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ABSTRACT Reliable operation of oil-immersed power transformers is crucial for electrical transmission and
distribution networks. However, the aging of high voltage assets including power transformers along with
the increasing of load demand have heightened the importance of adopting cost-effective asset management
strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting
potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA
method involves periodic sampling and laboratory analysis, which often results in delayed detection and
response to emerging faults. To address these limitations, online DGA approach has been emerged to provide
real-time monitoring and continuous data acquisition. This paper presents a new asset management approach
for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural
networks. The proposed approach provides real time solutions to classify emerging fault type and predict
transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics
of the proposed approach is approximately 87%.

INDEX TERMS Power transformers, dissolved gas analysis, condition monitoring, asset management,
remnant life estimation.

I. INTRODUCTION
The reliable operation of a power system is largely dependent
on the health condition and performance of its key equip-
ment, particularly power transformers. Faults or malfunctions
in a power transformer can directly impact the safety and
reliability of the entire power grid. Therefore, it is essen-
tial to develop cost-effective asset management methods to
assess its health condition and provide a timely decision
to rectify emerging faults and avoid any potential catas-
trophic consequences. Over decades, many condition mon-
itoring methods have been evolved to detect various faults in
power transformers [1]. In industry practice, one of the most
widely used methods for analysing power transformer oil to
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detect incipient faults is the Dissolved Gas Analysis (DGA)
method [2]. This technique has been proven to be effective
in identifying potential issues in power transformers and has
become an essential asset management tool.

The fundamental principle of DGA is to measure the levels
of various dissolved gases in the transformer oil. These gases
are generated as a result of overheating, arcing and partial
discharge events [3]. By analysing the type and concentra-
tion of dissolved gases in transformer oil samples, potential
faults can be identified, and rate of insulation degradation
can be assessed; allowing timely maintenance and repair
plans to prevent potential severe damages to the transformer.
The measured dissolved gases in transformer oil include
Hydrogen (H2), Methane (CH4), Ethylene (C2H4), Ethane
(C2H6), Acetylene (C2H2), Carbon Monoxide (CO) and Car-
bon Dioxide (CO2). These gases have been considered as key
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indicators of potential transformer faults, and their concen-
trations can provide valuable insights into the overall health
condition of the transformer.

Several conventional DGA interpretation methods, derived
from ANSI/IEEE standard and IEC publication 599, have
been extensively utilized in the power industry [3], [4].
Thesemethods includeKey gasmethod, Rogers Ratios, Doer-
nenburg Ratios, Duval Triangles and Pentagons graphical
methods. However, each of these methods exhibits certain
limitations such as out-of-code ratios, distinct boundaries,
and the exclusion of gas evolution, which may lead to incor-
rect and inconsistent fault diagnoses [5]. As a result, the
accuracy of diagnostic results reliesmore on the level of expe-
rience of the professionals conducting the test. To overcome
such subjective interpretations, researchers have developed
several artificial intelligence (AI)-based methods to improve
the diagnostic accuracy. In [5], various AI-based methods
for DGA interpretation have been presented. One of the
methods is Fuzzy Logic, which replaces the precise values
of input-output variables with a range of values to handle the
uncertainties and imprecisions in the DGA data [6], [7]. Other
AI methods such as Decision Tree [8], Random Forest [9],
k-Nearest Neighbours (KNN) [10], [11], Logistic Regres-
sion [12], [13], Support Vector Machine (SVM) [14], [15],
Bayesian Network [16], Artificial Neural Network (ANN)
[17], [18], [19], Adaptive Neural Fuzzy Inference System
(ANFIS) [20], [21] have also shown promising results in
enhancing the analysis of DGA data. These methods are
designed for various levels of data complexity, often requiring
the use of multiple training models to analyse DGA data
comprehensively. For example, ANFISmodel encounters dif-
ficulties and may get stuck in the training process. On the
other hand, fuzzy logic requires ample number of fuzzy rules,
which complicate and reduce the accuracy of the DGA mod-
els of multiple input and output parameters.

In recent years, another powerful AI tool called Deep
Machine Learning algorithm has emerged to solve complex
problems that were previously challenging for traditional AI
methods. Deep learning is modelled to mimic the hierarchical
structure of the human brain and is designed to process data in
a similar way, starting with lower-level features and gradually
building up to higher-level concepts [22]. By doing so, deep
learning models are able to handle complex problems with
large data sets. This has made them highly effective for a wide
range of applications, including image and sound recognition.

As the concept of future smart grids continues to evolve,
the online monitoring of key assets including power trans-
formers has become more prevalent. This will lead to a
substantial rise in the amount of sophisticated data being
collected and analysed. Some of these raw data are presented
in numerical form, while others may be on the form of
images or sound signals, such as thermal and vibration anal-
yses [23], [24]. This requires adaptable diagnostic methods
with enhanced learning and feature extraction capabilities
to effectively reflect meaningful insights from the measured
data. In [25] and [26], a specific type of deep machine

learning called the probabilistic neural network with opti-
mizer was developed to provide fault diagnosis in power
transformers based on five DGA gas measurements. The
output of the method identifies four potential fault conditions,
including high/low temperature fault, partial discharge, and
arc discharge.

This paper aims to provide a more comprehensive asset
management solution for mineral oil-immersed power trans-
formers. In addition to the fault diagnostic module, the devel-
oped asset management system also comprises a life manage-
ment module to provide asset managers with the deterioration
level of the solid insulation based on the amount of CO2 and
CO gases obtained from online DGA measurement sensors.
The fault diagnostic module encompasses ‘‘no fault’’ condi-
tion, in addition to identifying thermal fault, arc discharge and
partial discharge as will be elaborated below.

II. METHODOLOGIES UTILIZED IN DEVELOPING THE
ASSET MANAGEMENT MODEL
A. DATA PRE-PROCESSING–NORMALIZATION
The aim of data normalization in the data pre-processing
stage is to bring features into a comparable scale to enhance
the model performance and improve the training stabil-
ity [27]. In the training datasets, the gas concentration exhibits
a wide range from 0 to 100,000s ppm. To prevent the domi-
nance of large values on training weights, which could poten-
tially distort the training results [28], a commonly utilized
normalization method called Minimum-Maximum normal-
ization as given by (1) is employed [29]. The Minimum-
Maximum normalization technique scales the data into a
range between 0 and 1, based on the minimum and max-
imum values in the datasets. Figure 1 (a) depicts the raw
data distribution of H2 gas measurements (in ppm) collected
from an online DGA sensor, while Figure 1 (b) illustrates the
data distribution after normalization. Comparison of the two
figures shows that the normalization process does not alter
the essential features of the collected data.

Xnor =
X − Xmin

Xmax − Xmin
(1)

where X , is the original value before normalization. Xnor is
the X value after normalization. Xmax and Xmin represent the
maximum and minimum of values of X value; respectively.

B. PRE-PROCESSING–BALANCE DATASETS
The training datasets often exhibit uneven distribution, where
minority classes are vastly outnumbered by majority classes.
When the model is trained using such imbalanced dataset,
machine learning algorithms tend to favour the majority
classes, which may lead to potential misclassification of the
minority classes [30]. Based on the datasets presented in
Table 1, it can be observed that the various transformer condi-
tions are not evenly distributed. Specifically, the occurrence
of partial discharge faults constitutes a relatively small per-
centage of all conditions (accounting for only 8.7%). On the
other hand, energy discharge faults and thermal faults are
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FIGURE 1. (a) Raw H2 data (in ppm) collected from DGA sensor. (b) Data
processed using Minimum-Maximum normalization.

much more prevalent, comprising approximately 35% and
41.3% of the total conditions, respectively. Interestingly, the
normal condition makes up 15.7% of the conditions, which
is noteworthy given that in real-world scenarios, normal con-
ditions tend to be the most commonly observed results [31].
The imbalance nature of the datasets could potentially have
a significant impact on the outcomes of machine learning
algorithms.

Another crucial issue that must be considered when uti-
lizing machine learning algorithms is their ability to gen-
eralize beyond the training datasets. In the construction of
the training datasets, the transformer fault types are typically
identified based on the expert judgements, which are often
derived from conventional interpretation methods such as
IEEE/IEC ratio andDuval Triangles/Pentagons. However, the
heuristic nature of expert judgments, coupled with the fact
that transformers may exhibit multiple faults simultaneously,
can lead to varying degrees of inconsistency between datasets
collected from different sources. This inconsistency in the
training data can pose a significant challenge to the gener-
alization capability of machine learning algorithms and may
ultimately undermine their effectiveness in practical applica-
tions.

To overcome the above-mentioned issues of imbal-
anced data, Synthetic Minority Over-sampling Technique
(SMOTE) has been implemented [53], [54]. The principle of
SMOTE is to generate synthetic samples for minority classes.

It begins by randomly selecting a data point from theminority
class and identifying its k nearest neighbours. SMOTE then
places a synthetic point along the line connecting the chosen
data point and one of its nearest neighbours. These steps are
repeated until the dataset is balanced; thereby ensuring amore
even representation of all classes in the training data. Figure 2
presents a comparative histogram illustrating the effect of
data balancing through SMOTE processing. Figure 2 (a)
provides an overview of the distribution of multi-class tar-
gets within the initial training dataset before the application
of SMOTE. Each bin within the histogram corresponds to
a distinct label. Specifically, the x-axis denotes the labels
associated with the dataset. In this context, label ‘‘1’’ pertains
to Thermal fault, label ‘‘2’’ signifies partial discharge (PD)
fault, label ‘‘4’’ indicates No Fault, label ‘‘8’’ represents
Discharge fault, and label ‘‘9’’ corresponds to a combination
of Discharge and Thermal faults. The y-axis represents the
frequency (number of instances) that belongs to each label.
On the other hand, Figure 2 (b) shows the distribution of
labels in the training data after applying SMOTE. As can
be observed, the frequency of labels ‘‘2’’, ‘‘4’’, ‘‘8’’, and
‘‘9’’ have been changed due to the introduction of synthetic
samples.

FIGURE 2. (a) Data distribution before SMOTE and (b) Data distribution
after SMOTE. (for reference to label numbers, see Table 3).

C. CONVOLUTION NEURAL NETWORK
Convolution Neural Network (CNN) has emerged as a pop-
ular and effective deep learning technique, particularly for
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TABLE 1. Datasets for fault diagnostic module training.

analysing visual data [23]. In recent years, there has been
growing interest in leveraging CNN for condition monitoring
applications. A study published in [23] has utilized CNN
to identify six types of PD faults in power transformers by
analysing Phase-Resolved Partial Discharge (PRPD) signals
captured by Ultra-High Frequency (UFH) sensors. Another
investigation in [24] focused on using CNN to assess trans-
former winding conditions through the analysis of vibra-
tion signatures. Furthermore, [55] explored the application
of CNN in assessing oil quality based on oil aging images.
Considering the future advancements and ongoing develop-
ments of online condition monitoring methods, CNN holds
a great potential as a powerful tool that can provide more
comprehensive condition assessment of power transformers
in real-time. This will provide a more accurate and holistic
understanding of transformer performance, facilitate timely
maintenance interventions, and extend the operational lifes-
pan of power transformers.

The structure of a CNN comprises two primary com-
ponents: feature selection and conventional neural network
(Figure 3) as shown in Figure 4. The feature selection layers
encompass convolutional layers, pooling layers, batch nor-
malization layers, and flatten layers [56]. The convolutional

layers play a significant role in feature extraction, applying
filters or kernels to the input data to capture patterns and
spatial dependencies. The pooling layers reduce the spatial
dimensions of the resulting feature maps; effectively sum-
marizing the learned features. The batch normalization layers
normalize the outputs of the previous layers to enhance train-
ing stability and accelerate convergence. Finally, the flatten
layers transform the multidimensional feature maps into a
one-dimensional vector. This process prepares the extracted
features for further processing in neural network. The fea-
ture selection process in CNN provides the key advantage
over traditional machine learning algorithms, such as Sup-
port Vector Machine (SVM). CNN can autonomously learn
intricate features and patterns directly from the raw input
data that eliminates the need for manual feature engineering.
This capability significantly reduces the burden of feature
extraction and enhances the overall efficiency of the model.

The neural network component comprises fully connected
layers, which integrate the extracted features and make pre-
dictions based on the learned representations. In Figure 3,
a neural network with 2 hidden layers is depicted. The inputs
x1 . . .xi, contain the features of the input data that are fed
into the network. Within the hidden layers, each neuron takes
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input from the previous layer, applies a weight (i.e., wij or
wjk ) and a bias (i.e., bj or Bk ), and passes the results through
an activation function as presented by (2). During the train-
ing process, the backpropagation algorithm determines the
weights along with biases of the neural network to minimize
the error of difference between the predicted output and
the target or desired output. This adjustment is performed
using an optimization algorithm, such as Adaptive Moment
Estimation. The optimization algorithm updates the weights
based on the calculated error and the network’s learning rate,
which controls the step size of the weights updates.

FIGURE 3. General structure of neural networks with 2 hidden layers.

Activation functions play a critical role in transforming
the weighted sum of inputs and bias into an output value.
For example, the Rectified Linear Unit (ReLU) activation
function is commonly used in neural networks, which results
in the input value if it is positive, and zero otherwise. Another
example is Sigmoid function, which squashes the input value
into a range between 0 and 1, in case output needs to be
interpreted as probabilities.

Yj = f1(
∑i

j=1
(wij × xi + bj)) (2)

where, Yj is the output of the first hidden layer .xi is the input.
f1 is the activation function.wij is the weight and bj is the bias.

III. PROPOSED ASSET MANAGEMENT MODEL
The asset management approach proposed, as depicted in
Figure 5, utilizes gas measurements acquired from an online
DGA sensor. This model consists of two distinct sub-
modules: a Fault Diagnostic module and a Life Management
module.

In this section, a detailed explanation of the training pro-
cess for each module is presented, along with insights into the
possible outputs derived from these modules.

A. FAULT DIAGNOSTIC MODULE
There are six primary types of faults that can be identified
using DGA method, as outlined in Table 2 based on the IEC

60599 and IEEE57.104 [3]. Due to the limited information
available in the datasets, fault types have been classified
into 3 broader categories: Partial Discharge (PD), Energy
Discharges and Thermal Faults.
Partial Discharge occurs when a localized area of solid

or fluid insulation material, exposed to high voltage stress,
undergoes a partial breakdown without fully bridging the
gap between two conductive materials [2], [3], [57]. In this
context, PD specifically refers to corona-type PD that tran-
spires within gas bubbles or voids. During PD activities, air
or nitrogen in the gas phase undergoes ionization, forming a
plasma of ionized oxygen and nitrogen atoms.

TABLE 2. Six fundamental types of faults diagnosed using DGA.

This plasma interacts with the surrounding oil or cellulose,
leading to the generation of hydrogen as the primary by-
product.
Energy Discharges in oil-immersed power transformers

occur when there is an energy discharge that creates a local-
ized conducting path or short circuit between conductive
materials [2], [3], [57]. This leads to sparking around loose
connections within the transformer. When low energy arcs,
denoted as D1 in Table 2, occur in transformer oil, only a
thin layer of the oil makes contact with the path of the arc.
The high temperature of the arc, exceeding 3000◦C, causes
decomposition of this small oil layer. The decomposition
primarily yields acetylene, with traceable amount of ethylene
being produced. In contrast, high energy arcs, referred to
as D2 in Table 2, involve a greater current flowing through
the arc path, resulting in a longer duration. The extended
duration allows for a larger volume of oil to be heated by
the arc. The convective flow of cooler surrounding oil con-
tributes to this process. Consequently, a significant temper-
ature gradient is established in the oil surrounding the arc
path, ranging from around 3000◦C to 500◦C. Interestingly,
despite the higher energy content of D2 arcs, their average oil
temperature is lower compared to D1 arcs. However, D2 arcs
generate a substantial amount of C2H4 in addition to C2H2
due to the temperature gradient and longer duration of the
arc.
Thermal Faults in oil-immersed power transformers arise

from the circulation of electric current within the insulating
paper due to excessive dielectric losses [2], [3], [57]. Thermal
faults can be classified into three categories: T1, T2 and T3.
T1 fault occurs when there is an increase in the average
winding temperature, typically caused by increased load or
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FIGURE 4. The structure of convolution neural network.

FIGURE 5. Proposed workflow for the oil-immersed power transformer asset management model.

ambient temperature. T2 fault, on the other hand, involves
localized hotspots within the winding, resulting from electri-
cal contact or excessive current density. Localized hotspots
generate higher temperatures, which accelerate the insula-
tion aging and compromise the transformer’s overall perfor-
mance. Lastly, T3 fault encompasses more severe conditions,
such as arcing or short circuits, which cause significant tem-
perature rise and pose an immediate risk to the transformer’s
operation and safety.

The proposed Fault Diagnostic module shown in Figure 5
employs CNN to analyse the measurements of five gases: H2,
CH4, C2H4, C2H6, and C2H2. As introduced in the previous
section, CNN has proven to be highly effective in processing

complex data, making it ideal candidate for fault diagnosis
in power transformers. Based on the concentrations of these
gases, the module classifies the transformer’s condition into
four categories: ‘‘Discharge’’, ‘‘no Fault’’, ‘‘PD’’, and ‘‘Ther-
mal’’. Moreover, the module is capable of diagnosing com-
bined fault conditions, such as ‘‘Discharge and Thermal’’,
adding further versatility to improve diagnostic accuracy.
In the context of enabling the module for multi-label clas-

sification tasks, a binary representation, as shown in Table 3
has been adopted. The proposed approach utilizes a four-digit
binary representation based on 2n, where ‘n’ is set to four in
this application, accommodating the representation of up to
sixteen possible cases.
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Based on the output of the Fault Diagnostic module,
an asset management decision will be provided to users with
the severity level as listed in Table 4.

TABLE 3. Possible conditions represented using binary numbers.

TABLE 4. Fault diagnostic module outputs and corresponding asset
management statement.

B. LIFE MANAGEMENT MODULE
The life expectancy of power transformers predominantly
relies on their paper insulation [5]. The composition of trans-
former paper is primarily comprised of 90% cellulose by
weight. Cellulose is an organic compound characterized by
lengthy chains of glucose rings, typically ranging between
1000 to 1200 per chain for new paper [5]. The Degree of
Polymerization (DP) refers to the average number of glucose

rings present within each chain. Based on experience, it is
commonly considered that transformers reach their end-of-
life when the DP of paper declines to 200, which means the
tensile strength decreases to approximately 40% of its initial
value [58], [59]. However, measuring DP requires a paper
sample from the transformer, which is not feasible for in-
service transformers.

In the present industry practice, the estimation of DP value
is often conducted through the analysis of furan compounds.
Furans are generated as by-products during the degradation
of paper insulation impregnated with oil. Among the five
furan compounds, 2-furfural (2-FAL) is commonly utilized
as a predictor of DP due to its higher stability compared to
other compounds [58]. However, the development of online
furan measuring methods is still an ongoing research area.

Previous research has revealed a correlation coefficient
of 0.87 between 2-FAL and DP [58]. Notably, the ratio of
carbon dioxide to carbon monoxide (CO2/CO) exhibits the
highest correlation coefficient of 0.97 [58], emphasizing its
superior stability as an indicator for assessing the condition
of insulation paper. It is important to highlight that CO2 and
CO are also generated through the oxidation of oil [58]. The
utilization of this ratio is justified by the fact that in situations
of high thermal and arcing faults, CO shows a much more
rapid increase compared to CO2 [60]. Conversely, during
significant heat generation in normal operation conditions,
CO2 increases at a faster rate than CO.

Unlike conventional machine learning approaches, deep
learning has the capability to directly incorporate measure-
ments of CO2 and CO as input features, thereby eliminating
the requirement for extra features such as CO2/CO ratio.
The proposed Life Management module, also depicted in

Figure 5, utilizes a CNN regression approach, incorporating
simply two-gas measurements CO2 and CO to forecast the
DP value.

Based on the DP value, the Life Management module
delivers an evaluation of the paper insulation condition and
categorize it into four levels: ‘‘Healthy insulation’’, ‘‘Mod-
erate deterioration’’, ‘‘Extensive deterioration’’, and ‘‘End of
insulation life’’.

TABLE 5. DP values and their associated significance [61].

The inclusion of the estimated percentage of remaining
life within the asset management framework does not only
enhance the precision of the assessments but also provide a
dynamic understanding of the insulation condition. An esti-
mation for the percentage of remaining life based on the
DP value can be conducted using (3) [62]. Upon review of
Table 5, ‘‘Healthy Insulation’’ category corresponds to DP
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values ranging from 700 to 1200. In order to align the model
with real-world applications more effectively, a DP value of
800 is considered to be corresponding to 100% transformer
remaining life as per (3).

% of remaining life = 166.1 × log10 (DP) − 382.2 (3)

IV. RESULTS AND DISCUSSION
A. FAULT DIAGNOSTIC MODULE
The database comprises a collection of 1083 DGA samples
incorporated from the 29 literatures listed in Table 1. 65% of
the samples were randomly selected for the training phase,
with an additional 15% allocated for the validation phase
while the remaining 20% were designated for the testing
phase.

The Fault Diagnostic module employs the capabilities of
a one-dimensional CNN, which has an architecture adept
at processing sequential data. Within this framework, sev-
eral adjustable parameters play crucial roles in shaping the
model’s performance. These parameters include the filter
size, which determines the width of the convolutional filters
employed to extract features from the input data. Addition-
ally, the kernel size dictates the scope of each convolutional
operation, influencing the receptive field of the network. The
choice of padding, whether ‘valid’ or ‘same’, modifies the
dimensions of the output feature maps. Lastly, the activation
function governs the non-linearity introduced within the net-
work, contributing to its ability to capture complex patterns
and relationships within the data.

The module training process involves an exhaustive explo-
ration of various configuration settings. Different options
were tested at filter sizes: 32, 64, and 128, along with varying
numbers of neural network layers. Throughout these experi-
ments, layers have been systematically added to assess their
impact on themodel’s performance. Despite the array of layer
configurations tested, the final set of layers and parameters
that yielded optimal results are as shown in Table 6.

TABLE 6. Optimal parameters of the developed fault diagnostic module.

The ReLU activation function transforms negative input
values to zero while leaving positive values unchanged. The
ReLU function finds extensive application in neural networks
across diverse domains owing to its efficient computation and
improved gradient propagation, thus facilitating the extrac-
tion of significant features from the input data.

The sigmoid activation function possesses the ability to
condense input values within a range between 0 and 1,

as depicted by (4).

f(x) =
1

1 + e−x (4)

The sigmoid function exhibits an S-shaped curve is capable
of transforming both positive and negative input values into
probabilities. Thus, binary classification will be provided.
For example, if both ‘‘Discharge’’ and ‘‘Thermal’’ faults are
present, the predicted probabilities might be presented as
[0.8, 0.2, 0.4, 0.7] ([‘‘Discharge’’, ‘‘no Fault’’, ‘‘PD’’, ‘‘Ther-
mal’’]); with more probability assigned to the present faults.
It’s noteworthy that each output probability is determined
independently, meaning the prediction for one condition does
not influence the prediction of another.

During the model compilation phase, the ‘Nadam’ opti-
mizer, which is a combination of the Nesterov Accelerated
Gradient (NAG) and Adam optimizers has been applied.
The selection of ‘binary_crossentropy’ as the loss function,
as given by (5), is a common choice for binary classification
problems. It measures the dissimilarity between predicted
probabilities and true labels (0 or 1), thus optimizing the
model to achieve accurate binary predictions.

Binary Cross − Entropy Loss

= −[yi × log(ŷi) + (1 − yi) × log(1 − ŷi)] (5)

where, yi is the actual target value (0 or 1) of the i-th data
point. ŷi is the predicted value of the i-th data point generated
by the model.

Lastly, ‘accuracy’, a standard evaluation metric, is used
for classification tasks. It calculates the ratio of correctly
predicted instances to the total number of instances to provide
insight into the model’s overall performance.

During the last phase of model training, the model’s
weights are updated based on the provided training data. The
training process involves passing the training data through
the network, computing predictions, comparing themwith the
actual targets, and then backpropagating the error to update
the model’s weights. ‘Epochs’ defines the number of times
the model will iterate over the entire training dataset, which
is 1000 times in this case. The batch size determines the
number of training examples the model processes in each
update of the gradient. Smaller batch sizes may lead to more
frequent updates, while larger batch sizes can speed up the
training process. A batch size of 16 has been chosen for the
developed model based on running throughmany simulations
with different batch sizes.

The training process of the model randomly runs due
to the random initial weights, leading to varying results in
accuracy and loss. Following parameters adjustments, the
training model has been executed several times, and the run
producing the highest accuracy and lowest loss is selected.
The generated plots shown in Figure 6 provide valuable
insights into the training process and the performance of
the developed CNN model. The alignment or divergence of
the curves reveals the overfitting or underfitting phenomena
and guides potential adjustments in the model architecture
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or hyperparameters for optimal performance. In Figure 6(a),
the ‘Training loss’ curve, depicted in yellow, shows how the
model’s loss decreases as it learns to better fit the training
data. The ‘Validation loss’ curve, depicted in red, demon-
strates the model’s performance on unseen validation data.
A decreasing validation loss over epochs indicates successful
generalization of the model. In some runs, it was noticed the
validation loss started to rise after a certain number of epochs
while the training loss curve was stable. This overfitting
phenomenon indicates that the model has started to memorize
the training data instead of capturing underlying patterns.
In Figure 6(b), the ‘Training acc’ curve in yellow illustrates
the model’s accuracy using the training data, whereas the
‘Validation acc’ curve in red showcases the model’s perfor-
mance using validation data. As epochs progress, observed
increasing validation accuracy that aligns with the training
accuracy reflects the model’s ability to generalize and predict
unseen data accurately.

The satisfied model performance was achieved with an
accuracy of 0.8479 and a corresponding loss of 0.2989 using
the test dataset. This model was subsequently saved for
the Fault Diagnostic module. To test the Fault Diagnostic
module, new gas measurements were fed into the module,
enabling the prediction of outputs through its learned capa-
bilities.

In order to evaluate the performance of the Fault Diag-
nostic module, a dataset comprising 151 samples from the
IEC TC10 database was used [4]. Subsequently, a thorough
assessment of misdiagnoses within each class was carried
out. Notably, the analysis revealed that misdiagnosis predom-
inantly occurred within the ‘‘No Fault’’ condition as revealed
by the confusion matrix of the Fault Diagnostic module
shown in Figure 7. This may be attributed to the fact that the
majority of the collected datasets were predominantly geared
towards the identification of fault conditions.

The samples presented in Table 7 originate from the IEC
TC 10 database (samples 1-21) and Korea Electric Power
Corporation (KEPCO) historical data [4], [31]. The second
last column in the table shows the actual condition of the
transformers as determined through physical inspectionwhile
the last column lists the diagnostic results generated from
the proposed Fault Diagnostic module. Certain discrepancies
have been identified in the samples #4, #13, #16, #17, #20,
and KEPCO’s samples. In Table 8, traditional IEEE and IEC
DGA interpretation methods are used to analyse all samples
and compare the results with those obtained from the module.
The following observations can be drawn out of these com-
parisons:

1) In the case of sample #4, the actual condition is
described as ‘‘Tracking to the ground in glue of central
beam’’, categorized as low energy discharge. Tradi-
tional methods such as Duval Triangle 1, IEEE and IEC
ratios can identify this discharge fault. However, the
developed module did not capture this specific fault.

2) In the case of sample #17, where the inspection
outcome indicated no fault, the Roger ratio method

FIGURE 6. Fault diagnostic module: (a) Training and validation loss plot.
(b) Training and validation accuracy plot.

FIGURE 7. Confusion matrix of the proposed fault diagnostic module.

indicated a discharge fault. However, both the Duval
Triangle 1 and the developed module reached the same
conclusion, identifying a thermal fault.
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TABLE 7. Comparison between the diagnostic result from the fault diagnostic module and actual condition from inspection. (all gases are measured
in ppm).

3) In the case of sample #20, the inspection result
denoted no fault. In contrast, the module and the
Duval Triangle 1 method yielded results indicating
combined discharge and thermal faults. The Roger
ratio method, on the other hand, identified a discharge
fault.

4) Observations reveal that the module occasionally indi-
cated the presence of multiple faults, as seen in samples
#13 and #16. In the case of sample #13, the module

detected a discharge fault in addition to a thermal fault.
Notably, if the traditional methods were applied to
analyse sample #13, the results would align with the
inspection result. For sample #16, the module detected
a partial discharge fault alongside a thermal fault.
Interestingly, when the IEC ratio and Duval Triangle
methods were applied to sample #16, both identified
a partial discharge fault, in contrast to the inspection
result, which revealed a thermal fault.
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TABLE 8. Comparison of diagnostic results: proposed module vs. the traditional methods. (all gases are measured in ppm).
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TABLE 9. Optimal parameters of the developed life management module.

TABLE 10. CO2 and CO concentration ranges and the corresponding
deterioration level [64].

5) Another assessment was conducted on four KEPCO
transformers based on their annual DGA measure-
ments. The results exhibited the capability of the devel-
oped module in early fault detection for transformers 1,
2 and 3, which enables proactivemaintenancemeasures
to be taken. In the case of transformer 4, the module
not only detected the thermal fault but also identified a
potential discharge fault.

6) In the overall assessment of diagnostic accuracy using
IEC TC10 data, the developed module consistently
demonstrates a better accuracy when compared to tra-
ditional methods. It’s worth noting that the Doernen-
burg ratio method appears to have higher accuracy
when applied to KEPCO data. This discrepancy can be
attributed to a specific requirement outlined in IEEE
C57.104 [3], which mandates a minimum concentra-
tion limit for at least one key gas used in the ratios
before the Doernenburg method can be applied. In the
KEPCO dataset, the ‘‘no Fault’’ cases appear to have
very low gas centration levels, therefore, identified as
‘‘no Fault’’. On the other hand, in the IEC TC10 data,
from samples #17 to #21, the gas measurements exceed
the concentration limit, resulting in inconclusive out-
comes when utilizing the Doernenburg ratio method.
This issue also manifests in the KEPCO data, produc-
ing inconclusive results for 12 or 24 months before the
actual failures may really happen.

From the above analysis, it can be concluded that the
developed CNN-based fault diagnostic module comprises the
following unique features:

• Ability to identify multi-label classification: Conven-
tional DGA interpretation techniques like Duval Tri-
angle 1, IEEE and IEC ratios methods predominantly
pinpointed singular faults. Among them, Duval Trian-
gle 1 method can only identify a combined discharge
and thermal fault. In contrast, the CNN model exhibits
the ability to discern distinct features across all four
different conditions.

• Using a single training model: To distinguish three
pivotal faults; Discharge, Partial Discharge, and Ther-
mal faults, the conventional machine learning methods
require three distinct training models to collectively
assess the transformer’s overall condition. However,
CNN method streamlines this process by utilizing a
single training model, which minimizes the training
duration substantially. This simplified approach not
only expedites the training phase but also produces a
remarkable level of accuracy.

• Avoiding data manipulation: The CNN model pos-
sesses inherent feature selection capabilities, which
facilitates the use of raw data directly and indepen-
dently. This mechanism circumvents the need for man-
ually engineered features like gas ratios or gas percent-
age. Additionally, this intrinsic capability contributes to
reduce execution time, making it particularly suitable
for real-time condition monitoring.

B. LIFE MANAGEMENT MODULE
The training of the Life Management module employed
47 datasets sourced from three distinct literatures. These
datasets were divided into a training set comprising 80% of
the data and a testing set constituting the remaining 20%.

The training model in this context also incorporated a
one-dimensional CNN architecture. The specific parameters
utilized in configuring the CNN architecture are detailed in
Table 9.
In the phase of compiling the model, the Adaptive Moment

Estimation ‘adam’ optimizer and ‘mse’ loss function are
adopted. As stated above, ‘adam’ enhances optimization by
independently adjusting learning rates for each parameter
based on the historical gradients. The Mean Squared Error
‘mse’ loss function as given by (6), quantifies the average
squared difference between the predicted values generated by
amodel and the target values in the dataset. It is often used as a
loss function for regression models to guide the optimization
process.

MSE =
1
n

×

∑
(yi − ŷi)

2 (6)

where, n is the total number of samples in the dataset used
to evaluate the model performance. yi is the actual observed
value while ŷi is the corresponding predicted value by the
model of the i-th data point.
By setting the number of epochs to 5000 and the batch

size to 16, an optimal model performance has been observed.
The progression of the training process is visually depicted

VOLUME 12, 2024 27805



L. Jin et al.: Deep Machine Learning-Based Asset Management Approach

TABLE 11. Comparison between the predicted result from the Life Management module and actual condition from dataset.

in Figure 8. A substantial reduction in both the training and
validation losses over the course of training can be observed
from the figure.

To assess the accuracy of the developed module, a database
that was not included in the training process was analysed as
outlined in Table 11 [63]. As can be seen in the Table, only
two samples (#5 and #7) out of the total 15 results deviate
from the expected target values. This reflects an accuracy
level of 86.7% for the developed model.

FIGURE 8. The training and validation loss plot for the life management
module.

In the past, there was lack of records connecting CO2 and
COmeasurements with the degree of deterioration of insulat-
ing paper. To pursue further module testing, an additional 131
CO2 and COmeasurements have been collected from diverse
sources of the literature. The CO2 and CO measurements are
fed into the life management module for processing based on
the ranges and corresponding conditions given in Table 10.

Upon comparing the module’s outcomes with the estimated
results, a variance was observed in 20 out of 131 cases,
demonstrating an approximate 85% concurrence rate.

C. CONTRIBUTION AND SIGNIFICANCE
Results show that the developed asset management module
offers a generalized approach to evaluate power transformer
condition. Constructed using diverse datasets from reputable
literature sources, this model emerges as a comprehensive
tool for users at all stages. The model features a continuous
learning capacity, progressively enhancing its performance as
it encounters new data, thus ensuring its adaptability to spe-
cific requirements, including power transformers operating
within distinct conditions and environments.

The model’s foundation lies in the employment of CNN
deep machine learning algorithms, empowering it to assim-
ilate fresh information and fine-tune its predictions accord-
ingly. By harnessing this innovative model, users can access
invaluable insights into the well-being of their power trans-
formers, facilitating well-informed decisions regarding main-
tenance and potential replacements.

While the model was developed mainly for mineral oil
immersed-power transformers due to the availability of
required data, same concepts can be used to modify the model
to other transformer types once sufficient data are available
to train the model.

Overall, key advancements and contributions highlighted
in this study include:

• Developed transformer asset management solely relying
on measurements obtained from online DGA sensors.

• Empowerment of the model to interpret online DGA
measurements accurately and diagnosemultiple faults to
provide more insights into transformer health condition.
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• Estimating the DP value based on CO and CO2 mea-
surements and hence eliminating the need to measure
furan compounds offline. This feature facilitates the
online implementation of the developed asset manage-
ment model.

• Employing CNN, which utilizes a single training model
and requires minimal input features.

V. CONCLUSION
This paper presents a comprehensive approach for trans-
former assetmanagement through the integration of twomod-
ules: Fault Diagnostics and Life Management. Both modules
have undergone training utilizing deep CNN machine learn-
ing technique. This technique empowers the model to harness
the potential of online DGA measurements, providing asset
managers with a streamlined means to obtain highly accu-
rate insights into the health condition of power transformers.
Furthermore, the model offers indication of paper insulation
deterioration in real time using the measurements of CO and
CO2 that can be obtained using onlineDGA sensors. This fea-
ture is crucial information for effective real time asset man-
agement schemes. The adoption of CNN not only simplifies
the process, but it utilizes a single training model and requires
minimal input features. The proposed approach enhances the
precision of predictions, hence facilitating informed decision-
making for asset managers. This comprehensive strategy,
encompassing fault diagnostics and life assessment, demon-
strates the integration of cutting-edge technology into asset
management practices, and contributes to the enhanced reli-
ability and longevity of power transformers.
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