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ABSTRACT Autonomous vehicles (AVs) represent an exciting frontier in transportation, promising
increased safety and efficiency on the roads. However, like any technological advancement, they are not
immune to accidents. Understanding the severity of accidents involving AVs is crucial for enhancing their
reliability and ensuring public trust in this transformative technology. To address this challenge, our study has
employed cutting-edge natural language processing techniques combined with machine learning to predict
the severity of accidents involving AVs. Our study has contributed significantly by creating a novel dataset
derived from post-disengagement accident reports, covering the years 2019-2022. This dataset comprises
detailed descriptions of accidents, sensor information, and other critical parameters. Moreover, we have
introduced a novel approach called Multi-Distance Synthetic Technique (MDST) to balance the imbalanced
nature of our dataset, which included only 334 samples due to the rarity of such accident data. Utilizing
MDST for data balancing, we aimed to enhance the robustness of our analysis. Additionally, we employed
Recursive Feature Selection (RFS) to extract a valuable feature set that was crucial in predicting accident
severity. Leveraging this selected feature set, we trained an ensemble model, which remarkably outperformed
expectations, achieving an impressive accuracy score of 0.92.

INDEX TERMS Autonomous vehicles, feature selection, machine learning, accident severity prediction,
data balancing.

I. INTRODUCTION
The advent of autonomous vehicles (AVs) has transformed

an estimated 1.35 million people succumb to road traffic
accidents annually [3]. In the United Kingdom, recent

the landscape of transportation, promising increased effi-
ciency and safety on our roads [1]. These vehicles, equipped
with state-of-the-art sensors and artificial intelligence,
operate with minimal human intervention. However, as the
deployment of AVs accelerates, so does the urgency to
address safety concerns associated with these innovative
technologies. Despite advancements in autonomous driving
systems, accidents involving AVs remain a reality [2].
According to the World Health Organization (WHO),
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statistics indicate that car accidents resulted in 1,460
fatalities, accompanied by a total of 115,584 reported injuries.
Among these injuries, 22,069 were classified as severe,
while 92,055 were categorized as minor. To ensure the road
safety of AVs and reduce the accident rate, it is important
to understand the factors contributing to the severity of
these accidents. This understanding is crucial for developing
effective safety measures and enhancing the overall reliability
of autonomous transportation.

AVs have emerged as a transformative solution for
establishing a secure and highly efficient urban transportation
system. Forecasts by researchers at the US Department
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of Transportation (DoT) [4] suggest that fully autonomous
vehicles, relying on pre-existing street maps and onboard
sensors, have the potential to reduce traffic fatalities by
as much as 94%, particularly in cases linked to human
errors. This notion is undeniably attractive, prompting a
critical inquiry: ‘What is the current level of safety in
AVs? While extensive research has focused on the safety
of automation technology, examining its impact on traffic
safety, congestion [5], legal and regulatory aspects of AV
deployment in emergency situations [6], and addressing
cybersecurity and communication security [7], there remains
a significant gap in research addressing specific issues.

Many researchers have been actively engaged in the
analysis of AVs road safety, exploring factors contributing
to road accidents through various state-of-the-art methods.
For instance, the study by [8] focuses on predicting car
crash severity. This research draws on data obtained from
the California Department of Motor Vehicles (CA-DMV),
covering AVs disengagements and crashes spanning the years
2019 to 2022. Similarly, another study, [9], delves into
the involvement of vulnerable road users (VRUs) in AV
accidents. The primary objective of this research is to gain
insights into the factors associated with specific crashes
involving AVs and VRUs. Further, the study conducted by [8]
contributes significantly to the field through an extensive
examination of freeway traffic accident severity prediction.
Their approach employs a multi-dimensional and multi-layer
Bayesian network to unravel the complexities of accident
severity prediction.

Despite these contributions, there is a noticeable gap in
research concerning AVs accident severity prediction using
machine learning. Addressing this gap could substantially
enhance the reliability of AVs systems, contributing to
the development of more robust and safer autonomous
transportation systems. To shed light on the current safety
landscape, this research aims to predict the severity of AV
accidents using machine learning techniques. By leveraging
data obtained from the CA-DMV and building upon the
methodologies explored by previous researchers, our study
seeks to fill the existing gap and provide valuable insights
into the specific factors influencing the severity of AVs
accidents.

By analyzing relevant features such as vehicle speed,
weather conditions, road type, and sensor data, our model
aims to classify accidents into different severity levels. This
classification can provide valuable insights for emergency
responders, enabling them to allocate resources more effec-
tively and potentially reduce the consequences of accidents
involving autonomous vehicles. Machine learning techniques
have the potential to greatly assist in severity classifica-
tion when it comes to various domains, including road
accidents [10]. By leveraging large datasets and advanced
algorithms, machine learning can effectively analyze and
categorize the severity of incidents. In light of the existing
literature review, we summarize our contributions in this
paper as follows:
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« Developed an innovative machine learning approach for
predicting road accident severity, contributing to the
advancement of AVs safety.

o Generated a benchmark dataset for road accidents
using comprehensive data obtained from the CA DMV
database. The data, initially in an unstructured format
such as reports, underwent extensive preprocessing to
transform it into structured data. This study conducted
a thorough analysis and cleaning to prepare the dataset,
which now serves as a valuable resource for training and
evaluating the proposed machine learning model.

« Proposed a novel oversampling technique, the Multi-
Distance-Based Oversampling Technique (MDST),
to address potential model overfitting caused by the
highlighted imbalanced dataset. Utilized multi-distance-
based synthetic techniques to generate diverse and
realistic synthetic samples. Implemented MDST to
enhance the robustness of the machine learning model
and reduce bias in the dataset.

The following sections of the paper are organized as fol-
lows: Section II provides a comprehensive literature review,
Section III elaborates on the methodology and experiments,
Section IV delves into the outcomes and findings, and finally,
Section V summarizes the conclusion.

II. LITERATURE REVIEW

Machine learning has proven to be a valuable tool in
predicting the severity of road accidents in recent years.
In this section, we review the literature on accident severity
prediction using machine learning, deep learning, and sta-
tistical approaches. Additionally, we identify gaps in recent
literature.

A. SEVERITY PREDICTION USING MACHINE LEARNING
APPROACHES
The study [11] contributes to the existing literature on
predicting road accident severity using machine learning
algorithms. The data was gathered in New Zealand during
the timeframe spanning from 2016 to 2020. Random Forest
(RF) exhibited superior performance with an accuracy of
67.67%. To assess the severity of accidents, the research [12]
delved into a diverse set of mathematical and statistical tools,
complemented by machine learning algorithms. The dataset
was sourced from the UK road accident database. Within
this study, three feature selection algorithms neighborhood
Component Analysis (NCA), Rank Relief F, and the uti-
lization of Partial Dependence Plots along with Individual
Conditional expectations were used. For binary classification,
the research constructed Support Vector Machine (SVM)
models, employing a Gaussian Kernel, also recognized
as the Radial Basis Function (RBF) kernel both models
demonstrated an accuracy rate of 89.9%.

The study [13] employs descriptive analysis and ML to
analyze the determining factors with the potential to cause an
effect and predict the severity of road accidents. The study uti-
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lized a comprehensive dataset on car accidents, gathered from
February 2016 to December 2019, encompassing 49 states
of the United States. Among machine learning models, the
RF algorithm performs well achieving a high accuracy rate
of 97.2%. Similarly, another study [14] contributes to road
traffic safety by demonstrating the effectiveness of data
mining techniques in analyzing accident data and extracting
valuable knowledge. The accident data was collected from
the UK road traffic accident repository website which is
accessible in the format of an Excel spreadsheet. The model
J48 performs well. Another study [15] provides valuable
insights into the application of machine learning to predict
the severity of road traffic accidents. The authors of the paper
utilized an RF model along with various data augmentation
and feature selection techniques. No sampling + PCA (80)
with 82% shows its exceptional performance as compared
with ML algorithms. In the study [16] authors explore the
use of machine learning algorithms for severity predic-
tion of traffic accidents. The study utilizes the TRAFFIC
ACCIDENTS_2019_LEEDS dataset obtained from the Road
Safety Department of Transport. RF achieves an impressive
accuracy of 93%. In study [17], authors highlight the
limitations of using conventional descriptive statistics in
identifying cause-and-effect relationships and developing
predictive models for road accidents. The accident data was
obtained from the Ministry of Economy and Finance (MEF)
through a survey conducted in 2017 by the Financial Services
Quality Observatory (OQSF) unit. The study employs
supervised learning algorithms out of which (SVM,85.60%)
performed exceptionally well.

The study [18] focuses on evaluating ML models to
predict road accident severity using the latest road accident
dataset from New Zealand. RF emerged as the top performer,
exhibiting the highest accuracy(81.45%), precision, recall,
and F1 score. The authors [19] highlight the significance
of RTAs as a major cause of fatalities, particularly among
children and youth, and emphasize the need for effective
prediction models to mitigate this problem. The dataset used
in this study consists of 11,014 traffic accident records from
the Lebanese Internal Security Forces (ISF) for the years
2016-2017. The experimental results presented in the article
demonstrate that the SVM model with RBF achieved the
highest accuracy of 86%. The core work of the [20] by
Miaomiao Yan and Yindong Shen focuses on addressing
the challenge of accurately predicting the severity of traffic
accidents. Within this study, a hybrid model named Bayesian
optimization with random forest (BO-RF) is employed for
forecasting traffic accident severity. These findings highlight
RF(95.8%) the superior predictive capabilities.

The study [21] effectively addresses the issue of imbal-
anced crash datasets and provides a practical solution by
proposing the use of random under-sampling of the majority
class (RUMC). The study utilized several machine learning
algorithms to predict crash severity, including random trees,
K-nearest neighbor (KNN), logistic regression (LR), and
RF. The KNN algorithm demonstrated a true positive rate
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of 18.3% for predicting fatal crashes and injuries in the
imbalanced models. However, the RUMC-based models
significantly improved accuracy, with a true positive rate
of 57.2% for a KNN. The author in [22] presents a
comprehensive study on the application of machine learning
algorithms for predicting accident severity in smart trans-
portation systems. The authors address the increasing concern
of road accidents and aim to identify specific features that
contribute to accident severity. The author utilized various
machine learning models such as LR, Artificial Neural
Network (ANN), Decision Tree(DT), and KNN to predict
accident severity in a smart transportation system. The
study found that the DT model achieved the highest mean
accuracy of 71.44%, with a standard deviation (SD) of 2.19%.
The study [23] provides a comprehensive exploration of
a critical research problem and its significance, shedding
light on the escalating incidence of road traffic injuries in
African countries. By utilizing a motorcycle crash dataset
from Ghana, the study employs three machine learning
algorithms—J48 DT, RF, and Instance-Based learning with
parameter k (IBk). The findings underscore the superiority
of machine learning algorithms over the MNLM in terms of
accuracy and effectiveness. Notably, the RF-based approach
exhibits the highest accuracy of 73.91%.

In study [24], authors provide valuable insights into the
analysis of road traffic accidents and the application of
classification algorithms in handling accident data. The
study aims to develop a decision support system for road
traffic accident analysis using traditional machine learning
algorithms. The authors used classification algorithms such
as SMO, J48, and IBK, implemented in the Weka software,
to develop a decision support system. The algorithms are
tested on a sample database consisting of over 1,500 accident
items, each with 29 attributes. The experimental results
indicate that the SMO algorithm provides the most accurate
results, achieving 94% accuracy. The study [25] explores the
development and application of machine learning models to
predict the severity of crash injuries. The study focuses on
using 15 crash-related parameters and employs a clustering
technique called fuzzy c-means (FCM) to enhance the
predictive capability of the ML models. Four ML models
are developed: feed-forward neural networks (FNN), SVM,
FNN-FCM, and SVM-FCM. The combined use of SVM
and FCM resulted in an overall testing accuracy of 74.2%,
signifying a higher accuracy using SVM.

B. SEVERITY PREDICTION USING DEEP LEARNING
APPROACHES

The application of deep learning in accident severity
prediction has also yielded significant results, as evidenced
in [28] where valuable insights into the application of
deep learning techniques, specifically ANN, in predicting
accident severity were presented. The dataset comprises over
220,000 accident records obtained from the UK’s Department
for Transport, encompassing the year 2018. The article
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TABLE 1. Summary of literature review.

Ref | Year | Classifier Dataset Accuracy | Limitation
[12] | 2021 LR, KNN, NB, RE | [27] 67.67% The study compared feature importance in this study, but utilizing this
XGB,adaboost information for the model training is a potential future step and a study
limitation.

[13] | 2022 | NCA, KNN, SVM, RBF | [28] 89.9% The study does not quantify the factors responsible for the severity of
road accidents. While the study identifies the most responsible factors, it
does not provide a quantitative analysis or measurement of their impact
on accident severity.

[29] | 2022 | SVM, GB, LR, RF, NB [30] 84.1% Limited evaluation and comparison of the MLP model’s performance
against alternative models or techniques.

[14] | 2022 | LR, DT, KNN, RF [31] 97.2% Generalizability of the findings to a global context may be limited.

[16] | 2022 | RF with (PCA, SMOTE, | [32] 82.0% The potential randomness and human influence in predicting accident

NearMiss) severity, and the lack of a strong correlation between accident severity
and most features used.

[17] | 2022 | SVM,REANN Not open source | 93.0% Include its narrow focus on severity prediction for traffic accidents

[18] | 2022 | RF, KNN, LR, GNB Not open source | 85% Need to explore hyperparameter optimization techniques to enhance
the efficiency of the RF algorithm for improved estimation of accident
severity in Senegal

[33] | 2023 | ANN Not open source | 80% Include the need to compare the accuracy of different machine learning
techniques, validate the model with datasets containing additional vari-
ables such as driver velocity or road speed limits, and explore datasets
with more than three output classes to assess the impact of increased
class diversity on model accuracy

reports that the multi-layer perceptron (MLP) algorithm
outperformed other methods and yields 84.1% accuracy.
Similarly, study [32] offers valuable insights into the appli-
cation of Al-based techniques for predicting and mitigating
the accident’s severity using ANNs. The data was sourced
from the Calderdale government. The authors utilized ANN
as the primary framework and achieved an accuracy of
approximately 80%. Another study [33] explores the use of
advanced ML approaches to predict the severity of traffic
crashes. The study incorporated three advanced machine
learning algorithms: a standard multi-layer perceptron (MLP)
implemented with Keras, an MLP enhanced with embedding
layers, and TabNet. In terms of training duration, the Keras
MLP model demonstrated superior performance, completing
training in 3.45 seconds. This signifies a substantial reduction
of 51% and 93% compared to the MLP with embedding
layers and TabNet, respectively.

C. SEVERITY PREDICTION USING STATISTICAL ANALYSIS

The study [34] offers an extensive investigation into
forecasting the severity of traffic. The study begins by
establishing an XGBoost model and introducing the Shapley
Additive explanations (SHAP) values to explain the model’s
predictions. A Bayesian network-based prediction model
(BNA) is developed relative to the selected variables and
their values. It implies that BNA is effective in predicting the
severity of traffic accidents based on the selected variables
and their values. In investigations [35], [36], [37], [38],
researchers looked at severity from a medical standpoint. The
abbreviated injury scale and injury severity score were used to
quantify severity levels. Human behavior, demography, and
the utilization of safety facilities were among the exploratory
variables. However, certain elements, such as the “driver in
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the loop” issue in AVs, were neglected in previous medical
investigations.

D. LIMITATIONS AND EXISTING GAPS

Most of the researchers in this field have primarily used
statistical modeling and supervised learning techniques in
their studies. Their findings and predictions are based on a
limited set of variables and data sources. While these studies
have identified important factors that affect accident severity,
such as weather conditions, lighting conditions, speed limits,
and number of lanes, they have not taken into account
other potentially influential variables, such as road surface
conditions.

Furthermore, the majority of these studies have relied on
state-of-the-art datasets extracted from autonomous vehicles
at Level 0, where there is no automation. To address real-
world crashes across all levels of automation, from Level
0 to Level 6, our research involves collecting information
from post-accident crash reports. We then utilize various
machine learning and deep learning algorithms, along with
a specially designed data balancing method, to predict the
severity of future accidents in California. Finally, we evaluate
and compare the performance of these models to assess their
effectiveness. Some recent studies have investigated accident
severity prediction employing machine learning methods.
The accuracies and limitations of these recent studies are
presented in Table 1.

lIl. PROPOSED METHODOLOGY

Figure 1, shows the proposed approach flow for autonomous
vehicle accident severity predictions. In the initial step,
we gather real-world automobile accident reports. These
reports serve as our primary source of data, providing valu-
able insights into various accident scenarios, and contributing
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FIGURE 1. Proposed methodology diagram.

to the authenticity of our dataset. Utilizing real-world data
ensures that our models are trained and tested on realistic
accident cases. We extract structured information from
the accident reports and organize it into a tabular dataset
format. This transformation simplifies data handling, making
it suitable for machine learning applications. Converting
unstructured data into a structured format facilitates data
analysis, model training, and feature engineering. In the
preprocessing phase, we address data quality and consistency.
We remove any null or missing values, ensuring the dataset’s
integrity and avoiding errors during model training. Addition-
ally, we employ label encoding to convert categorical data
into a numeric form, a necessary step for most machine-
learning algorithms. Normalization standardizes the numer-
ical attributes of the dataset, preventing certain features from
having undue influence on machine learning models. This
process enhances model stability and improves convergence
during training.

Addressing class imbalance is vital for developing robust
accident prediction models. In this step, we employ a data
balancing approach, which could involve either oversampling
or generating synthetic data. By balancing the dataset,
we ensure that our models do not disproportionately favor
the majority class, thus improving model generalization. Data
splitting is essential to assess the performance of our machine
learning models. We partition the dataset into training and
test sets. The training set is used to train models, while the
test set is reserved for evaluation. This separation helps in
estimating how well our models generalize to unseen data.
We train several machine learning models on the training
data, leveraging various algorithms and techniques. By doing
so, we provide our models with the ability to learn from the
patterns and relationships in the dataset. We then evaluate
model performance using the test data. The metrics used
for evaluation include accuracy, precision, recall, and F1
score, providing a comprehensive assessment of our models’
capabilities.

A. DATASET COLLECTION METHOD

In this study, we curated our dataset related to autonomous
vehicle accidents. Initially, we gathered data from an online
public repository and subsequently conducted preprocessing
to structure the data for model training.
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TABLE 2. Traing and testing sample values distribution before and after
augmentation.

Class Before Augmentation | After Augmentation
Training Testing Training | Testing
AVdamageleve] MINOR 209 28 212 25
AVdamagelevel MODERATE 48 4 211 26
AVdamagelevelNONE 34 1 216 21
Total 291 33 639 72
: Extract Relevant Entries & Save Text
i }q F OCR
| Webcrawler i To CSV file

FIGURE 2. Our data scraping approach.

B. DATASOURCE

In a publicly available digital repository, the California
Department of Motor Vehicles Database (CDMYV) keeps
vehicle disengagement records and crash reports [39]. The
disengagement reports provide useful information, but they
lack unstructured narrative descriptions, rendering them
unsuitable for topic modeling studies. As a result, our
analyses in this paper focus on crash reports, which provide
the following information:

1) Information regarding the automated vehicle’s manu-
facturer, make model, and year, as well as any other
cars involved in the incident.

2) Information on the location of the occurrence, such as
the city, street, and intersections.

3) Information on the movements of the automated
vehicle and other cars involved in the incident.

4) The crash’s date and time.

5) Data on the weather, illumination, and road conditions
at the time of the collision.

6) Identifying the type of object involved in the incident,
such as a car, a bike, or a pedestrian.

7) Documentation of injuries and property damage
received.

8) A narrative explaining the events leading up to the
occurrence.

Our dataset comprises three distinct classes, denoted as
follows:

« AVdamagelevelMINOR (Class 0)

o AVdamagelevelMODERATE (Class 1)

o AVdamageleveINONE (Class 2)
The corresponding numerical representations for these
classes are 0, 1, and 2, respectively. The distribution of
samples for each class is succinctly summarized in Table 3.

C. DATASET DESCRIPTION

During the study duration, the recorded severity levels of
damage sustained by autonomous vehicles were distributed as
follows: no damage (7.14%), minor damage (71.43%), severe
damage (20.41%), and serious damage (1.02%). The assess-
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TABLE 3. Sample values of dataset.

AV Manufacture AV Make | Accident Accident AV damage | AV  damage | AV damage
Country time level level level
MINOR MODEATE MAJOR

0

Aimotive, Inc Toyota Santa Clara 10:00
Aurora Innovation Inc Lincoln San Francisco | 2:52
Waymo LLC Chrysler Santa Clara 6:56
Zoox Inc Toyota San Francisco | 11:16

1 0
0 1
0 0

—| ol

ment of crash severity heavily relies on the kinetic energy
involved in the collision [40], [41]. Before implementing data
augmentation, Table 2 presents the distribution of training and
testing samples. Our dataset has been divided into a 90:10
ratio, allocating 90% for training and 10% for testing.

Table 3 showcases a sample of values, providing an initial
glimpse into the data’s content. This subset offers a starting
point for analysis, enabling insights and informed decisions.
Figure 2 illustrates the process flow for the extraction of
data from digital reports. Using Webcrawler to retrieve the
individual report the original character recognition (OCR) is
used. to extract relevant information from the report.

D. DATA ANAYLASIS

Figure 3 focuses on the number of accidents categorized by
mode, collision type, injury, and property damage. It reveals
that autonomous mode has the highest number of accidents,
rear-end collisions are the most prevalent, and most accidents
result in no injuries or minor property damage. These
findings emphasize the need for preventive measures to
address specific collision types and injury prevention efforts.
While Figure 4 provides statistics on accidents based on
AV manufacturers, AV models, and specific makes. It shows
that Waymo has the highest number of accidents among
manufacturers, Bolt has the highest number of accidents
among AV models, and Chevrolet and Jaguar have the highest
number of accidents among specific makes. These statistics
highlight the need for further evaluation of safety measures
and protocols employed by manufacturers.

Overall, these figures underscore the importance of
enhancing safety standards, rigorous testing protocols, and
effective risk mitigation strategies in the autonomous vehicle
industry. Addressing these concerns is essential for building
public trust, ensuring safety, and facilitating the wider
adoption of autonomous vehicles in transportation systems.

E. DATA PREPROCESSING
In this dataset, we also undertake preprocessing steps,
including the removal of missing values and the application
of encoders for categorical variables. The process of data
preprocessing is essential for enhancing the performance and
effectiveness of machine learning algorithms. It significantly
improves data quality by addressing issues like missing val-
ues, data inconsistencies, and outlier detection. In study [42],
authors extensively elaborated on how clean and reliable data
can minimize the likelihood of noise or bias in the model,
ultimately leading to more accurate results.

Following the removal of missing values is the elimination
of redundant features, and the dataset’s dimensionality is
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Accidents by Mode Accidents by Collision Type

Rear-end Collision Sidewise Collision

Autonomous
Manual

Accidents by Injury Accidents by Property Damage

No Injury
Injured

Minor Damage
No Damage

FIGURE 3. Unveiling accident statistics: Mode, Collision, Property
damage, and Injury breakdown.

reduced, thereby decreasing the risk of overfitting and
enhancing efficiency. This scenario makes feature selection
more straightforward, enabling the most impactful features
to help the model capture essential patterns and data
relationships, as observed in [43].

As numerous machine learning techniques require numer-
ical inputs, it becomes necessary to represent categorical data
effectively. To convert categorical data into numeric formats
that can be understood by models, methods like encoding or
label encoding are employed. Proper encoding ensures that
categorical variables are utilized appropriately by the model,
leading to an enhancement in its performance as described
in study [44]. The study [45] described the data preparation
approaches like oversampling, under-sampling, and the
development of synthetic samples that can successfully
address class imbalance issues. Equilibrating the dataset
improves the model’s ability to learn from under-represented
classes and forecast accurately across all categories.

F. MULTI-DISTANCES SYNTHETIC TECHNIQUE (MDST)
MDST, a data augmentation technique, mitigates model
overfitting by leveraging Euclidean and Manhattan dis-
tances. Euclidean excels in capturing geometric relationships,
emphasizing straight-line distances [46], while Manhattan,
known for its robustness to outliers, is effective in scenarios
with significant axis-aligned movements [47]. This deliberate
combination enhances MDST’s ability to comprehensively
explore datasets, capturing diverse patterns and relationships.
Figure 5 illustrates the architecture diagram for the MDST
approach.

First, we select one sample from our dataset and denote
it as X. This sample contains n features. This is the sample
for which we want to generate a synthetic counterpart. Next,
we calculate the distances between X and all other samples
in our dataset. We compute two types of distances: Euclidean
distance (Dg) and Manhattan distance (Dys). The Euclidean
distance is computed using the standard Euclidean distance
formula for X and each sample in the dataset. The Manhattan
distance, on the other hand, uses the Manhattan distance
formula [46], [47]. Euclidean Distance (Dg) calculation for
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FIGURE 5. MDST architecture diagram for augmentation.
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where X; and j; are the j-th components of vectors X and i
respectively, and 7 is the total number of components.

For both Euclidean and Manhattan distances, we identify
the three samples in the dataset that are closest to the
selected sample X. These nearest neighbors are denoted as
Ng1, Nga2, Ng3 for Euclidean distance and Nusq, Ny, Nus
for Manhattan distance. After finding the nearest neighbors
using both distance metrics, we calculate the element-wise
mean for the selected sample X and its nearest neighbors.
For the Euclidean neighbors, the element-wise mean is
denoted as Mg, and for the Manhattan neighbors, it is M.
The element-wise mean is computed by taking the mean
of corresponding feature values for X and its neighbors.
Element-wise mean M is calculated for each feature j as:

—— _ Xj+ Np1j + Ng2j + Ng3;
MEj = )

where X; is the j-th component of vector X, and Ngi;, Ng2j,
NE3; are the j-th components of vectors Ngi, Ng2, and Ng3
respectively.

- For Manhattan Neighbors: - Element-wise mean M) is
calculated for each feature j as:

X;j + Npi1j + Nyoj + Nys;
My =

4
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where X; is the j-th component of vector X, and Nu1j, Npy2j,
Ny3; are the j-th components of vectors Nys1, Ny2, and Ny3
respectively.

With the element-wise mean calculated, we generate a
new synthetic sample. We can use either the element-wise
mean Mg or My, as a template for the synthetic sample. The
synthetic sample is created by replacing the feature values
of X with the corresponding values from the element-wise
mean.

We repeat the entire process by selecting different samples
from our dataset and generating new synthetic samples. This
iterative procedure allows us to create synthetic samples
based on the characteristics of different data points in our
dataset. Throughout this process, we utilize both Euclidean
and Manhattan distances to identify nearest neighbors
and calculate element-wise means, ultimately generating
synthetic samples that capture the characteristics of the
original data.

G. MACHINE LEARNING HYPERPARAMETER SETTINGS
Within this segment, we delve into the region of machine
learning and deep learning techniques that were applied to
classify the severity of accidents. Our approach involved
utilizing a variety of algorithms, including RF, DT, LR, SVM,
Naive Bayes (NB), KNN, Recurrent neural network(RNN),
convolutional neural network(CNN), and an ensemble of
RF and SVM, Each fine-tuned with their respective opti-
mal hyperparameter settings. The fine-tuning process was
executed within specified parameter ranges, as outlined in
Table 4, which presents the details of parameter configura-
tions and tuning intervals for these machine-learning models.
The hyperparameter for RF and DT are n_estimators =
300 signifies that the RF consists of 300 trees. Increasing the
number of trees can potentially enhance model performance,
but it also leads to higher computational costs. For seeding
the random number generator random_state = 52 parameter
was used. Fixing this number ensures that the model exhibits
deterministic behavior, meaning it will consistently produce
the same results across each run max_depth = 50 for RF
determines the maximum depth of individual decision trees
within the RF. For SVM we’ve utilized a Linear kernel
function, indicating that the decision boundary of the SVM
is a hyperplane. In this case, the regularization level is set
at C = 1.0, which can be considered moderate. For KNN
hyperparameter value n_neighbors = 3 we set the parameter
n_neighbors to 3, which determines the utilization of the three
closest neighbors when making predictions for a given data
point.

Deep learning algorithms, RNN, and CNN are also
considered in this study. The CNN model includes 1D
convolutional (Conv) layers with a 3 x 3 kernel size, max-
pooling layers, a global max-pooling layer, a flattening layer
to transform the data into a one-dimensional format, and
dense layers. The RNN model includes 3*3 kernel size along
with activation type sigmoid and batch size 32 parameter

25940

TABLE 4. Hyperparameters and their tuned values for experiments.

Model | Hyperparamets Tuning Range
max_depth =300, _
DT random. state=42 max_depth ={5 to 200}
LR solver=’liblinear’, solver="liblinear’, C=[1.0 to
multi_class="multinomial’, 3.0]
C=3.0

kernel=[linear, Polynomial,
Radial Sigmoid]
, C=[1.0t0 5.0]

n_estimators = {20 to 400},
max_depth ={5 to 200}

SVM kernel=linear’, C=1.0

n_estimators = 300,
RF max_depth =50,
random_state=52
KNN n_neighbours=3
input_shape=(189,1),
activaition="relu’,
RNN activation="sigmoid’ -
Joss="binary_crossentropy’,
epochs=10, batch_size=32
input_shape=(189.1),
activaition="relu’,

CNN activation="sigmoid’, -
loss="binary_crossentropy
epochs=10, batch_size=32

n_neighbours={1 to 10 }

governs the number of training examples used in each
forward and backward pass within a single epoch of training.

IV. RESULTS & DISCUSSION

The proposed approach was experimentally evaluated on a
Windows operating system, specifically on a Core i7 12th
generation machine. The machine was equipped with 64 GB
of RAM and a 1TB SSD. The implementation of the proposed
approach was carried out in Python language using Jupyter
Notebook. Various libraries such as TensorFlow, Keras, sci-
kit-learn, and pandas were utilized in the implementation
process. To assess the performance of classifier, standard
metrics such as accuracy, precision, recall, and F1 score are
employed and calculated using the following equations.

T.P,+ TN,
Accuracy = (D
T,P,+ TN, + FP, + FN,
TP,
P=——— 2)
T.P,+ FP,
T,P
— rt o (3)
T,P, + FN,
PxR
F1 — score =2 x (4)
P+R

A. RESULTS USING ORIGINAL DATASET

This section presents the outcomes of severity detection using
various machine learning and deep learning algorithms on
the original dataset. The analysis involved the utilization
of a diverse set of machine learning algorithms, including
RF, DT, KNN, LR, NB, and SVM. For deep learning, both
RNN and CNN were employed, and the results are depicted
in Table 5. Notably, among these models, NB and SVM
exhibited superior performance with micro-average scores of
0.62 and 0.61, respectively. This can be attributed to the small
size of the dataset, which had a suppressive effect on the other
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Algorithm 1 MDST Algorithm

1: Input:

2: Dataset with n features and m samples

3: Output:

4: Synthetic samples

5: while not converged do

6: Select a sample X from the dataset

7: Calculate Euclidean Distance Matrix Dg
8 Calculate Manhattan Distance Matrix Dy
9

Find the 3 nearest neighbors with Euclidean distance:

10: NEg1, Ng2, NE3

> Step 1
> Step 2
> Step 2
> Step 3
> Step 3
> Step 4

> Step 4

11: Find the 3 nearest neighbors with Manhattan distance:

12: Ny, Nyro, N3

13: Calculate Element-Wise Mean for Euclidean Neighbors:
14: Mg

15: Calculate Element-Wise Mean for Manhattan Neighbors:
16: m

17: Generate a new synthetic sample using Mg or My,

18: end while

> Step 5

models RF, KNN, LR, and SVM, resulting in scores of 0.31,
0.29, 0.31, and 0.31, respectively. As our original dataset is
small, it results to challenges such as overfitting, where the
models KNN, RF, LR, and SVM may perform well on the
training data but poorly on new, unseen data. Overfitting is
a concern, especially when the dataset size is small because
the model might capture noise or specific patterns that do not
generalize well. Additionally, an ensemble model combining
SVM and RF achieved an accuracy of 0.31 in both HV and
LV scenarios. The deep learning models, RNN and CNN, also
yielded a micro-average of 0.31. These findings underscore
the inconsistent performance of the models and highlight
the imperative need for overall accuracy improvement.
To overcome this constraint, we redirect our attention towards
feature engineering, aiming to extract optimal features and
augment the sample size for improved performance.

B. RESULTS USING RFE AND CTGAN APPROACH

Feature engineering and augmentation are pivotal strategies
in mitigating overfitting and enhancing the performance of
machine learning and deep learning models so this section
elaborates on the performance of different ML and DL
models by extracting the best features using Recursive
Feature Elimination (RFE) and then applying augmentation
using Conditional Tabular Generative Adversarial Network
(CTGAN) on these features to produces more synthetic
samples. Table 6 shows results after applying feature
engineering to extract 100 best features and the generation
of 237 new samples for each class by applying CTGAN.
As a result, the performance of machine learning models,
RF and SVM significantly improved, achieving accuracy
scores of 88% with a micro of 88% and 86% with a micro
average of 87%, respectively. The combination of RFE for
feature selection and CTGAN for synthetic data generation
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enhances the robustness and generalization capability of RF
and SVM models, contributing to better performance on
unseen data and addressing challenges associated with high-
dimensional datasets. The performance of RNN and CNN is
low and it can be their struggle to effectively capture relevant
patterns in the data. RNNs might face challenges in handling
long-term dependencies or exploiting sequential information,
particularly if the dataset lacks strong sequential patterns.
To address this limitation, our focus shifts to data balancing
techniques, incorporating a novel MDST technique.

C. RESULTS USING RFE AND MDST APPROACH
This section details the outcomes achieved by integrating our
innovative MDST technique with Recursive RFE. Initially,
the RFE technique is applied to select the best 100 features,
followed by the application of the MDST technique. After
this combined approach, the results from both ML and DL
models exhibit a significant improvement. The accuracy
scores are presented in 7, where SVM performance stands
out, achieving an outstanding micro-average score of 0.92.
The exceptional performance of all machine learning models
can be attributed to the acquisition of more accurate and
synthetic data. CTGAN, by design, does not involve the
calculation of a distance formula. Its primary objective is
to understand and replicate the underlying distribution of
the input data. It generates synthetic samples that reflect the
statistical patterns inherent in the real data. In contrast, our
proposed technique incorporates the calculation of two types
of distance metrics— Euclidean and Manhattan distances.
After computing these distances and taking the mean with
the original samples, the technique produces new synthetic
samples that closely resemble the original ones.

Figure 6 shows the confusion matrices of the best perform-
ers using each approach. In the original dataset approach,
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TABLE 5. Machine learning and deep learning results on the original dataset.

H » H H
Model | Class Precision | Recall | Fl-score Model | Class Precision | Recall | F1-score
0 0.85 1.00 0.92 0 0.95 0.68 0.79
1 0.00 0.00 0.00 1 0.27 0.75 0.40
RF 2 0.00 0.00 0.00 NB 2 0.50 1.00 0.67
Micro. avg | 0.28 0.33 0.31 Micro. avg | 0.57 0.81 0.62
WAVG. 0.72 0.85 0.78 WAVG. 0.85 0.70 0.74
Accuracy 0.85 Accuracy 0.70
0 0.93 0.89 0.91 0 0.85 1.00 0.92
1 0.25 0.25 0.25 1 0.00 0.00 0.00
2 0.50 1.00 0.67 2 0.00 0.00 0.00
bT Micro. avg | 0.56 0.71 0.61 RNN Micro. avg | 0.28 0.33 0.31
WAVG. 0.83 0.71 0.61 WAVG. 0.72 0.85 0.78
Accuracy 0.82 Accuracy 0.85
0 0.84 0.93 0.88 0 0.85 1.00 0.92
1 0.00 0.00 0.00 1 0.00 0.00 0.00
2 0.00 0.00 0.00 2 0.00 0.00 0.00
KNN Micro. avg | 0.28 0.31 0.29 CNN Micro. avg | 0.28 0.33 0.31
WAVG. 0.71 0.79 0.75 WAVG. 0.72 0.85 0.78
Accuracy 0.79 Accuracy 0.85
0 0.85 1.00 0.92 HV 0 0.85 1.00 0.92
1 0.00 0.00 0.00 1 0.00 0.00 0.00
LR 2 0.00 0.00 0.00 2 0.00 0.00 0.00
Micro. avg | 0.28 0.33 0.31 Micro. avg 0.28 0.33 0.31
WAVG. 0.72 0.85 0.78 WAVG. 0.72 0.85 0.78
Accuracy 0.85 Accuracy 0.85
0 0.85 1.00 0.92 SV 0 0.85 1.00 0.92
1 0.00 0.00 0.00 1 0.00 0.00 0.00
SVM 2 0.00 0.00 0.00 2 0.00 0.00 0.00
Micro. avg | 0.28 0.33 0.31 Micro. avg 0.28 0.33 0.31
WAVG. 0.72 0.85 0.78 WAVG. 0.72 0.85 0.78
Accuracy 0.85 Accuracy 0.85
SVM performed well in comparison with other models 24
with 28 correct predictions and 5 incorrect predictions. < % 0
Similarly, when employing the RFE and CTQAN approach, s 3 1 20
NB emerged as the best performer, yielding 64 correct g g
predictions and 8 incorrect predictions. Regarding the RFE = = 2 20
and MDST approach, SVM once again excelled, providing
66 correct predictions and 6 incorrect predictions. These o 1 2
statistics of the confusion matrix show the significance of our Predicted label Predicted label
MDST approach as compared to others. (@) (b)
Figure 7 illustrates the comparison of model performance 5
concerning various evaluation matrices across different - g 24
approaches. In Figure 7a, it’s evident that while model accu- Q -
racy appears satisfactory, other evaluation matrices exhibit é 1
lower values, indicating a clear sign of model overfitting = 5 20
towards the majority class data due to the imbalanced
dataset. However, after employing CTGAN and MDST, o 1 2
models perform equally well across all evaluation matrices. Predicted label
Particularly, models utilizing MDST showcase superior (c)

performance across all evaluation matrices compared to other
approaches.

D. EVALUTION IN TERMS OF COMPUTATIONAL COST

In this section, we evaluate model computational costs in
terms of training and prediction times, measured in seconds
(sec) and milliseconds (ms) respectively. Table 8 summarizes
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FIGURE 6. Best performer confusion matrix:(a) Confusion matrix of SVM
using original dataset, (b) Confusion matrix of NB using RFE and CTGAN,
and (c) Confusion matrix of SVM using RFE and MDST.

the training and prediction times for models using the original
dataset, as well as those incorporating CTGAN and MDST
approaches. RF, DT, and LR exhibit shorter training times
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TABLE 6. Machine learning and deep learning results using RFE and CTGAN methods.

Model Class Precision | Recall | F1-score Model | Class Precision | Recall | F1-score
0 0.75 0.96 0.84 0 0.81 0.88 0.85
1 1.00 0.77 0.87 1 0.95 0.81 0.88
RF 2 0.95 0.90 0.93 NB 2 0.91 1.00 0.95
Micro. avg 0.90 0.88 0.88 Micro. avg 0.89 0.90 0.89
WAVG. 0.90 0.88 0.88 WAVG. 0.89 0.89 0.89
Accuracy 0.88 Accuracy 0.89
0 0.77 0.80 0.78 0 0.35 1.00 0.52
1 0.95 0.77 0.85 1 0.00 0.00 0.00
2 0.80 0.95 0.87 2 0.00 0.00 0.00
DT Micro. avg 0.84 0.84 0.83 RNN Micro. avg 0.12 0.33 0.17
WAVG. 0.84 0.83 0.83 WAVG. 0.12 0.35 0.18
Accuracy 0.81 Accuracy 0.35
0 0.74 0.92 0.82 0 0.35 1.00 0.52
1 0.94 0.65 0.77 1 0.00 0.00 0.00
2 0.83 0.90 0.86 2 0.00 0.00 0.00
KNN Micro. avg 0.84 0.83 0.81 CNN Micro. avg 0.12 0.33 0.17
WAVG. 0.84 0.82 0.81 WAVG. 0.13 0.36 0.18
Accuracy 0.82 Accuracy 0.35
0 0.75 0.72 0.73 0 0.75 0.84 0.79
1 0.77 0.65 0.71 1 0.83 0.77 0.80
LR 2 0.81 1.00 0.89 HV 2 1.00 0.95 0.98
Micro. avg 0.78 0.79 0.78 Micro. avg 0.86 0.85 0.86
WAVG. 0.78 0.78 0.77 WAVG. 0.85 0.85 0.85
Accuracy 0.78 Accuracy 0.85
0 0.78 0.84 0.81 0 0.78 0.84 0.81
| 0.84 0.81 0.82 1 0.83 0.77 0.80
2 1.00 0.95 0.98 2 0.95 0.95 0.95
SYM - icro.avg | 087 0.87 os7 | SV Micro.avg | 0.85 085 | 085
WAVG. 0.87 0.86 0.86 WAVG. 0.85 0.85 0.85
Accuracy 0.86 Accuracy 0.85

(0.009 to 0.44 sec), while RNN and CNN require longer
periods (5.64 and 1.22 sec). Prediction times are low for NB,
LR, SVM, and DT (0.99 to 2.99 ms), with ensemble methods
showing moderate training times (0.087 to 0.376 sec) and
prediction times averaging around 0.88 ms. NB, LR, DT,
and SVM demonstrate similar computational costs, but the
high accuracy of SVM makes it more suitable for our
proposed approach with RFE and MDST. The trade-off
between accuracy and computational cost is notably higher in
deep learning and ensemble models compared to individual
machine learning models.

E. RESULTS USING 10-FOLD CROSS-VALIDATION
APPROACH

To validate the proposed approach, we deployed a 10-fold
cross-validation. This validation involved dividing the data
into 10 folds, using a different fold each time for testing while
the remaining nine were utilized for model training. Table 9
presents the mean accuracy and SD resulting from this 10-
fold cross-validation experiment.

The outcomes from employing both RFE and CTGAN
indicate that the models did not perform as well in terms
of mean accuracy compared to using RFE and the MDST
approach. Particularly, the performance of the RRF model
stands out with a mean accuracy score of 0.76 and an SD of
0.06. This could be attributed to RF’s ensemble architecture,
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suitable for both small and large datasets. RF demonstrates
robustness against overfitting, especially when contrasted
with more complex models like deep neural networks,
making it adept at handling smaller datasets by minimizing
the risk of memorizing noise.

Conversely, the performance of models is notably more
significant with the proposed MDST method as the SVM
outperforms significantly with an accuracy score of 0.91 and
an SD of 0.09. Our proposed approach generates more lin-
early separable data through augmentation, aiding the SVM
linear kernel in learning patterns more accurately compared
to other models. Similarly, the data generated by MDST also
improves linear models like LR, elevating its performance
from 0.72 to 0.86. These results and statistical analyses
underscore the significance of our proposed approach.
Overall, the results post-data augmentation exhibit high mean
accuracy, indicating minimal chances of overfitting among
the models.

F. COMPARISON WITH OTHER STATE-OF-THE-ART
METHODS

In this section, we conducted a comparative analysis between
our proposed approach and recent studies in severity
prediction to highlight its significance. Given the novelty of
our dataset, we aimed for a fair comparison by applying the
methodologies of recent studies to our dataset. We repeated
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TABLE 7. Machine learning and deep learning results using RFE and MDST.

Model Class Precision | Recall | F1-score Model | Class Precision | Recall | F1-score
0 0.79 0.92 0.85 0 0.83 0.20 0.32
1 1.00 0.81 0.89 1 0.60 0.96 0.74
RF 2 0.91 0.95 0.93 NB 2 0.83 0.95 0.89
Micro. avg 0.90 0.89 0.89 Micro. avg 0.75 0.70 0.65
WAVG. 0.89 0.89 0.89 WAVG. 0.75 0.69 0.64
Accuracy 0.89 Accuracy 0.69
0 0.84 0.84 0.84 0 0.35 1.00 0.52
1 0.96 0.88 0.92 1 0.00 0.00 0.00
2 0.87 0.95 0.91 2 0.00 0.00 0.00
bT Micro. avg 0.89 0.89 0.89 RNN Micro. avg 0.12 0.33 0.17
WAVG. 0.89 0.89 0.89 WAVG. 0.12 0.35 0.18
Accuracy 0.89 Accuracy 0.35
0 1.00 0.28 0.44 0 0.35 1.00 0.52
1 0.70 1.00 0.83 1 0.00 0.00 0.00
2 0.75 1.00 0.86 2 0.00 0.00 0.00
NN —ficro.avg | 082 0.76 07T CNN' Microavg T 0.2 033 [ 0.17
WAVG. 0.82 0.75 0.70 WAVG. 0.13 0.36 0.18
Accuracy 0.75 Accuracy 0.35
0 0.86 0.72 0.78 0 0.84 0.84 0.84
1 0.89 0.92 0.91 1 0.96 0.88 0.92
LR 2 0.83 0.95 0.89 v 2 0.87 0.95 0.91
Micro. avg 0.86 0.87 0.86 Micro. avg 0.89 0.89 0.89
WAVG. 0.86 0.86 0.86 WAVG. 0.89 0.89 0.89
Accuracy 0.86 Accuracy 0.89
0 0.83 0.96 0.89 0 0.84 0.84 0.84
1 1.00 0.85 0.92 1 0.96 0.88 0.92
SVM 2 0.95 0.95 0.95 SV 2 0.87 0.95 0.91
Micro. avg 0.93 0.92 0.92 Micro. avg 0.89 0.89 0.89
WAVG. 0.93 0.92 0.92 WAVG. 0.89 0.89 0.89
Accuracy 0.92 Accuracy 0.89
TABLE 8. Models Training Time (TT) and Prediction Time (PT). TABLE 10. Comparison with recent methods on autonomous vehicle
accident severity prediction.
Model Orignal RFE&CTGAN RFE&MDST Re.f | Year | Model Accuracy | Precesion | Recall | F1
PT TT PT T PT IT [12] | 2021 | RF 0.81 0.66 082 | 0.73
RF 0.35 20.94 0.62 21.97 0.44 21.93 [13] | 2022 | SVM 0.82 0.66 0.82 073
DT 0.006 1.90 0.01 1.99 0.07 1.99 [29] | 2022 | MLP 0.82 0.82 0.82 0.89
KNN 0.003 | 166.15 | 0.002 6.97 0.001 158.5 [16] | 2022 | ANN 0.55 0.74 0.55 0.61
LR 0.01 1.99 0.014 1.99 0.009 0.99 [18] 2022 | RESVM 0.82 0.66 0.82 0.73
NB 0.006 2.62 0.002 0.99 0.001 0.99 Our | 2023 | SVM+MDST | 0.92 0.93 0.92 0.92
SVM 0.07 1.99 0.016 4.02 0.001 2.99
RNN 5.7 182.9 10.88 | 187.70 5.64 0.15
le\l,\l éﬁ i?ogé 01_ 3748 Z;g; 01_ 62827 8:23 like MLP and ANN, respectively. Table 10 presents a
SV 038 3953 036 1495 | 0376 | 0.88 comprehensive comparison of these recent studies, showing
that our proposed approach outperforms all other models
. across all evaluation metrics. This superiority stems from
TABLE 9. K-fold cross-validation resuilts. C e .
the significance of our proposed MDST approach, which
Method RF DT KNN LR facilitates the generation of linearly separable data. This
'RFEand MDST | 0.89(2 0.04) | 082 (1 0.04) | 073 (£ 0.08) | 0.6 (£ 009 reduction in model overfitting contributes to boosting overall
Method SVM NB RNN CNN performance across various evaluation metrics.
RFE and CTGAN | 0.73 (£ 0.07) | 0.57 (£ 0.06) | 0.35 (£ 0.02) | 0.34 (£ 0.03)
RFE and MDST | 0.91 (£0.03) | 0.75 (+0.05) | 0.35(%0.01) | 035 (+ 0.04)

the approaches of the previous studies in the same experimen-
tal environment used for our approach. We selected recent
studies for comparison, such as study [11], which utilized
RF for severity prediction, achieving significant results in
their specific scenario. Similarly, study [12] deployed SVM,
while studies [15] and [28] utilized deep learning algorithms
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G. DISCUSSION

This study conducts several experiments for predicting
accident severity in AVs using machine learning approaches.
We deploy data balancing and feature selection methods to
achieve significant results. Figure 8 illustrates the impact
of the MDST approach for data balancing compared to the
original dataset. As shown in Figure 8a, samples for classes
1 and 2 are scattered and limited in number, while samples for
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FIGURE 7. Performance comparison using (a) original dataset, (b) RFE
and CTGAN, and (c) RFE and MDST.

Recall ®Fl-score

class 0 overlap with other samples, making it challenging for
models to optimize their weights for each class. Conversely,
Figure 8b demonstrates a balanced distribution for each class,
with linear separability, resulting in an improvement in model
performance.

Figure 9 shows the Receiver Operating Characteristic
(ROC) curve for the proposed approach, SVM with RFE
and MDST. It demonstrates the significance of the proposed
approach and the trade-off between sensitivity (true positive
rate) and specificity (false positive rate) across different
threshold values. Class 1 and 2 exhibit high true positive rates
at minimal false positive rates, while Class O performs slightly
behind but remains noteworthy.

Our analysis reveals the importance of numerous features
from the dataset in predicting accident severity. We have
highlighted the significance of these features in Figure 10.
For instance, AVdamagepart in Figure 10a, indicating the
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FIGURE 9. ROC curve for proposed approach.

damaged part of the autonomous vehicle, proves to be
informative in predicting the severity of accidents. Similarly,
Plinjured in Figure 10c, representing injuries post-accident,
emerges as a vital factor, and the lighting condition (Day-
Light) in Figure 10d also serves as a feature contributing to
severity prediction. In summary, beyond speed and collision
types, various other post-accident measured features play a
significant role in predicting accident severity.

Overall, the original dataset was imbalanced and contained
numerous meaningless features, leading to a reduction in
model performance and overfitting towards the majority
classes. In our approach, RFE assists in selecting important
features for training the learning models, while CTGAN and
MDST contribute to reducing overfitting towards the majority
classes. Combining both feature selection and data balancing
approaches helps achieve significant results.
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FIGURE 10. Feature importance score for features from (a) 0-25(b) 26-50 (c) 51-75 (d) 76-100.

V. CONCLUSION

In conclusion, our study delves into the critical realm of
AVs accidents, recognizing the imperative need to compre-
hend and address their severity for the advancement and
widespread acceptance of this transformative technology.
Through the innovative amalgamation of natural language
processing techniques and machine learning, we endeavored
to predict the severity of AV-related accidents. A pivotal
contribution of our study is the development of a novel
dataset sourced from post-disengagement accident reports
spanning the years 2019-2022. To counter the challenge of
limited data, our introduction of the Multi-Distance Synthetic
Technique (MDST) aimed to balance the inherent dataset
imbalance, a crucial step in fortifying the reliability of our
analysis.

Through our analysis, we have determined that various
parameters extracted from autonomous vehicle accident
reports play a crucial role in predicting accident severity.
Factors such as sensor failures or the nature of the vehicle’s
impact contribute significantly to this prediction. One of the
primary conclusions drawn from our study is the inadequacy
of the available volume of AV accident data for effective
machine learning model training. To overcome this challenge,
we introduced the novel MDST. This method generates
additional correlated data points to augment the original
dataset. The significance of MDST lies in its utilization
of diverse distance matrices—employing two instead of
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relying on a single distance matrix—thereby surpassing the
capabilities of conventional approaches.

Additionally, our analysis revealed that many features
within the original dataset lacked the predictive power needed
for accurate severity estimation. In addressing this issue,
Recursive Feature Elimination (RFE) proved invaluable.
By selecting only the most meaningful features, RFE
significantly improved the system’s efficiency. This metic-
ulous feature selection process contributed to achieving an
impressive accuracy score of 0.92 in predicting autonomous
vehicle accident severity,

Limitation and Future Work: This study analyzes
collision reports from the California DMV in PDF format,
extracting recurring patterns for insights into safety-related
decision-making. Leveraging the dataset, future research
can explore classification tasks like assessing AV damage,
identifying collision types, and evaluating weather, road
surface, and motion states. Additionally, future work will
explore mapping keywords from crash reports to collection
reports for precise sensor-related information. To enhance
generalizability, we are actively collecting a new dataset to
rigorously test and evaluate the proposed approach in diverse
scenarios.
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