4.0. Our primary data source for this survey is
‘‘Google Scholar’’, a widely known and accessible academic
search engine. We construct search queries that encompass
the various facets of our research topic, ensuring they are
tailored to each specific domain: maritime domain, aerial
systems, IoT, and Industry 4.0. The search queries include
terms related to ‘‘edge computing’’ which is the main field,
‘‘maritime domain’’, and ‘‘aerial system’’ as we discuss
these two domains based on impact and timeliness, also
we use queries of ‘‘Artificial Intelligence’’ and ‘‘Blockchain
Technology’’ which are the techniques that are integrated
into edge computing, and specific keywords related to each
domain. As an example of the queries used to identify
pertinent academic publications: edge computing into / in /
with maritime, edge computing with / into aerial systems,
blockchain into / with / in aerial systems, and AI technique
with / into edge computing.

In addition, the search results were thoroughly examined,
evaluated each publication’s applicability to our research
question, and retrieved pertinent data, such as significant
findings, technologies, and contributions. The selected papers
were then divided into groups according to their applicability
to the maritime domain, aerial systems, IoT, and Industry
4.0. Furthermore, we define strict inclusion criteria for
the literature found using Google Scholar in order to
protect the integrity of our survey. To ensure relevance and
timeliness, we only evaluate research that was published
between 2015 and 2023. We also collect publications, and
conference papers, that provide information on how EC, AI,
and blockchain are being integrated into the aforementioned
domains. We execute these queries individually and in
combination with pertinent terms to get a huge selection of
academic papers from journals, and conferences. To ensure
the comprehensiveness of our survey, we also utilize
advanced search options provided by Google Scholar, such
as filtering results by publication year and relevance. Also,
to validate the reliability and accuracy of the information
gathered by Google Scholar, key findings and conclusions
acrossmultiple publications were undertaken. As a result, this
approach ensures that our survey builds on a solid foundation
of academic research.

Based on extensive research and diligent exploration
that we have done to complete this work, this survey is
the first one to address two aspects of the integrated EC
architecture. Firstly, based on the recency, we present the
advancements of two application domains namely aerial

VOLUME 12, 2024 28687



A. Alnahdi, L. Toka: Survey on Integrating EC With AI and Blockchain

systems and maritime areas in terms of integration with EC
architecture. Secondly, we cover the most recent technologies
blockchain and AI that are combined into the EC paradigm
by discussing several experiments conducted in various fields
to demonstrate the value of using EC architecture. As we
analyze the results of eleven experiments in each technology
from 2015 to 2023 in order to present the benefits of utilizing
EC architecture. In contrast, all prior research has been
conducted differently, because all of these researches either
focused on one technique or one use case with EC or applied
those two techniques in different fields.

As a common pattern, a set of previous surveys summarize
the application of AI within and for EC frameworks. Refer-
ence [35] Introduced the EC paradigm using theAI technique.
Reference [36] Presented the use of AI and Blockchain
for the sixth generation (6G) wireless communications.
Reference [37] Introduced a survey on the Convergence of
EC and AI for UAVs. Reference [38] Presented the use of AI
in the EC paradigm. Also, [39] has overviewed the concept
of integrating AI approaches and blockchain techniques
for privacy-preservation, and summarized their combination
along with derived privacy protection technologies. More-
over, [8] introduced the integration of blockchain technique
into EC. Reference [40] Presented the combining EC and AI
into themaritime domain. Also, [41] presented the combining
of AI technology into EC. Reference [42] Presented the
use of deep learning which is part of the AI domain
utilizing the EC paradigm. Reference [43] Presented the use
of EC techniques and AI with aerial systems. Also [44]
presented the integration of blockchain technology into
EC.

As Table 1 demonstrates, no prior survey has addressed
the domains we mentioned concerning EC architecture;
in contrast, our survey provides thorough work on recent
developments related to two application domains namely
maritime domain and aerial systems that are integrated into
EC architecture. Furthermore, our survey covers the most
recent technologies blockchain and AI that are combined
in the EC paradigm by discussing several experiments
conducted in various sectors to demonstrate the value of
utilizing EC architecture.

IV. THE SPECIFICATIONS OF EDGE COMPUTING
There is no doubt that there is a similarity between CC
and EC in terms of the mode and technique of processing.
However, EC offers specific advantages that are included
in its paradigm list, which distinguish its computing mode
namely:

A. MOBILITY SUPPORT
The key to supporting mobility in EC mode is through the
use of the locator ID separation protocol (LISP). In light
of the increasing use of smart devices, LISP enables direct
communication with the mobility of smart devices. The LISP
concept entails developing a distributed directory system and

divorcing the broadcast location identification from the host
identity [23].

B. DENSE GEOGRAPHICAL DISTRIBUTION
The idea of EC is to deliver the service to the end user
closer than CC by providing additional computer resources
located at the network’s edge. Therefore, the extension of
geographical distribution in the environment can support
certain ways as follows:
1- The network administrators can facilitate the matter of
location-based mobility service without going over the entire
WAS.
2- The performance of big data analytics can be quick and
more accurate.
3- A large scale of real-time analytics.

C. LOCATION AWARENESS
Mobile users have network flexibility because of the location
awareness of EC that allows them to access services from the
closest edge server. Users are able to locate electronic devices
using technologies such as GPS and cell phone infrastructure.
Therefore, location awareness can be used by a range of EC
applications, for instance, edge-based disaster management
and fog-based vehicle safety systems.

D. LATENCY REDUCTION
EC mode involves placing services and computational
resources in closer proximity to end-users. The architecture
of EC is designed to minimize network latency, which is
one of its primary benefits. Consequently, many applications
are transitioning from cloud-based models to edge-based
models to achieve low latency. This enables users to
perform resource-intensive tasks with minimal delay and
reduces the sensitivity of applications to resource-rich edge
devices [23], [45].

E. JITTER REDUCTION
The objective of transitioning from CC models to EC models
is to achieve better performance efficiency. Nevertheless,
excessive jitter can adversely affect network performance,
particularly in real-time applications. Hence, implementing
edge-based techniques can decrease the amount of jitter
as they circumvent transmitting data over the WAN net-
work [45].

F. SECURITY AND PRIVACY
By opting for EC over CC, the level of privacy can be
enhanced while the security can be compromised. The
reasons for this are as follows:

1- The architecture of the CC model provides stronger
physical and cyber security measures through the deployment
of centralized and robust security mechanisms.

2- EC technology allows for the elimination of third-party
data access because users are responsible for the storage of
their own data.
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TABLE 1. Our contribution in comparison to the related surveys.

The concept of an edge-based paradigm necessitates a
design that incorporates flexible and lightweight security
mechanisms, enabling rapid recovery from failures and
attacks in a timely manner [45]. However, it is necessary
to take into account the issues of privacy and security.
For example, data collected by sensors deployed within a
home can be accessed, potentially compromising the privacy
and security of a family’s daily activities. As a result, the
development of EC poses critical challenges concerning data
security and privacy [46].

G. PROXIMITY
The computation resources and services in the EC paradigm
are supposed to be available in the proximity of the users so
that the users can get a better experiment. The main benefit
of having the availability of computational resources and
services in the nearby area allows the end users to leverage
the given information to make offloading decisions as well
as usage decisions. Additionally, the service provider can
take advantage of the mobility of user data by debriefing
information from devices and analyzing user attitudes so that
the services and resource allocation can be improved [23].

V. EMERGING APPLICATION DOMAINS IN EDGE
COMPUTING
A. MARITIME INDUSTRY
The marine network (MN) is a type of broadcasting
that permits multi-hop wireless connection and provides
computing service when at sea. By processing a significant
amount of marine cognitive data, MNs can collect worldwide
oceanic observations and support and assist applications that
demand low latency. Recently, the use of unmanned aerial
vehicles (UAVs) in marine systems has gained international
attention, and missions are in constant demand [47]. On the
other hand, the emergence of IoT and CC has brought
significant modifications to how we use data for the time
being. However, these modifications have not yet substan-
tially impacted the practices of condition controlling in the
shipping industry, partially due to the high cost of continuous
data transmission. Although many ships currently have a
network of sensors on board, the continuous controlling of
data is frequently not used, and land visibility is constrained.

On the other hand, it is unexpected that utilizing CC
via satellite relays in the 5G or upcoming 6G network
of MNs will satisfy the latency requirements of the
applications of maritime, for example, the navigation of
unmanned vessels or unmanned underwater vehicles (UUV),
collaborative scheduling of emergency disaster rescues,
maritime real-time tracking and positioning, and low-latency
maritime communications, as the demand for maritime
ultra-reliable low latency communications (M-URLLC) con-
tinues to increase. This is due to the fact that transitory
satellite systems in MNs are frequently overwhelmed by
the processing of maritime big data, which results in the
limited availability of low-latency maritime applications,
especially in rough weather [48]. Additionally, the demand
for computation-intensive applications is rising as a result
of the maritime industry’s rapid expansion. Thus, MEC is
being viewed as a successful solution to provide powerful
computing capabilities for maritime terminals that may face
resource scarcity or require low latency in order to meet
the growing demand for wireless communications in the
environments of maritime [49], It is noteworthy that the
maritime industry is regarded as a significant area where IoT
applications and EC solutions find great use [50].

Although EC introduces a potential solution to these
problems, it is still challenging tomaintain the accuracy levels
needed for predictive maintenance. Additionally, maritime
applications are computer programs created to enhance
overall efficiency in the shipping domain and improve vessel
operations. practically, the EC paradigm is a distributed
computing paradigm that minimizes latency and boosts
performance by moving computational processes and data
storage closer to the devices and sensors that produce them.
By combining these two technologies, maritime applications
using EC can provide real-time vessel tracking, monitoring,
and decision-making capabilities that can greatly enhance the
safety, security, and profitability of maritime operations. Also
with the EC technique, maritime applications are capable of
processing and analyzing data in real-time, allowing opera-
tors to quickly identify and respond to critical events such
as weather changes, security threats, or equipment failures.
This can help to reduce downtime, improve fuel efficiency,
and increase overall operational efficiency. Applying EC also
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enables maritime applications to operate in low-bandwidth
or disconnected environments, which is essential for remote
and offshore operations. Examples of maritime applications
using EC include predictive maintenance systems, real-time
cargo tracking, and intelligent navigation systems. These
applications are transforming the way the maritime industry
operates and helping to facilitate a new era of digitalization
and automation [51]. Indeed, the companionship of IoT and
EC in the maritime domain has brought numerous benefits,
but it has also attracted the attention of cyber attackers. As the
maritime domain has been attacked by several cyber-attacks
in recent years, causing significant operational disruptions
and financial losses. Therefore, it is critical to ensure the
security of the data transmitted over the network, as EC can
help mitigate this risk by enabling the real-time analysis of
data on local devices rather than sending it to the servers
that are in the center of the cloud, reducing the attack
surface. However, ensuring the accuracy and reliability of
these real-time analyses while minimizing latency and power
consumption remains a significant challenge for maritime
applications [52].

1) MARITIME DOMAIN PREDICTIONS
In the maritime domain, some predictions can be applied
shortly:

- Autonomous Shipping: Improvements in autonomous
shipping are likely going to come from a greater combination
of edge computing and AI. The creation and utilization of
autonomous vessels is one of the predictions for increased
effectiveness and security.

- Smart Ports: Blockchain technology is used in order
to secure data transfers, and edge computing is used for
processing port activities in real-time. The marine sector
might witness a broad adoption of these technologies.

- Environmental Monitoring: The utilization of inte-
grated techniques has the potential to significantly improve
environmental monitoring in the environments of the mar-
itime sector. Edge computing architecture and AI techniques
can be applied to analyze data about pollution, climate
change, and marine life.

B. AERIAL SYSTEMS
Drones or unmanned aerial vehicles (UAVs) are aircraft
that are flown remotely from the ground or by an onboard
computer [37]. These UAVs are gaining more popularity
for a range of industries and tasks, starting from package
delivery to agricultural monitoring to search and rescue
operations, as well as the military domain, business, and
public sectors [53]. The market for UAVs was valued at $18
billion in 2017 and is expected to reach $ 52 billion by
2025 [54]. These systems produce enormous volumes of data,
including video feeds, sensor readings, and position data,
which must be processed and reviewed in real-time to enable
effective decision-making. With EC technology, network
speed is improved and latency is reduced by managing

computation and data storage closer to the gadgets and
sensors that generate them. By combining EC with aerial
systems, organizations can process and analyze data on-board
the drone or UAV, rather than sending it back to a centralized
server for analysis. This enables real-time decision-making,
faster response times, and improved efficiency.

EC can be applied in various industries and applications,
and aerial systems are one of the many tools that can benefit
from this technology. For instance, in agriculture, a drone
equipped with sensors and cameras can fly over fields and
use EC to analyze crop health, detect pests or diseases,
and optimize fertilizer application rates. This enables farm-
ers to make real-time decisions and respond to improve
crop yields and minimize the use of resources. Similarly,
in environmental monitoring, drones can collect data on air
quality, water quality, and wildlife populations and use EC to
process and analyze the data in real-time, providing valuable
insights for researchers and conservationists. In infrastructure
inspection, drones can be used to inspect bridges, pipelines,
and buildings, detecting defects and potential issues before
they become major problems. Finally, in disaster response,
drones equipped with sensors and cameras can be used to
quickly assess the damage and provide quick attention and
care to emergency cases, enabling faster and more effective
response times.

In addition to that, the integration of ECwith aerial systems
has the potential to operate in areas that have low bandwidth
or no connectivity, which is critical for remote or hard-to-
reach regions. EC enables the processing of data on the drone
or UAV, thereby reducing the necessity for high-bandwidth
communication links, and prolonging the operational period
of aerial systems without the need for constant recharging or
refueling. This combination of technologies is transforming
the methods of data collection and analysis, and offering
novel opportunities for advancement and development.it is
notable that unmanned aerial vehicle (UAV) integration into
MEC networks has recently attracted greater interest and
become more widely used.

Compared to traditional terrestrial MEC networks,
the technology of MEC integrating into UAV support
offers a variety of advantages. For example, UAVs can
do computation-related tasks as users, relays can offload
computation-related activities, and MEC servers can conduct
computation-related tasks. Even in challenging terrain where
terrestrial MEC networks are impracticable, UAVs can
be employed in a variety of applications [55], [56]. The
performance of the computation part can be improved
with short-range line-of-sight communications, and it can
be further enhanced by optimizing the trajectory of the
UAV. In addition, UAV-enabled MEC networks may be
useful when natural disasters have harmed terrestrial MEC
systems. Major corporations including Google, Facebook,
Amazon, and Huawei have started initiatives to promote
MEC networks with UAV support. As the price of UAVs
drops, it is expected that UAV-enabled MEC networks will
spread more widely [56], [57].
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Since the random radio environment cannot be controlled,
it is not taken into account by the existing method of
aerial MEC optimization. However, it has been demon-
strated that the unique concept of reconfigurable intelligent
surfaces (RIS) can produce a smart radio environment.
To change the phases and angles at which incident signals
are reflected by RIS, which can boost the received signal
power.

The communications of RIS-assisted UAV and aerial MEC
can be used to overcome ground obstacles that may prohibit
air-ground connection in realistic contexts like metropolitan
regions. RIS can be used to reflect signals between the base
station and customers by being broadcast from the top of
buildings or installed on a UAV. However, the continually
moving UAVs pose a challenge to the passive beamforming
effectiveness of RIS. This is addressed in [58], which pro-
poses a joint UAV trajectory and RIS passive beam-forming
optimization to maximize the data transmission rate. In a
recent study, a rotary-wing UAV was used as an MEC server,
and an RIS was installed on the building’s exterior to create
a user-UAV interface during job offloading. To minimize
the UAV’s power consumption while still meeting task QoS
requirements, joint improvements to the UAV trajectory,
task offloading, cache, and phase-shift architecture of the
RIS were made. Based on the results of the simulation,
RIS passive phase-shift can elaborate the transmission
environment while reducing the UAV’s power requirements.
The potential of RIS-assisted aerial MEC hasn’t received
much study, though, and more work is required to be totally
understandable [59].

Many emerging applications and workable scenarios
cannot be implemented on the existing computer systems,
such as EC, and the reason behind that is their limitations.
A comprehensive computing paradigm has been proposed to
overcome these limitations, but there is a hole in the literature
due to the lack of studies. To address this hole, [60] proposes
a new concept called aerial computing, which combines
aerial radio access networks and EC. A new comprehensive
computing architecture is introduced, consisting of satellite
computing platforms low-altitude computing (LAC), and
high-altitude computing (HAC), in addition to conventional
computing systems. The system of aerial computing provides
several advantages, including comprehensive computing
service, enhanced mobility, simultaneity, higher scalability,
and availability. Along with vertical domain applications
like smart cities, smart vehicles, smart factories, and smart
grids, primary technologies that facilitate aerial computing,
for example, EC, energy refilling, network softwarization,
frequency spectrum, multiaccess techniques, AI, and big
data, are thoroughly discussed. As mentioned above, UAV-
enabled MEC systems have many benefits, but they also
encounter various difficulties, these challenges include short
battery life, excessive energy usage, unequal job offloading
and resource allocation, delay requirements, and security
concerns [61].

1) AERIAL DOMAIN PREDICTIONS
In the aerial domain, some predictions can be applied shortly:

- Integration of Drones: The integrated Drone for a
variety of purposes is anticipated to grow in the aerial
realm. AI and edge computing provide real-time data
processing in a variety of use cases, including emergency
response, agriculture, delivery services, and the surveillance
sector.

-Air TrafficManagement: Forecasts for air traffic control
indicate that cutting-edge systems driven by edge computing
architecture and AI will be developed. These technologies
aim to improve efficiency, security, and better airspace
management.

-Urban AirMobility (UAM): As a result of technological
progress, airspace may witness the rise of UAM, in which
integrated edge computing architecture and AI technologies
are essential to the control and optimization of air traffic in
urban environments.

C. CHALLENGES IN UTILIZING EDGE COMPUTING
1) PROGRAMMABILITY
Users build their own programs and upload them to the
cloud using a cloud computing paradigm; the cloud service
provider decides whether or not the program processing
actually happens in the cloud. They are either ignorant
of the program’s operation or are just partially aware of
it. The fact that the end user cannot see the underlying
infrastructure is one advantage of cloud computing. On the
other side, edge computing offloads computation from the
cloud and edge nodes are probably heterogeneous platforms.
Because these nodes have vastly differing runtimes, the
programmer has significant hurdles when trying to design an
application that can be deployed in the architecture of edge
computing.

2) NAMING
A primary assumption of edge computing is that there
are an enormous number of IoT devices. On the other
hand, at the edge node, a lot of apps are running at
once, and each application, like any computer system,
has a structure about how the service is provided. The
naming method used in edge computing is crucial for
a number of reasons, including but not limited to data
transfer, programming, addressing, and item identification.
Therefore, there is currently no standardized naming scheme
designed for the edge computing paradigm. For professionals
operating at the edge of their system to exchange data with
its numerous components, they frequently need to become
proficient in a wide range of network and communication
protocols. In order to ensure privacy and security, edge
computing requires a naming strategy that can handle a very
large number of unreliable objects, highly dynamic network
topology, and scalability. Notable that the tried-and-true
techniques of naming do not function with the dynamic edge
network.
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3) SCHEDULING STRATEGIES
The algorithms of edge computing’s scheduling are expected
to optimize resource utilization, reduce energy usage, shorten
reaction times, and speed up task processing. Scheduling
strategies for edge computing need to work together. Com-
pleting tasks and sharing resources among nodes is similar to
what happens in conventional distributed systems. However,
keep in mind that, similar to cloud computing, your computer
resources will probably be of different types and calibers.
Moreover, one of the key challenges that usersmust overcome
with edge computing is controlling its limited computational
resources, which sets it apart from the cloud’s more open
environment. Since edge computing resources are diverse,
scheduling strategies for Edge computing, like those for data,
computing, storage, and networks, must be customized for
each application. In addition, scheduling strategies must take
into account the possibility of multiple distinct application
types. Scheduling strategies should optimize the utilization
of limited resources on edge nodes in order to improve
application performance and efficiency [62]

D. SUMMARY
This section outlined the maritime sector which is the first
use case we address since it is considered as one of the
most recent use cases in the EC paradigm. Then we continue
to demonstrate the various ways in which EC improves the
network preformance in this industry. Next, we address the
aerial system and the advantages of using EC in conjunction
with this kind of system. After that, we present an overview
of some of the applications that have been using EC in
combination with aerial systems. Then we present some
challenges that might be faced in the mentioned use cases.
Table 2 presents the summary of the papers that have been
utilized for all application domains in this survey. Notably,
the two remaining domains mentioned in Table 2 which are
IoT and Industry 4.0 addressed in the Appendix.

TABLE 2. Application domains summary.

VI. RECENT TECHNIQUES IN EDGE COMPUTING
It is evident that AI and blockchain techniques are deploying
at a rapid rate, making them highly relevant in the current
era, particularly as the fourth industrial revolution (4IR)
gains huge momentum. The technological intricacy and
multifaceted commercial consequences of both technologies
vary.

First, AI is a modernistic science that seeks to build
a machine that imitates the intelligence of a human. The

intelligence is the capacity to make meaning of information.
AI techniques are finding widespread use as complements
to traditional methods or as parts of combined systems.
They have been utilized for complex real-world issues in
a variety of sectors. These techniques are also capable of
learning from examples, handling noisy and incomplete data,
handling nonlinear problems, and once trained can execute
rapid prediction and generalization. Because of its sym-
bolic reasoning, adaptability, and explanation capabilities,
AI-based systems are being built and implemented globally
in a wide range of industries such as engineering, economics,
medicine, military, etc.

Second, the theory states that ‘‘since a blockchain
technique is decentralized, nobody is in charge. With the
technology of the blockchain, data is added to a distributed
ledger and validated by network participants, each of whom
contains a copy of the data. Blockchain is a revolutionary
software technology that is changingmany different commer-
cial sectors, it is essentially a data structure that resembles a
chain used to store transactions that have been approved by
most nodes across the network. All credit for the fundamental
creation of a blockchain system goes nevertheless to a
group of primer developers. For example, a smart contract is
essentially a collection of functions or algorithms that include
a certain amount of data that are created and implemented
on the blockchain by another human programmer. As a
result, unfortunately, less likely to be devoid of errors and
shortcomings. However, the committed transactions in the
blockchain are stored at every single node, which makes it
extremely difficult to alter or falsify [63], [64], [65], [66].
It is worth mentioning that security is one of the most
critical criteria for any modern technology. The use of edge
computing is contingent on creating safe applications and
systems. As the security requirements in cloud computing are
so vague, certain types of attacks can target cloud services.
Because of their unique design, cloud computing services are
frequently the focus of security concerns and data breaches.
On the other hand, security in edge computing needs to
be thoroughly defined and applied. As a result, better data
security can be offered because client data is combined at
specific access points near the end user [67]. More details
can be found in the Appendix.

A. EDGE COMPUTING WITH ARTIFICIAL INTELLIGENCE
In general, EC devices are equipped with low capabilities of
intelligence. These edge devices are in charge of local data
processing such as storing and transmitting data to the cloud
center.

1) THE INTEGRATION OF AI INTO EDGE COMPUTING
Recently, emerging technologies in internet protocols and
computing systems have facilitated communications between
different devices and made them faster. Therefore, applying
the capabilities of one of these technologies which is AI
with edge devices as shown in Fig. 3 to become more
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intelligent. Integrating the intelligence in edge devices will
add the capability to analyze data, and also the capability to
make decisions without the need of connecting to the cloud
center. Thus, the latency will be reduced because of the added
abilities.

2) THE GROWTH OF IoT INDUSTRY
In recent years, there has been a notable increase in the
use of wireless communication technology recently, on the
other hand, the number of IoT devices has also grown
rapidly. The approximate number of IoT devices worldwide
in 2020 that have connected to the internet is more than
25 billion devices. IoT devices produce large amounts of
data which are really important for manymodern applications
for example healthcare, and smart cities. Therefore, a good
approach to getting information and making decisions from
the data collected is to equip these devices with intelligence.
However, the answer to how to relocate the intelligence
abilities from the cloud to the edge devices is still not clear.
the applications that are using intelligence as a service often
need sufficient computational resources and dedicated types
of equipment for example GPU pools. Inversely, the current
environments of edge devices are basically equipped with
commercial servers with constrained resources. According
to that, a denial in this matter becomes a main obstacle
towards moving the feature of intelligence to the edge of the
network [68], [69], [70], [71].

3) SECURITY
In terms of security aspect, edge intelligence, and edge
computing security must be mutually reinforcing. The
implementation of edge intelligence also hinges on the
appropriate resolution of the core issues surrounding edge
security, even if edge intelligence can address many of the
issues facing modern edge computing security. To begin
with, when training models, edge intelligence will consume
a large amount of private data. It is more vulnerable to
privacy breaches. Second, after being deployed to the edge,
the edge intelligent model is easily stolen and cracked by
hostile users, making it a valuable digital asset. Serious
financial losses could come from it.When edge nodes process
user-uploaded data and terminal perception data in real time,
the cloud computing center must also conduct more in-depth
analysis and make decisions based on the pre-processed
data sets that the edge nodes upload. The security of edge
intelligence is severely challenged in all areas by this process,
which involves the transmission of a significant volume of
sensitive data, including data, applications, networks, and
equipment [21]. According to the information mentioned
above, this survey presents a number of experiments to prove
the aspects of improvement by integrating AI with EC as
shown in Table 3.

The first experiment proposes intelligent edge devices that
can be used in the coming generation in the applications of
IoT. Edge device offers computing resources to be near the

FIGURE 3. Edge computing with artificial intelligence.

users. These devices are equipped with AI features in order
to have the capability of making decisions in the environment
where these should be deployed. This experiment proposes a
cognitive snooping security system to preserve the amount of
credibility of search incentive outputs, thus, precluding the
commercial images from entering the web browser’s image
database. Applying the suggested system to the edge devices
adds intelligence to the edges and the web data filtering will
have the ability to detect web spam by using the services of
the three different layers namely 1) data collection, 2) edge
computing, 3) and the cloud. The job of the data collection
layer which is at the bottom is to collect web data from various
sources and transfer it to the next layer that is in charge of
detecting the web spam at the edge and validating the spam
detected by using deep learning models. After that the third
layer which is the upper one is handling the storage in the
cloud. As a result, the proposed architecture has improved
the security level by barring web spam the result of this
experiment is better than the existing results in the literature
because the accuracy of it is 98.77% [72].

Experiment number two in this survey proposes a new
architecture of AI-empowered vehicular EC and caching.
This architecture can dynamically link resources of EC and
caching to polish the utilization of the system by applying
AI-based algorithms. In addition, this new architecture
can link the resources intelligently to target cross-layer
offloading, cooperative multi-point caching and delivery, and
V2V edge caching. Then, an integrated caching scheme with
EC is presented to extend the advantage of the system by
promoting a novel resource management scheme with the
involvement of the developed deep reinforcement learning
algorithm Deep Deterministic Policy Gradient (DDPG).
In the proposed architecture, the roadside unit (RSU) is
situated alongside a road, it represents the edge servers by
offering communication, computing, and the capability of
caching. The distinction between the current RSUs and the
proposed RSUs is the capability of intelligence because RSUs
in this architecture are equipped with AI functions which
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make them capable of providing resources for smart vehicles.
The base station (BS) is in charge of providing the network
to the vehicles, thus, the smart vehicles with RSUs should
be located within the area that is covered by the available
BS. Regarding the coverage area, usually the BS broadcasting
with higher computing capability and caching resources than
RSUs.

Therefore, BS can deal with the computation-intensive
tasks in case RSUs are unable to handle the requirements
of the computation for the smart vehicles. Moreover, the
cache capability of BS is often larger than RSUs and the
contents are less important in BS and the RSUs more
important for example the latest news. In order to involve
AI in this matter, the vehicular network is considered an
environment and broadcasting the intelligence on the BS.
Therefore, the capability of AI methods can be involved
to recognize the feedback of the environment for instance
vehicle demands, real-time behavior, and wireless channel
state. In addition to that, to meet the smart vehicles
requirement, the intelligent capability automatically designs
developed actions due to the present state, which include
cross-layer offloading, cooperative multi-point caching and
delivery, and V2V edge caching. Finally, the numerical
results of the proposed scheme prove that allocating resources
is quick and efficient [73].

In the third experiment, deep learning (DL) technology,
which represents AI, was involved with EC to enhance the
network’s efficiency. Basically, the EC methods have some
issues such as high computing costs and high latency, it is
better than the CC paradigm but these issues are critical for
some applications. This experiment introduces deep learning
techniques to develop the performance of EC methods.

Physical swell training has been always a hot field. Deep
learning is representative of AI in various fields, especially
for the academic community. The convolutional neural
network (CNN) model utilizes convolution calculation, and
deep reinforcement learning technology, and completes the
resource allocation of EC for each trainer wearable sensor
device, authorizing the deep reinforcement technique to
identify EC optimization.

The CNN model is used to recognize the EC resource
allocation of the IoT devices and the convolution processing
is basically used to fulfill the resources rational allocation.
As a result, based on the experimental analysis, the proposed
method that integrates AI with EC to optimize the execution
of EC methods shows an improvement in the execution of
the methods in terms of having a low vacancy rate, high
computing efficiency, and wide applicability. In addition
to that, the suggested method has less power consumption
for the server and the calculation cost can be effectively
measured, the EC process is completed, thus, applying the
training model can be possible for each trainer, and because
of that the training is faster. Moreover, the proposed method
has improved the training’s quality and accuracy, therefore,
the physical expansion training would be more effective [74].

The fourth experiment in this survey is using AI techniques
to improve the security in the sensor network, which is one
of the components of MEC that provides services for users.
Applying AI technology in MEC to deal with the devices and
the server’s operation in such a platform is having security
issues. Thus, this experiment is proposing a scheme namely
Security Enhanced Traceback (SET) to enhance network
performance and security. The principle behind this scheme
is to divide the network into three sections namely deploy
nodes in each section with a different marking probability,
nodes deployed far from the sink will have a higher marking
probability, while nodes deployed close to the sink will have
a lower marking probability. On the other hand, selecting
a tuple of data packets is not only saved in nodes but also
transported to nodes far from the sink in order to stabilize
the storage space of the nodes. The experimental finding
indicates that both network performance and security are
improved [75].
The fifth experiment is about the combination of EC andAI

offers the advantage of being accessible from anywhere at any
time without the need for cloud intervention. This solution
is ideal for small-scale applications that require on-premises
security and low-latency data processing. However, it cannot
replace CC, which can handle massive data sets and connect
the whole world. In the suggested model, AI-enabled EC is
used to provide accurate information related to soil moisture,
temperature, and humidity in the agriculture field. The use
of AI-enabled edge ensures effective device monitoring,
reduces unexpected failures, and increases productivity by
offering accurate information at very low latency. Results
show that the smart farming approach with AI-enabled edge
has constrained energy consumption and takes less time to
transport compared to traditional methods.

The proposed smart farming model departs from the
traditional CC paradigm and adopts EC to reduce latency
and communication costs. However, EC cannot replace
CC, which can accommodate large-scale service utilization
and data storage for numerous users. Instead, EC is a
promising alternative for small-scale applications that require
on-premises computation and timely solutions. Moreover,
in the proposed model, EC is used in smart farming to reduce
security risks, enhance efficiency, and reduce expenses.
The suggested model was tested using real-time data to
demonstrate the precision of the predictions. The evaluation
was conducted using MATLAB to determine the maximum
time required to transmit the information needed from the
edge to the consumer [76].

The sixth experiment proposes a real-time monitoring
system for landslides to provide early warnings to the
population in case of danger. Landslides are a widespread
phenomenon that causes numerous deaths and significant
property damage worldwide each year. They occur when soil
or rock slopes down due to gravity, and can be caused by
various factors such as climate features, geological makeup,
and topography of certain areas that are predisposed to a
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TABLE 3. The result of using AI in edge computing.

higher risk of landslides. The proposed system is an adaptable
and distributed monitoring solution for landslides that can
monitor various types of landslides using a multi-agent
system (MAS) implemented on an edge heterogeneous
cluster consisting of Odroid N2 and Nvidia Jaston Nano
as described earlier in [77]. To minimize the utilization of
cloud-based training for AI models, an NVIDIA Xavier has
been added in order to enable local training into the edge.
To test the proposed architecture, they deployed a weather
node and multiple ground nodes at selected points on the
landslides.

The specifications and details of these nodes were previ-
ously described in our earlier paper [78]. This experiment
was built upon the previous work [77] by implementing
AI algorithms to improve the detection of landslides using
connected things. In order to reduce bandwidth and improve
latency, most of the data processing has been shifted from
the cloud to the edge. Due to this, the mean bandwidth has
decreased from 2.63 Mbits to 249.5 Kbits, also the latency
has decreased from 208 ms to 53 ms, and the amount of
data transported to the cloud has decreased from 1180.06MB
per hour to 112 MB per hour. However, the execution time
at the edge has increased due to the greater computing
energy of our edge AI-IoT architecture compared to the
cloud. While our suggested architecture has not been fully
examined as there have been no landslides to date, our in-situ
experimentation demonstrates the potential of our system
in improving the efficiency and effectiveness of landslide
monitoring [79].

The seventh experiment aims to combine AI with EC
to present a forensics framework called the Efficient and
Reliable Forensics Framework (ERFF), which is suitable for
industrial intelligent EC that is critical for the implementation
of Industry 4.0. ERFF consists of two parts, a detective
module, and a validation model. The detective module
observes how the client terminal interacts with the edge
resource, which enables the investigator to safely collect evi-
dence. The security-validation model integrated with ERFF
is assumed to be more secure than the common key-based
cryptography technique. To test the suggested framework,
the researchers used the Live Digital Forensic Framework
for a Cloud (LDF2C) and compared its results with other

current industrial frameworks such as the Legal Reliable
Forensic Framework (LRFF), Source Identification Network
Forensics Framework (SINFF), and Logging Framework for
Cloud Computing Forensic (LFCCF). These frameworks
were created to support the digital forensic demands of
industry and academia.

In other words, ERFF is a new forensics framework
that leverages EC to enhance the reliability, efficiency, and
precision of criminal activity detection. The framework
utilizes a detective module and a validation model that
collaborate to find communications between a client terminal
and an edge resource. One key advantage of ERFF is its
ability to spot illicit activities more faster using inexpen-
sive edge devices.This means that investigators can obtain
evidence more easily and securely, which can speed up the
investigation process. In addition, ERFF uses data-collection
tools including the super-timeline, information extraction,
information retrieval, content, and media, all of which assist
the procedures involved in forensics assault resistance. This
makes the forensics statement that is given to the investigator
free from attacks or illicit compromises. In comparison
to other competing state-of-the-art frameworks, such as
SNIF, LFCCF, and LRFF, ERFF provides better reliability,
efficiency, precision, and deduction rates at the edge. ERFF’s
validation model is much safer than a common key-based
cryptography method, and its use of EC makes it more
efficient and reliable. Overall, ERFF appears to be a
promising new forensics framework that could significantly
improve the process of identifying criminal activities. Its use
of EC and information collection features makes it more
efficient and reliable, and its safety features make it more
secure than other competing frameworks [80].
The main objective of the eighth experiment in this survey

is to reduce the amount of energy of both edge devices
and cloud services during the performing of AI of Things
(AIoT) tasks. The experiment aims to achieve the objective
of this experiment by formulating an optimization problem
that focuses on scheduling tasks efficiently in both the edge
and the cloud. To solve this problem, a new online approach
has been suggested. In addition, it conducts experiments in
an intelligent EC testbed and evaluates the amount of energy
for various intelligent cloud services and edge devices.
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Additionally, the framework for intelligent EC provided
here shows how a well-designed system may handle AI
tasks for AIoT applications with a significant increase in
energy efficiency. A creative scheduling strategy is crucial
for lowering energy use in a variety of environments. The
performance evaluation results show that the reinforcement-
learning-based approach is superior to alternative approaches
for addressing the online scheduling issue, especially in a
multilayer framework, and is better than other strategies,
resulting in lower power consumption. In addition, the
majority of commercial edge products exhibit sufficient
performance in processing AI tasks with minimal energy
consumption, indicating that intelligent EC presents a
crucial opportunity for AIoT applications. As a result, the
communications cost would be also reduced [81].

Experiment number nine proposes a new technology to
enhance energy efficiency in the Industrial Internet of Things
(IIOT). The utilization of AI technology in the IIoT presents
a significant opportunity in Industry 4.0 (Fourth Industrial
Revolution). However, processing complex AI tasks requires
high-end servers, which results in high power consumption in
IIoT environments. To address this challenge, this experiment
introduces the idea of intelligent EC, a novel technology that
endeavors to reduce energy usage in processing AI tasks
and promote green AI computing for IIoT applications. The
proposed framework has a heterogeneous architecture that
offloads the majority of AI operations from servers and
streamlines scheduling for various AI jobs to increase the
efficiency of energy.

In order to evidence the effectiveness of the suggested
solution, a little testbed is built to exhibit the energy efficiency
of AI-driven IIoT applications with the intelligence of EC,
as Intelligent EC offers a chance to enhance the energy
efficiency of IIoT that is driven by AI, while also fulfilling
the stringent demand for processing time. The intelligent
edge controller is comprised of six main components: the
edge node scheduler, AI model storage, task manager,
AI model converter, AI processing interface, and interface
management. The edge node scheduler is in charge of
monitoring the status and characteristics of all edge nodes
in the network, such as their workload, physical details,
and software configurations. It uses a resource scheduling
technique to determine the optimal edge node for handling
incoming AI tasks. This procedure involves coordinating
the various components to ensure efficient and effective
execution. The processing of AI tasks in edge nodes relies
on AI models that have been already trained.

However, these models frequently have platform-specific
requirements and cannot be implemented in edge situations
without modification. To address this issue, an AI model
converter is used to automatically modify AI models that
have been already trained to make them available for use in
edge applications. The adapted AI models are designed for
various heterogeneous edge devices. However, as the model
conversion takes time, transforming AI models online can
be challenging. To overcome this challenge, all transformed

AI models are stored and controlled in an AI model storage
system in preparation for future deployment. This storage
system updates deployed AI models in edge nodes by storing
AI models that have been trained with novel versions.
Additionally, the task management module also maintains
track of the resource usage, resource execution time, and edge
node IDs for all of the edge nodes. The task management
module’s data is utilized by the edge node scheduler to plan
AI jobs. To convert a task or edge node from one state to
another, the task manager module regulates the statuses of
those tasks and edge nodes.

The AI processes interface module offers a unified
command set for the AI model storage, authorizing it to move
platform- or device-related interfaces to the module’s unified
interface. The management interface module receives the
edge node ID, task ID, and operations from the task manager
module, which then transfers all operations to transmit
direct orders to the specified edge node. Finally, since the
industrial environment requires greater reliability than other
IoT contexts, risk control mechanisms are presented to the
AI-driven IIoT framework to avoid any failures. To ensure
consistent service even in the event of a controller failure,
the proposed framework deploys a centralized controller in
a private cloud as opposed to a public cloud. In order to
minimize the influence of the access network, edge nodes
are linked to the controller via separate network links, and to
prevent a single point of failure, the controller assigns several
edge nodes to carry out important activities.

The scalability of the edge system and the scalability of
AI job categories make up the scalability of the intelligent
EC framework. The AI model that has been trained before
can be easily added to the AI Model Storage to design a
new task category for AI. The framework can distribute
common AI models to a new edge node without model
translation. Due to the dynamic workload of most IIoT
environments, the primary goals of the work are to formulate
the scheduling issues of utilizing limited computing resources
in the edge to complete as many AI tasks as possible and to
create an effective approach to overcome the problem in an
online scenario. The proposed online scheduling technique
has undergone rigorous simulation, and the findings indicate
that, in most cases, it uses energy less than 80% of static
scheduling and 70% of first-in, first-out (FIFO) scheduling.
As a result, the communications cost is estimated to be
decreased [82].

The following experiment in this survey which has number
ten focuses on the security aspect and latency as well.
Cyber-physical Systems (CPSs) have becomemore advanced
and intricate, and as a result, they have been subjected
to numerous unintentional and intentional disturbances,
including a maximization in the number of cyber hits and
the sophistication of their behaviors. For example, when
fraudulent users or attackers demand the same physical nodes
concurrently, this might result in service failure and constitute
a security concern. Hence, a low-coupling system built on the
EC platform has been created to overcome this problem.
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A CPS contains different physical sensors, which are
used to create virtual sensors. A virtual sensor may consist
of one or more styles of physical sensors. The purpose
of virtual sensors is to simplify the application of sensors
by disregarding the sensor locations and criteria. However,
this method may drive a coupling issue between physical
and virtual sensors, which may result in the issuance of
conflicting commands. For instance, if malicious consumers
or attackers transmit numerous control requests to a physical
sensor simultaneously, it may lead to the issuance of
inconsistent commands. This is known as the coupling
problem, which can be addressed using a mathematical
model. To check the superiority of the proposed algorithm
and mechanism, an evaluation was conducted under various
parameters and the results were analyzed respectively. The
same criteria were used to implement three comparison
algorithms.

The first in first out (FIFO) algorithm was the first
algorithm, which executes each user’s requests sequentially.
The second algorithm was the Shortest Job First (SJF)
algorithm, which schedules each request based on the one
with the shortest service time after classifying the service
times of each request in ascending order. The third algorithm
was the Kuhn-Munkres (KM) algorithm, which had no cache
queues. Extended Kuhn-Munkres (EKM) which is the fourth
algorithm, was put into practice utilizing buffer data from
the physical sensors layer (EKMB). The experiment has
constructed uniform distribution, normal distribution, and
reversed normal distribution in eight scenes to compare to
the proposed extended Kuhn-Munkres algorithm with double
buffer queues (EKMDB). The eight scenes are explained
in detail below. Following an arithmetic progression, the
number of users rose from 100 to 450. Users to resources in
the first experiment were split 1:5. In the second trial, it raised
the user-to-resource ratio to 2:5, allowing the comparison of
various settings.

Additionally, the numbering of edge nodes accounted for
1:4, 1:5, and 1:6 ratios (ENR) of the total number of physical
nodes in various experiments. This experiment describes an
intelligent method for cyber-physical systems (CPS) that uses
an EC platform to optimize sensor utilization and counter-
coupling problems. By emerging comparable commands and
storing data from the bottom layer, the platform lowers the
volume of requests from users to physical sensors. As a result,
by combining comparable requests and caching data from
bottom sensors, the proposed EKMDB algorithm maximizes
sensor utilization in the EC layer, enabling it to rapidly
respond to requests and decrease latency in parallel. The
algorithm efficiently lowers scheduling and resource conflict
costs, boosts resource usage, and extends the lifespan of the
CPS [83].

This experiment which is no. 11 uses machine learning
(ML) which is a sub-field of AI to address three typical issues
in the unmanned aerial vehicles (UAV)-assisted EC system,
it provides a brand-new survivable resource slice embedding
technique. First, resource utilization is decreased when the

resources allotted for the slices do not match the requirements
of the task. Secondly, it is challenging for the UAV to supply
enough supplies for the slices due to its limited resources.
Third, a UAV malfunction lowers the caliber of the service.
The long short-term memory (LSTM) network is proposed
to predict the storage and processing needs of various slices
to address these issues. Then, slices that already exist are
assigned multidimensional resources. The slice embedding
minimized loss function is computed based on the amount
of processing and storage resources used. The interior point
approach is then used to produce the slice embedding result.

The energy consumption of link re-embedding and server
re-embedding is used to compute the minimized objective
function of slice re-embedding in the event of a server
failure. Ultimately, random rounding approaches and linear
relaxation lead to the best re-embedding solution of slices.
To assess the efficacy of the suggested method, this method
carries out the tests on a real-world testbed by utilizing
a Fifth-generation (5G) communications network trajectory
dataset. Two benchmark algorithms are compared with this
experiment’s survivable slice embedding algorithm. It is
demonstrated that the suggested algorithm may enhance
the slice recovery consumption, slice acceptance ratio, and
request acceptance ratio of the system [84].

B. EDGE COMPUTING WITH BLOCKCHAIN TECHNOLOGY
In recent years, several papers have presented the technique
of blockchain-enabled into the EC paradigm. The primary
aim of combining blockchain technique in EC as shown in
Figure 4 is to provide security as it is presented in Table 4
for data processing and to support the transmission temper
assistance and traceability for IoT devices [85].

1) SECURITY MECHANISM IN INTEGRATED BLOCKCHAIN
EDGE COMPUTING (IBEC)
Various mechanisms can be presented in integrated
blockchain edge computing (IBEC) in order to enhance
the security and privacy aspect, for instance, identity
authentication, and routing. It is recommended to apply smart
contracts and smart oracles to create a trust management
architecture that would assist the creation and use of smart
applications by offering security services throughout the
edge-fog-cloud computing continuum. This architecture
applies smart oracles to evaluate and give targeted metrics
for smart contracts, which are utilized to monitor off-chain
data and choose the best edge nodes to lower costs and
enhance system quality of service. A critical first step towards
accomplishing safe authentication and cooperative sharing
in a variety of applications is the creation of a distributed
and reliable authentication system. An enhanced practical
byzantine fault tolerance (PBFT) consensus mechanism is
proposed for the system under description in order to make
it easier to securely store logs and authentication data
on the blockchain. Additionally, applying elliptic what is
called curve cryptography (ECC)-based encryption and a
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domain name system (DNS)-based dynamic name resolution
mechanism to the system under discussion adds important
layers of anonymity, authentication, and security.

2) ROUTING PRIVACY
In terms of routing, the blooming filter is applied to
generate new requests for the subsequent software-defined
networking (SDN) controllers without exposing topology
privacy. This allows for the protection of cross-domain
routing privacy in multi-domain MEC networks. Three
schemes are introduced in order to achieve this: a consortium
blockchain-based routing verification scheme, a network-
driven collaboration routing verification (NDCRV) scheme,
and a cloud-driven CRV (CD-CRV) scheme. Furthermore,
an ECC-based privacy-enhancement scheme (PES) with dig-
ital signature and public key random generation is designed
in the IBEC environment to simultaneously accomplish both
confidentiality and transparency [86].

The first experiment in this section that applies the
blockchain technique is introduced by [87]. Little or
medium-sized farms have never been able to participate
in high-added-value farming because of the credibility of
the information on organic agricultural products. Organic
agriculture supply chains (OASCs) have historically been
concentrated in both academic and agricultural environments.
The system of OASCs is quite complex, it is responsible
for the whole production process namely storage capacity,
transportation speed, marketing quality, and energy con-
sumption. The concept behind this system counts on the
distribution of the database and centralized processing that
are separated from each other. That way, tracing a piece of
information, for instance, paper certificates or food labeling
systems will be preserved by the identity of agribusiness,
whether certificates or food labeling have a common fault,
traceable information can be easily manipulated or even lost.
Thus, this valuable data has to be stored by a trustworthy
member. Hence, the blockchain technique might be the best
way to fix this issue. In this case, blockchain applies a ledger
called a distributed ledger technology (DLT), this ledger is
preserved and controlled without any third party involved.

In OASCs, there is a need for a new computing mode
to reach the goal of having unanimity and trust in the
decentralized blockchain system. On the other hand, the
blockchain system requires a kind of comparison between
the performance and cost to master the issues of adoption
and achievement by OASCs in the early stage. To obtain
trust in OASCs, [87] proposes an information management
framework for OASCs based on the blockchain technique
and EC technology. This framework will offer a better
comparison between dependencies and cost. the contribution
of this experiment is distributed into three stages: 1) To
achieve agreement among the different OASC structures,
four key management functions for OASCs were separated
and given respective roles. 2) Putting out a data-sharing
architecture that utilizes blockchain in order to enable
unaltered records with the intention of making OASCs far

more rightful, transparent, and dependable. 3) The data
platform can be shifted from a cloud-based to a local domain
by adopting the technology of EC in organic agriculture.
As a result, the cost of data processing will decrease and
the overall response time will increase. According to the
above experiment, the final result can reach the goal which
is reducing the latency by avoiding the third party and adding
more trust which leads to more security.

The second experiment in this survey was introduced by
[5]. A reliable and efficient network can exist based on
EC technology and blockchain techniques. The existing EC
architecture is more practical than CC architecture, especially
in terms of reducing latency, however, there are still some
challenges that should take care of, firstly, in most cases
there are different parties that are managing the edge devices,
and there will be some trick devices among all devices,
thus, these devices might deliver viruses or incorrect data to
others, Secondly, the problem is how to equitably distribute
computing resources among various edge nodes in order to
reduce the job failure ratio for each edge device. Thirdly, the
cache capacity and computing processing are low in edge
devices, therefore, the safety is weak so they are easily strafe
during frequent processing.

In this experiment, a three-tier architecture utilizing EC
and blockchain technology is suggested. The goal of the
experiment is to develop a novel group-agent technique
by using trust computing, that will enhance transmission
efficiency while ensuring the dependability of edge devices
during communication. Additionally, a novel content model
that utilizes the Zipf distribution to predict the popularity
of phrases in context and symmetric searchable encryption
(SSE) to encrypt hot material is being improved. The result of
the simulation in this experiment shows that, in comparison
to conventional approaches, the proposed technology offers
higher reliability and more processing efficiency, which
basically refers also to the security and latency aspects [5].

The third experiment utilizing blockchain technology in
EC shows off an automatic intelligent agriculture system
that is capable of monitoring and providing effective use
of water resources to feed plants within the maximum
farming period. The main goal of Applying the technique
of blockchain in EC architecture in this system is to secure
the privacy of the proposed agriculture system. In such cases,
after applying the technique of blockchain the information
access will be more secure within the connected devices.
Additionally, blockchain technology ignores and manages
the proposed Intelligent Climate and Watering Agriculture
System (ICWAS) by concentrating access to only trusted
devices [4]. The use of the ICWAS prototype will add the
capability for the system to be used by several users to control
and communicate simultaneously from a distance. Android
and the fuzzy logic approach were utilized to design the
prototype application. The ICWAS functions according to the
input data for the weather and soil parameters and decides
how much water to authorize, for example, by periodically
turning on or off the water tunnels.
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FIGURE 4. Edge computing with blockchain technology.

Moreover, the ICWAS adjusts the temperature level,
humidity, weather, light intensity, and the content of the water
in the soil by depleting sensors. Then the gathered data is
sent to the server via WiFi in order to provide specified
guidance for watering and continuously controlling the health
of the plants on smart devices using the proposed application.
On the other hand, the proposed system considered a limited
amount of plants for modeling, and the related data is
collected locally in order to monitor the health of plants
accurately, and after that give recommended requirements
in order to guide the farmer efficiently. In addition, the
application of ICWAS is capable of intelligent monitoring
and managing the quantity of water in smart devices. This
experiment covers a group of plants namely onion, mint,
cucumber, garlic, radish, chili, and tomato. The result of the
experiment is that the suggested system has high scalability
and security and it is capable of controlling the operation
of watering plants, it offers multiple uses for users, and
monitoring and interaction can be available remotely. The
judgments were made by applying intelligent fuzzy logic
according to the input parameters. it is notable that the system
can also notify users in terms of turning the water off or on.

The fourth experiment in this survey is introducing a case
of a smart home that is using blockchain techniques with
EC. The case is about applying a Blockchain framework for
IoT through EC technology. Currently, the communications
in IoT architectures are complex, low level of security,
and centralized. Furthermore, data reliability still has issues
such as communications network overload, data missing,
malicious data inserted, and the power of overload computing
in the central node. This experiment is presented a novel
architecture based on the blockchain with EC technology by
adding a new layer in EC as well as a novel algorithm in order
to enhance the quality of data and detect the failure of data.

the network in the smart home is controlling all activities and
all data collected should be sent and stored in the blockchain.

Thus, all available features of blockchain can be achieved.
All smart devices linked to the network are equipped with
sensors and Raspberry Pi to control these sensors. Each one
of the smart devices is modeled by different transceivers and
has the ability to capture the data and combine it in the
network. The sensor combines a LIS3DH-model accelerom-
eter that is capable of measuring acceleration across a range
of values (between 0 and +/−16g). Moreover, the sensor
is automatically checked for employment conditions so that
accuracy may always be preserved. In terms of temperature
control, integrating the TC1047A ultra-low power consump-
tion sensor authorizes temperature management. As the
system is also integrated with a positioning system that uses
GNSS networks to geolocate data utilizing the MAX-M8Q
model from the maker of u-blox, which can handle single
signals from the GPS, Galileo, and GLONASS standards.

For the energy consumption aspect, an ATSAMR21G18A
microcontroller (MCU) from Microchip company is used
to control energy consumption utilizing a non-invasive Hall
effect sensor. The SCT- 013-000 is capable of handling
energy consumption up to 100Awith a dielectric resistance of
3KV. The MCU applies the IEEE 802.15.4 communications
protocol in conjunction with the ultra-low power ARM
Cortex-M0+ architecture to enable interactions across the
open thread network. The Raspberry Pi 3 is applied as a router
for cutting-edge technology. On the other hand, in order
to have communication with all sensors in the network,
the Raspberry Pi 3 combines an open thread platform
enabling the device the CC2652 from the manufacturer Texas
Instruments that eases the functionality of all sensors in the
network, and that because of its open drivers. Therefore, that’s
how Raspberry gathered the information from the blockchain
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TABLE 4. The result of using blockchain in edge computing.

framework for IoT data quality by using EC architecture
[3]. After all the information mentioned above, the proposed
architecture is improving the data security in the system of
the smart home.

The fifth experiment of using blockchain in EC aims to
improve the security aspect. EC is considered as a critical
tool for digitization in recent years. However, securing the
data using EC technology is facing difficulties, especially in
wide areas. Therefore, a new mechanism is proposed to solve
the security matter, which is about combining blockchain
technique and coding in EC in order to enhance security and
reliability. The concept of this experiment is distributed into
three stages:
1) Based on the three-tier EC architecture and the require-
ments of data security storage, this experiment proposed a
hybrid storage architecture and a model that adapted to the
paradigm of EC.
2) Concentrating on using all advantages in data storage for
edge devices and the services of cloud storage. The idea here
is to design a global blockchain in the cloud service layer and
the terminal of the IoT there is a local blockchain technique.
3) The proposed scheme introduces a mechanism for
checking the validation hash values of data to guarantee the
probity of the data collected in the global blockchain. After
applying the above stages the result is that the renovation
coding has been used to improve the data storage reliability.
Then, a second verification is done by the local blockchain
that is designed on the terminals of the IoT. Finally, the data
stored in the cloud might be compared to the data in the
nearby blockchain for the seek of verification, thus ensuring
the security of the data. Due to the remaining energy of
devices, the regeneration coding selects the terminals based
on who is repaired with recovering data, and as a result, the
development of each device resource within the EC can be
done and avoiding the waste of resources which refers to
energy efficiency [88].

Experiment number six introduces an architecture to
improve the quality of service in EC by applying blockchain
technology. The modern network management layer con-
siders management and orchestration as key components,
with multi-domain orchestration being particularly useful for
simplifying infrastructure operations and enabling the faster
implementation of network services. However, resource

supply, which involves optimizing the network and fulfilling
multi-limitation quality of service (QoS), remains a signifi-
cant challenge. This experiment proposes an architecture that
addresses this challenge by using multi-domain edge orches-
tration (MDEO) combined with blockchain technology. The
MDEO executes a dynamic end-to-end (E2E) network slicing
algorithm that enables secure and isolated multi-tenant net-
work infrastructure provisioning, based on multi-constraint
QoS. The algorithm first determines the optimal network
slice topology and then structures the virtual network
functions accordingly while meeting the multi-constraint
QoS requirements. Transparency, trust, and automated
service-level agreement fulfillment are all can be possible
through the utilization of smart contracts and blockchain
in the telecommunication sector. The Multi-Domain Edge
Orchestrator proposal was explained, including its ability to
offer end-to-end (E2E) efficient services in 5G networks.
However, ensuring that service level agreements (SLAs) are
correctly enforced is a complex task that can lead to errors
and delays if not handled correctly.

In addition, SLAs may also be interpreted in different
ways, which may lead to disagreements. Transparency also
requires real-time data validation, however, this is not
always possible. An orchestrator component-based multi-
constrained E2E method is envisaged to avoid these issues.
However, in the telecommunications sector, trust connections
are crucial, and some network service providers might not
trust the orchestrator. To solve these problems, the proposal
introduces the concept of blockchain, specifically hyper-
ledger fabric. Blockchain will manage all records on each
domain edge orchestrator (DEO) and MDEO, forming a
distributed ledger. The idea additionally makes utilization
of smart contracts to include legal agreements in the
system, allowing for automatic fulfillment based on specified
conditions. The framework includes SLA management,
network slicing, multi-domain edge orchestrator, and multi-
constrained E2E path on distributed ledger technique. The
network slicing module distributed the physical network
at an E2E level, enabling ideal traffic grouping, isolation
from other tenants, and resource configuration at a macro
level. SLAs are defined as utilizing smart contracts on the
blockchain, and the network is distributed into categoriza-
tions based on the E2E level.
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The MDEO computes all possible E2E paths and selects
the best path that fulfills all constraints, finally sending data
to the blockchain. Combined services and RSVP are applied
to address context additive service restrictions including
latency reduction, packet loss, jitter reduction, pricing,
and hop count as well as non-additive service limitations
like bandwidth, DEO restriction, and country restriction.
A simulated experiment was conducted on the system and
the proposed framework’s burst and response times were
examined using various distributions. The results in both
instances indicate that the behavior follows a lognormal
distribution [89].

The following experiment which is number seven in
this survey has introduced a certificateless signcryption
mechanism using blockchain with EC technology to improve
security. According to the limited computing capacity and
energy of EC devices, collecting information promptly while
ensuring information authenticity and traceability can be
challenging. The certificateless signcryption mechanism can
address these concerns as it can simultaneously achieve
encryption and signature, but existing mechanisms have
either security problems or high computational costs. To solve
these issues, a novel certificateless signcryption mechanism
is proposed that incorporates a bilinear pairing operation in
public key generation, reducing the computational cost and
improving public key security.

Furthermore, blockchain is leveraged as a public key
directory to enhance resistance to tampering with device
public keys by illegal consumers. Contributions include
designing a blockchain-based certificateless signcryption
method that solves the key escrow problem, implementing
both encryption and signature to guarantee confidentiality
and unforgeability, and providing security proof under certain
assumptions. The method is compared to eight related
methods and demonstrated to be efficient and effective.
Additionally, a lightweight blockchain is designed for EC
environments and the method is embedded to demonstrate
practicality. The comparative analysis indicates that the
suggested scheme achieves better results in efficiency and
security compared to existing schemes. The operation of
signcryption and unsigncryption uses the least amount of
computation, making it an appropriate option for the EC
environment [90].

Experiment number eight proposes a new decentral-
ized architecture in the smart vehicular field to enhance
network performance. Smart vehicles are anticipated to
possess complex, high-dimensional applications that require
significant resources. These applications, including platoon
control, AI-based pedestrian detection, fuel scheduling, and
augmented reality gaming, serve various user preferences
and boost safety and efficiency. The intensive computational
requirements of these applications pose a challenge for
resource-limited vehicles. Vehicular EC (VEC) networks
are capable of providing cloud-like computing experiences
at the edges of vehicles by using roadside units (RSUs)
and MEC servers have the ability to achieve the necessary

requirements of throughput and latency. Furthermore, the
rapid advancements of AI algorithms have accelerated the
development of intelligent VEC (IVEC) infrastructure.

Due to its centralized governance and black box com-
putation, IVEC is capable of attacks like bogus com-
putation feedback, unfair or biased resource allocation,
and other issues. The utilization of edge consumers, such
as automobiles, with a computation verification option is
suggested as a way to utilize edge consumers and leverage a
decentralized architecture created on blockchain to maximize
resource management transparency and solve security flaws.
In addition, a secure IVEC federation mode is proposed
for load balancing to address the issue of unbalanced load
distribution.

The main challenges associated with these solutions are
highlighted, and promising research directions are briefly
outlined to attract the interest of concerned stakeholders and
parties within the realms of the blockchain and EC domains.
The proposed decentralized system adopts a hierarchical
architecture. Smart cars and other roadside devices, such
as street cameras, are part of the bottom layer, referred
to as the task creation layer, which continuously generates
resource-intensive computing tasks for the infrastructure on
the edge. This layer seeks a service offload to start the trans-
action operation. Every task that is offloaded is regarded as
a service for edge infrastructure. A permission chain known
as EdgeChain is formed by numerous RSUs/access points
(APs), along with the accompanying edge servers, at the
mid-layer/edge layer within a defined region. EdgeChain
holds information that corresponds to each service request,
including timestamps, names of linked entities, hashes of
computation results, and the amount of server resource
allocation.

In order to reduce human interference, this chain automates
each level of the operations and ensures transparency in
resource orchestration. To equilibrium loads among edge
servers, an edge federation layer is designed on top of the
edge servers. While the entities establish a permissioned
network to store trading data into FedChain (a consortium
blockchain formed by entities of the federation layer), this
federation layer also holds numerous edge servers and
a certificate authority (CA). As a result, the suggested
architecture is based on a blockchain system and is organized
hierarchically to improve impressionability in resource
management and allow edge clients, such as vehicles and
roadside equipment, to verify computations. Additionally,
a secure computation trading model is suggested within
the IVEC framework to expand edge computation capacity
horizontally and manage unbalanced load distribution more
effectively [91].
Experiment number nine uses blockchain with EC to

improve security and privacy. The volume and variety of
data in-vehicle networks are growing, allowing sophisticated
applications including developed driving safety and enhanc-
ing existing services through data sharing and analysis.
Mobile EC and vehicular networks can be utilized to design
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vehicle EC and networks (VECONs), which can offer strong
computing and storage resources. However, it is not possible
to totally trust roadside units acting as EC servers, creating
significant security and privacy issues for these platforms.
To solve these issues, consortium blockchain and smart con-
tract technologies can be utilized for secure data storage and
sharing in VECONs. These technologies avoid unauthorized
data sharing and provide an efficient solution for secure
and transparent transactions. Additionally, a reputation-based
data-sharing scheme is proposed to guarantee high-quality
data sharing among vehicles.

The reputation of vehicles is likely controlled by apply-
ing a three-weight subjective logic model. The proposed
method makes use of smart contracts to guarantee the
reliability and security of data sharing in the automotive
blockchain. Due to their distributed nature, smart contracts
are blockchain-based programs that automate multiple-step
procedures and cannot be changed or halted. This improves
the vehicular blockchain’s reliability, effectiveness, and
security. On the vehicular blockchain, two smart contracts—
data storage smart contract (DSSC) and Information sharing
smart contract (ISSC)—are implemented to enhance secure
and decentralized data sharing.

The outcome of this experiment has led to the presentation
of a secure peer-to-peer (P2P) data-sharing system for
networks and computing in vehicles. In order to save and
share data securely and effectively, smart contracts and con-
sortium blockchain technology were used, avoiding the use
of unlicensed second-hand data sharing. A reputation-based
data-sharing scheme was proposed using the three-weight
subject logic (TWSL) model, which considers interaction
frequency, event timeliness, and trajectory similarity to
accurately manage the reputation for high-quality data
sharing among vehicles. As a result, during the data sharing
process in VECONs, cars can choose the best data providers
with high-quality data. This technique guarantees the security
of data sharing and storage, based on the security analysis.
The benefits of the proposed TWSL scheme over conven-
tional reputation schemes in identifying aberrant vehicles
to enable secure data sharing were shown by numerical
results [92].

A secure and effective V2G energy commerce framework
for CPSs is proposed in experiment number ten in this
survey, by integrating blockchain, EC, and contract theory.
The framework included a contract-based incentive method
to encourage electrical vehicles (EVs) to be involved in
energy commerce and energy commerce between EVs and
Local energy aggregators (LEAGs), which was secured by
exploiting consortium blockchain. A task offloading tech-
nique relying on EC was also suggested in order to minimize
the computational strain on LEAGs and raise the likelihood
that blocks will be successfully designed. On the other hand,
the allocation problem of computational resources is modeled
as a two-stage process: firstly, a Stackelberg leader-follower
game is utilized, and secondly, the best methods are found by
applying the backward induction model.

The efficiency of the suggested framework is then
assessed utilizing theoretical analysis and numerical results.
Theoretical research and numerical results prove that the
performance of the suggested framework is improved in
terms of contract viability, task offloading, and security.
The experiment found that the suggested framework allowed
for effective energy commerce despite information asym-
metry, with the incentive-compatible contract effectively
eliciting asymmetric information of the EV kind. The
Convex-Concave procedure (CCP) based contract optimiza-
tion algorithm successfully maximized the expected utility of
the LEAG, but further research is recommended since the
initial point’s selection had a substantial influence on the
convergence performance of CCP. Furthermore, simulation
results presented that the utilization of ECmight significantly
increase the success probability of block generation, raising
it by 124.6% with the presence of eight LEAGs [93].

This experiment which takes no.11 in this survey presents
a design named Multi-Camera Multi-Hypothesis Track-
ing (MC-MHT) framework that is integrated with the
Multi-Camera TrackingChain (MCTChain) which is a per-
spective of blockchain transaction. This integration improves
the limitation of the communication bottleneck and com-
putation resources of the centralized curator and improves
security and privacy compared to the traditional method
named Multi-Camera Multi-Object Tracking (MCMT). The
mechanism of MC-MHT is about aggregating all raw video
data and distributing tracking tasks to each camera to be
expanded flexibly within the EC environment to ensure
efficiency and guarantee security and privacy.

In order to lower the danger of single-point failure or
Byzantine behaviors, this framework creates a collaborative
architecture powered by MCTChain technology that allows
tracking information to be shared and tracking consensus to
be conducted via dispersed multiple cameras. Furthermore,
the collaborative architecture is authorized by MCTChain’s
technology to exchange tracking data and assume the risk
of Byzantine or single-point failure. The implementation of
MCTChain is done by Python code and adopting a P2P
network for per communications. To verify the effectiveness
of MCTChain, constructing a centralized MCMT system
is done for comparison with MCTChain. The centralized
system consists of multiple cameras and a powerful server,
whereas the MCTChain is formed of edge devices. In order
to more clearly show the latency of each round inMCTChain.
This experiment splits a round into three stages: local tracking
computation, which has a total time overhead, tracking
transactions, and blockchain and according to the result of
this experiment, the time efficiency is stable [94].

C. SUMMARY
The effects of integrating two cutting-edge technologies
namely blockchain technology and AI techniques into the EC
architecture are covered in this section. Eleven experiments
under different circumstances and with a different application
were given for each technique. Afterward, we compiled all of
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the experiment’s findings and displayed every experiment’s
impact by putting them on tables to illustrate the different
impacts on every field. Table 5 displays an overview of the
publications that have been used in this section concerning
technology.

TABLE 5. Blockchain and AI summary.

VII. FUTURE DIRECTIONS
In terms of future directions, by conducting a comprehensive
assessment of the range of research outcomes in EC, it has
been determined that there are still some crucial challenges
to be investigated.

A. SECURITY AND PRIVACY
This survey outlined various types of attacks in EC and
discussed the potential solutions for detecting and improving
them through the use of AI and blockchain techniques.
However, security and privacy still need more investigations
in the EC system. Although traditional security frameworks
have been extensively developed over the years and are
generally effective at defending against attacks, the security
terminologies used within these frameworks are not always
capable of addressing the modern-day attacks that are
frequently encountered in EC systems. As a result, adopting
a new approach may reduce the risk of breaches [22].

B. DATA HANDLING
Data handling involves a range of activities including
collecting, storing, analyzing, and sharing information, there-
fore, it poses numerous challenges. One major obstacle is
integrating and making different data formats and structures
work together. Additionally, handling large amounts of data
remains a challenge, as evidenced by recent surveys that
identified data overload as a key issue. Furthermore, with
the rapid growth of IoT devices, massive amounts of data
are being downloaded and uploaded through edge devices.
This means that the capabilities of these devices must be
reliable to effectively manage the huge volume of data being
collected [95].

C. ENERGY EFFICIENCY
In the upcoming era, networks will become increasingly
intricate and require significant energy to power billions
of interconnected devices. Currently, most IoT devices are
battery-powered or operate in resource-constrained envi-
ronments. As a result, energy efficiency is essential to
prolong battery life, reduce energy consumption, reduce

operational costs, and optimize device performance. As it
would be impractical to regularly change or recharge the
batteries of such a vast number of devices. Consequently,
energy efficiency becomes imperative for future networks
and devices. Furthermore, it is worth noting that the
number of IoT devices is expanding at a rapid pace, and
ensuring their long-term functionality calls for a focus on
energy efficiency. Additional research and investigation are
necessary to adequately address the specific requirements of
certain applications, for example, the military sector [96],
[97].

D. MOBILITY
The mobility of IoT devices is still considered an open
challenge, the quick growth in the number of mobile devices
connected to the network edge has introduced critical chal-
lenges, despite the added flexibility that mobility provides
to users and applications. Specifically, the disconnections
between edge devices and the edge network can often be
attributed to mobility, which can significantly degrade the
overall quality of service by impacting key parameters such
as loss, delay, and bandwidth [22].

E. HETEROGENEITY
In the current EC system, the environment has become highly
heterogeneous. Due to the increasing number and diversity of
connected devices with varying hardware limitations, includ-
ing mobile devices such as smartphones, and unmanned
vehicles in conjunction with the propagation of multiple
network access technologies such asWi-Fi,WiMAX, 4G, 5G,
and beyond that aims to combine existing devices with the
IoT domain [97], [98].

F. RELIABILITY
Finally, the last future direction in this survey is the reliability
of the EC system, due to dynamic and unpredictable
environments, resource constraints, distribution complexity,
network connectivity issues, edge device failures, and the
demand for real-time processing, achieving reliability in EC
is still a significant challenge [99].

G. QUANTUM COMPUTING
Considering the principles of quantum physics, over the
past few years, the quantum computing (QC) community
has accomplished a significant milestone. Basically, QC is a
cutting-edge branch of computation that makes possible tasks
that were previously considered unachievable for classical
computers by using quantum bits (qubits). Therefore, the
integration of the current network design and QC presents
several substantial challenges. Firstly, developing optimized
quantum algorithms for network settings is necessary to
involve quantum computers in the architecture of the network
while taking into account the particular limitations of
network devices. It also requires the successful fusion of
network devices with quantum hardware [100]. Secondly,
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it is challenging to guarantee the security and privacy of
a quantum system, which demands strong cryptography
methods and quantum-safe protocols. lastly, network designs
and protocols must be carefully considered to be capable
of handling seamless interaction between quantum network
devices and central QC resources [101].

H. SUMMARY
As addressed in the section, several significant challenges
in the EC sector need more attention and research. Security
and privacy are still primary challenges, and new strategies
are frequently required because outdated frameworks are
incapable of handling contemporary threats. On the other
hand, handling large amounts of data and combining different
formats can be challenging when it comes to data processing,
especially with the rapid growth of the IoT domain. Also,
with limited resources and an ever-expanding IoT device
landscape, energy efficiency is essential for powering large
and linked networks. Moreover, the mobility of IoT devices
presents issues with service quality and disconnections
which need more investigations. Heterogeneity is caused by
different devices and network technologies, which makes
the challenge more critical. lastly, establishing reliability
in dynamic, resource-constrained, real-time EC systems is
a substantial continuous difficulty. Table 6 presents the
summary of the papers that have been utilized in this section
in terms of the challenges.

TABLE 6. Open challenges summary.

VIII. CONCLUSION
In summary, the involvement of blockchain and AI in
edge computing architecture is expected to integrate seam-
lessly in the future. Applying AI technology will improve
edge devices’ intelligence, on the other hand, blockchain
technology would offer a transparent and safe foundation
for decentralized interactions. Therefore, by making edge
computing applications faster, more secure, and intelligent
edge computing applications made possible by this joint
evolution, a number of industries could undergo a complete
transformation. This survey overviewed the most recent
applications domains in edge computing in recent years
and presented the impact of combining them with the
architecture of edge computing, these applications are the
maritime domain, aerial systems, IoT domain, and Industry
4.0. Furthermore, this survey investigated the influence of
integrating the techniques of AI and blockchain in the
paradigm of edge computing and ended up with the results

of eleven experiments in each technique in order to present
the added features in the edge computing paradigm. Finally,
this survey has considered some open challenges and future
directions that can be investigated in the future to improve
the performance and reliability of the edge computing
architecture.

APPENDIX
IoT
The rise of the IoT paradigm is one of the most remarkable
phenomena of the past few years. The IoT is a rapidly evolv-
ing sector of technology that combines cutting-edge protocol
and communications technologies with speedy and intelligent
software to analyze data and provide computing services.
These services utilize cloud and EC architectures that are
tailored to the needs of the customer and the level of service
for a variety of use cases across different domains [102].
The ability to have a video chat with family members
living on different continents was once unimaginable a few
decades back, but now it has become a common occurrence.
To earn a more in-depth comprehension of the scale of
IoT, consider the following statistics; Around 6.1 billion
people worldwide used smartphones in 2020, and there
were reportedly 50 billion connected devices. In addition,
it is anticipated that there will be 27 billion machine-to-
machine links across various industries by 2027 [103]. The
reason behind this notable transformation can be attributed
to the declining cost of technology and the emergence
of devices that possess new and improved capabilities.
Additionally, because of the ease provided by smartphones,
it is now feasible to complete things like ordering a cab,
paying bills, sending emails, and transferring money with
just a few clicks [104]. Furthermore, the development of
different communication protocols and the miniaturization
of transceivers have made it feasible to transform previously
isolated devices into communicating ‘‘things’’ [105].

IoT industry represents a significant advancement in
science and technology, monitoring the growth of electronic
gadgets, the Internet, and the mobile network. The IoT
enables some real-world attitudes and behaviors to become
intelligent, practical, and effective by integrating virtual
information with reality [106]. IoT applications are being
used more and more frequently in a number of industries,
such as smart factories, wearable technology, smart homes,
smart surroundings, and so on [31]. The primary target
of IoT technology is to simplify our daily lives and
make things more convenient by saving time, money, and
energy, ultimately resulting in reduced expenses for various
industries. However, due to the extensive integration of IoT
devices into our daily tasks, a significant volume of data
is being generated from these devices [107]. The properties
of data produced by IoT devices include polymorphism,
heterogeneity, timeliness, extensive magnitude, accuracy,
huge scale, and rich semantics [35].

The processing and storage of this data may be inefficient
because IoT devices have limited resources. In order to
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get over these constraints, the IoT domain must use CC
technology. In the context of resource-limited IoT devices,
it becomes crucial to explore a new task-scheduling strategy
in order to enhance performance specifically within the
mobile communication network [108]. IoT devices generate
a continuous stream of data from various applications,
which is stored in the cloud system. However, certain
applications in different industries require low latency or
real-time processing, which cannot be effectively handled by
CC. In the IoT domain, a viable approach has emerged to
handle the sensitivity of latency and context-aware services.
By relocating the competition of the data and the service
supply as well from the centralization of the cloud to the
edge, this solution addresses the limitations of CC [109].In
the context of EC, the platform of EC offers architecture
and software support for computing applications at the edge,
which leads to a significant reduction in latency and improved
efficiency [110].

EC is designed to fulfill these requirements by providing
the necessary capabilities at the network’s edge. The
paradigm of EC includes several approaches such as cloudlet,
FC, andMEC [15], [16] which offer comprehensive solutions
to CC architecture, reducing latency at the edge of the
network. In other words, the EC model is a prototype
that encompasses cloudlet, FC, MEC, and micro clouds.
Resources like storage, computational processing, and power
are shifted closer to the edge of the network to reduce
latency and increase availability, overcoming the limitations
of the CC paradigm. The management of millions of sensors,
devices, and related resources presents a complicated set of
problems, and as the IoT sector grows rapidly, EC is proving
to be a practical solution. In other words, in contrast to
CC, EC moves data computation and storage to the edge
of the network which is located closer to the consumers,
this technique decreases traffic flows and diminishes the
bandwidth requirements in IoT. Furthermore, EC reduces the
latency between the edge/cloudlet servers and consumers,
thus the response will be in a shorter time for real-time
IoT applications compared to traditional cloud services.
Additionally, by lowering the cost of workload transmission
and shifting computational and communication overhead
from nodes with limited battery resources to nodes with
significant power resources, nodes with limited battery
resources can have their lifetimes extended, thus prolonging
the lifetime of the entire IoT system [111].
On the other hand, security and safety aspects have become

crucial verticals in IoT applications [112]. As technology
continues to advance and generate more data from sensors
and high-resolution video cameras, there is an increasing
demand for a scalable, adaptable, and cost-effective solution
to evaluate this content in the aspect of real-time response.
it is notable that due to MEC’s capacity to manage enormous
amounts of data locally, analytics applications can be
hosted close to the data source to improve efficiency, and
performance, and significantly reduce costs. For instance,
the analysis of improved video enables the development and

use of guidelines for different situations to awaken alertness
and take appropriate action. Real-time video analysis can
count the number of items as well as identify them, specify
principles for elements of interest, and event-based rules like
moving into or out of space. By using sound analytics and
extra data from outside sources and sensors, these analytics
can be further enhanced. MEC also makes it possible for
a security solution that is automated, flexible, scalable, and
properly priced. Therefore, the analytics function can offer
flexible extensions to third parties via the integration of plug-
ins, and the solution is made easy to use by permitting video
processing and analytics applications to perform at their best
based on technical and financial considerations [113].

APPENDIX
INDUSTRY 4.0
The fourth industrial revolution, which is known as Indus-
try 4.0, is the digitization and automation of production
processes with the target of improving flexibility, respon-
siveness, and data-driven decision-making. However, the
industrial sector is shifting away from automation and
towards autonomy, but there is currently limited availability
of devices with sufficient processing power to support
autonomy in industrial plants [114]. Industry 4.0 represents
a holistic strategy for manufacturing that leverages the
interconnectivity of the IoT, real-time data access, and
cyber-physical systems. It makes it possible to quickly
and affordably increase productivity. Manufacturing systems
communicate, analyze, and use data in Industry 4.0 to
direct intelligent operations. Additionally, it includes modern
innovations like robotics, AI, augmented reality (AR), and
additive manufacturing [115].
In contrast to Industry 3.0, which is also known as

the digital revolution, Industry 4.0 encourages the use
of cyber-physical systems (CPS) in manufacturing, which
are digital assets capable of operating and interacting
autonomously or with little to no human contact. The
German government coined the term ‘‘Industry 4.0’’ in
2011, and it is expected to bring about significant changes
to how production and supply chain activities have been
conceptualized up until the late 1990s and early 2000s. The
significant shift in the manufacturing industry, known as
Industry 4.0, is supported by the latest advancements in
information and communication technologies (ICTs), which
are transforming our daily lives. Modern control systems are
capable now of gathering and handling enormous volumes
of real-time data, optimizing production procedures, and
raising product quality because of the growing capability of
digital technologies. Additionally, distributed manufacturing
equipment makes use of communication networks to enhance
production procedures, lower energy usage, and greenhouse
gas emissions, and reduce production pipeline downtime by
using preventive maintenance techniques [116].

Bymerging sophisticated information processingmethods,
communication technologies, and future-focused strategies,
Industry 4.0 gains the capability to transform a factory into
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a smart facility. However, the great degree of automation,
adaptability, and complexity in such an intelligent plant
also presents significant reliability and security challenges.
To overcome these challenges, innovative methods for
predictive maintenance that increase system reliability can be
created using industrial big data produced by many sources
of sensors, system intercommunication, and outside-linked
data [117]. On the other hand, Industry 4.0 heavily relies
on the IoT and CC for monitoring and automating industrial
processes. In this context, early failure detection of the
assembly line equipment is crucial since it reduces downtime
and boosts productivity.While time-sensitive industrial appli-
cations such as industrial robots or unmanned/guided vehicles
used to deliver tools and merchandise may have strict QoS
requirements, current defect detection systems are primarily
cloud-centric andmay not be able to satisfy those criteria. The
development of fresh solutions in the complementary fields
of processing and communication is being driven by this
issue. While EC solutions are being looked into to minimize
processing latency and conserve bandwidth, time-sensitive
networking (TSN) and 5G standards are being examined
to reduce data acquisition latency and ensure deterministic
message delivery [118].

APPENDIX
BLOCKCHAIN CHARACTERISTICS
By using the following features in the network, the efficiency
will be improved, quicken processing time, and secure the
data.

A. DECENTRALIZATION
The transaction in the blockchain technique is different
from the conventional mode that should be authorized by
the central authority. Therefore, the advantage of using the
decentralization character is to avoid the central authority
and allow direct user-to-user transactions, and all information
about the transaction process should be recorded, and all
members in the transaction can have a copy of the record
which is available anytime. In addition, the blockchain
is continuously expanding since miners add new blocks
to it approximately every 10 minutes to record the latest
transactions [119].

B. SECURITY
In a blockchain, new blocks can only be added to the
chain after they have been successfully validated by the
decentralized network of nodes through a consensus mech-
anism. This process makes certain that the blockchain’s
integrity is maintained and that no fraudulent transactions
are added to the ledger. The cryptography techniques used
in the blockchain also ensure that the data in each block is
secure and cannot be changed or tampered with. Overall, the
combination of cryptography and decentralized consensus
makes the blockchain a highly secure and trustworthy ledger
for recording transactions [120].

C. IMMUTABILITY
One of the main characteristics of blockchain technology is
immutability, which means that once data is transferred to the
blockchain, it is not possible to be changed or removed. The
decentralized and distributed nature of the blockchain makes
it challenging for any one party to change the data without
consensus from the majority of the entire network [121].

D. SMART CONTRACT
A smart contract is another significant aspect of the
blockchain, the idea is about starting into impact if the
conditions and requirements are fulfilled. Smart contracts
on blockchain technology can offer a safe and effective
way to carry out contracts and automate procedures. Self-
executing computer programs known as ‘‘smart contracts’’
can automatically enforce the terms of a contract between two
parties without the use of a moderator or manual participa-
tion. By using blockchain technology, these smart contracts
can be stored on a decentralized, tamper-resistant network,
providing a high level of security and transparency [122],
[123].

Blockchain as a service was first introduced in the digital
currency of Bitcoin. Nowadays, because of the advantages of
the blockchain, the technology has attracted various applica-
tions to improve the network’s performance and to support
the smart digital contract in order to improve decentralization
in applications [2], [124]. Applying blockchain technology
in the EC paradigm promises to add several features to the
network such as improving the storage resources, security,
and the capability of computation in the servers in the EC
mode based on the property of consensus of the blockchain
technology.
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