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ABSTRACT Radiomics has gained popularity as a quantitative analysis method for medical images.
However, computed tomography (CT) scans are performed using various parameters, such as X-ray dose and
reconstruction kernels, which is a fundamental reason for the lack of reproducibility of radiomic features.
This study evaluated whether the proposed network improves the reproducibility of radiomic features across
various CT protocols and reconstruction kernels. We set five CT scan protocols and two reconstruction ker-
nels to create various noise settings for the obtained CT images with an abdominal phantom.We developed an
enhanced hierarchical feature synthesis (EHFS) network to improve the reproducibility of radiomic features
across various CT protocols and reconstruction kernels. Eight hundred and nineteen radiomic features were
extracted, including first-order, second-order, and wavelet features. Reproducibility was assessed using Lin’s
concordance correlation coefficient (CCC) on internal and external testing.We considered a radiomic feature
with CCC ≥ 0.85 as a high-agreement feature. As a result, the average number of reproducible features
increased in all protocols, from 241 ± 38 to 565 ± 11 in internal testing. In external testing, consisting
of a new phantom and unseen protocol, 239 ± 74 reproducible features were in source images and 324 ±

16 were in generated images. The EHFS network is a novel approach to improving the reproducibility of
radiomic features. It outperforms existing methods in reproducibility and generalization, as demonstrated
by comprehensive experiments on both internal and external datasets. Our deep-learning-based CT image
conversion could be a solution for standardization in ongoing radiomics research.

INDEX TERMS Artificial intelligence, computed tomography, radiomics, reproducibility.

I. INTRODUCTION
Classical medical image analysis relies on radiologists’ per-
ceptual and qualitative assessment; however, quantitative
image analysis has recently gained popularity. Radiomics is
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a quantitative image analysis method that extracts numer-
ous features from radiological images [1]. Representative
radiomic features can provide a tissue phenotype that can
be utilized for clinical decision-making [1], [2]; how-
ever, its reproducibility remains a significant challenge.
Berenguer et al. [3] showed that many radiomic fea-
tures might be non-reproducible and redundant. Computed
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tomography (CT) scans are performed using various parame-
ters, such as X-ray dose and reconstruction kernels. The scan
parameters are determined based on the imaging purpose and
patient characteristics, which is a fundamental reason for the
lack of reproducibility. The full potential of radiomic features
can be realized if harmonizationmethods minimize unwanted
variations induced by differences in scan parameters and
enhance their reproducibility. The ComBat method [4], [5],
a widely used harmonization approach, directly harmonizes
radiomic features that have already been extracted consid-
ering different distributions of multi-center, multi-protocol
datasets. While ComBat is effective in removing cohort bias
and preserving differences in phantom radiomic features,
it requires known batch covariates and struggles with com-
putational complexity demands when applied to images or
high-dimensional signals [6]. Considering this, we focused
on harmonizing raw data sets instead of data-derived features.

Factors such as noise, blur, and artifacts can negatively
affect radiomic features. Therefore, it is imperative that
images used for radiomic analysis are high-quality and
have minimal artifacts [7], [8]. Many studies have reported
on improving radiomics reproducibility by utilizing archi-
tectures such as full convolutional networks (FCNs) [9]
and generative adversarial networks (GANs) [10], which
are widely used for removing noise in medical images.
Choe et al. [11] proposed a CT image conversion method
between two different kernels using a convolutional neu-
ral network (CNN) to improve radiomic reproducibility.
De Farias et al. [12] confirmed the robustness of radiomic
features through super-resolution images generated using
the GAN-CIRCLE model and bicubic interpolation. Marca-
dent et al. [13] utilized Cycle-GAN to perform texture con-
version to improve radiomic features reproducibility between
manufacturers. Chen et al. [14] developed the CT denoising
method to convert low-dose to high-dose CT images by using
cycle GANs, improving the reproducibility of radiomic fea-
tures. Selim et al. [15] used a pre-trained U-net as a generator
and applied the window-based training approach to standard-
ize images obtained from three non-standard reconstruction
kernels. In contrast, this study focused on harmonizing CT
scans, which converted nine CT protocols with five distinct
CT scan protocols and two reconstruction kernels into one
target protocol.

In our previous work [16], a hierarchical feature synthesis
(HFS) network was proposed and demonstrated to improve
the reproducibility of radiomic features. The HFS network
was inspired by the residual feature aggregation (RFA) net-
work [17]. Because the chain of the residual blocks creates
complex fused features, the main idea behind RFA is to use
a clean residual feature to reconstruct the target image. The
RFA network has only a spatial attention module to rescale
the features according to the spatial context, but convolu-
tional features are naturally spatial and channel-wise. In HFS,
channel and spatial attention modules were employed in par-
allel to improve the feature attention performance; however,

Woo et al. [18] demonstrated that the sequential application
of channel and spatial attention modules has a better feature
attention performance than parallel applications.

In this study, we developed an enhanced HFS (EHFS)
network with sequential attention modules and performed
comprehensive experiments to demonstrate that the improved
reproducibility of radiomic features across various CT proto-
cols and reconstruction kernels.

II. METHODS
This study aimed to explore a functionG that converts source
images x, scanned through various CT protocols and recon-
struction kernels, into target CT images y.

G (x) ≈ y, (1)

The mapping function G cannot perfectly define the rela-
tionship between x and y, which can only output an image
G (x) close to y, similar to most end-to-end deep learning
methods. AGANconsists of two neural networks: a generator
(G) and a discriminator (D) [19]. In this study, G is an EHFS
network, and the architecture ofD is based on a photorealistic
single-image super-resolution GAN [20].

The EHFS is an extension of the HFS network that adopts
the sequential application of advanced channel and spatial
attention modules, emphasizing feature representation for
image conversion. The architectures ofG andD are illustrated
in Fig. 1.

A. GENERATOR NETWORK ARCHITECTURE
G is a fully convolutional network consisting of two-
dimensional (2D) convolutional layers. The encoded features
allow G to learn high-level features from a given image x
using two RFA modules. The EHFS was enhanced by replac-
ing the parallel application of the HFS channel and spatial
attention modules with an advanced sequential application
channel and spatial attention modules.

We adopted a convolutional block attention module
(CBAM) [18] for the sequential application channel and spa-
tial attention modules. CBAM has an adaptive enhancement
effect by sequentially inferring attention maps by applying
channel and spatial attention. In the feature attention block,
the convolutional feature map F ∈ RC×H×W sequentially
passes a 1D channel attention Ac ∈ RC×1×1 and a 2D spatial
attention As ∈ R1×H×W . The channel attention is composed
of two different spatial context descriptors average pooling
and max pooling: FCavg and FCmax . The channel attention is
computed as:

Ac (F) = ϕ (MLP (AvgPool (F))

+MLP (MaxPool (F)))

= ϕ(W1 ∗W0 ∗ FCavg
+W1 ∗W0 ∗ FCmax), (2)

where ϕ denotes the sigmoid function. The multi-layer per-
ceptron (MLP) weights W0 ∈ RC/r×C , and W1 ∈ RC×C/r
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FIGURE 1. Architecture of the proposed network with corresponding kernel size (k), number of feature maps (n), and stride (s) indicated for the
convolutional layer.

FIGURE 2. Structure of residual feature aggregation module and feature attention block.

are shared for both FCavg and FCmax , where r is the feature
dimension reduction ratio. In this study, we set c = 32 and
r = 16. The spatial attention is composed of two pooling
operations average pooling and max pooling: FSavg and F

S
max .

The spatial attention is computed as follows:

As (F) = ϕ
(
K 7×7

∗ ([AvgPool (F) ;MaxPool (F)])
)

= ϕ
(
K 7×7

∗

([
FSavg;F

S
max

]))
, (3)

where ϕ denotes the sigmoid function. K 7×7 denotes a
7 × 7 convolutional kernel, and ∗ denotes the convolutional
operation. The overall attention process can be summarized
as follows:

F ′
= Ac (F) ⊗ F,

F
′′

= As
(
F ′

)
⊗ F ′, (4)

where ⊗ denotes element-wise multiplication. The channel
and spatial attention block and RFA module are shown in
Fig. 2.

To reduce the dimensions of the input image to a quarter,
we placed a spatial average pooling layer as the first layer

of G. The downsampled image was then passed through a
convolutional layer with a size of 9 × 9 kernel and activated
through the Leaky ReLU [21]. The 2D convolutional layer
had 3× 3 kernels, and zero paddingwas applied to prevent the
dimension reduction of the convolutional feature maps. The
weights and biases of the convolutional layers were initialized
using the He normal initialization [22].

B. DISCRIMINATOR NETWORK ARCHITECTURE
D consists of five consecutive convolutional blocks. The
convolutional block has two 2D convolutional layers with
3 × 3 kernels and a ReLU activation layer. The second 2D
convolutional layer was operated with a stride of 2 to reduce
the dimensions of the feature map. A batch normalization
layer [23] was attached to the end of the convolutional block.
The last convolutional block has no ReLU activation layer
and batch normalization after the second 2D convolutional
layer. The fully connected layer is attached to the end of the
convolutional block and activated with a sigmoid function.
All parameters of networkDwere initialized using He normal
initialization.
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C. LOSS FUNCTION
We employed three loss functions highly related to image
quality: perceptual loss, joint sparsifying transformation
(JST) loss, and adversarial loss.

1) PERCEPTUAL LOSS
Minimizing the pixel-wise mean squared error (MSE) cost
function, widely used in image generation, is prone to an
overly smooth and poor perceptual quality [20]. Recent stud-
ies have been based on the feature space [20], [24], [25],
[26] for good perceptual similarity. We used a perceptually
convincing loss function based on a pre-trained VGG19 net-
work [27]. We defined φ as the feature map obtained by the
ninth layer of VGG19. The perceptual loss LPL is defined as
follows:

LPL =
1
WH

∥ φ (y) − φ (G (x)) ∥
2
F , (5)

where ∥ · ∥F denotes the Frobenius norm, and W and H
denote the width and height of the 2D output feature dimen-
sions, respectively.

2) JST LOSS
You et al. [28] proposed a JST loss function, a nonlinear
total variation (TV) loss function with joint constraints to
express image sparsity. We employed the JST loss to mitigate
conspicuous noise and artifacts and preserve the anatomical
characteristics by minimizing the difference from the target
image. The JST loss LJST is defined as follows:

LJST = τ∥ G (x) ∥TV + (1 − τ) ∥ y− G (x) ∥TV , (6)

where τ is a scaling factor set to 0.5.

3) ADVERSARIAL LOSS
The adversarial loss encourages the generator network G to
learn the local patterns of the target images to convert images
from various protocols into images with indistinguishable
local patterns. The adversarial loss Ladv is defined as follows:

Ladv = Ez∼pdata(x)
[
− logD(G (x))

]
, (7)

where E(·) is the expectation operator and D (G(x)) denotes
the logistic probability of the generated image.

4) OBJECTIVE FUNCTIONS
The proposed network G was jointly optimized using three
loss functions: perceptual loss, JST loss, and adversarial loss.

Ltotal = λ1 × LPL + λ2 × LJST + λ3 × Ladv, (8)

where λ1, λ2, and λ3 are the parameters used to weight the
loss components of Ltotal .We experimentally found that λ1 =

10, λ2 = 0.1, and λ3 = 0.1 showed the best optimization
performance.

III. EXPERIMENTAL SETUP
A. CT ACQUISITION
The CT images of the PH-5 CT Abdomen Phantom (Kyoto
Kagaku, Japan) for training and internal test sets were
obtained using the SOMATOM Definition Flash CT scanner
(Siemens Medical Systems, Erlangen, Germany) at Seoul
National University Hospital. Five CT scan protocols and
two reconstruction kernels were used to create a variety of
noise settings. We reconstructed raw data using a medium
smooth body reconstruction filter (30f) via filtered back pro-
jection (FBP) and iterative reconstruction (IR) of strength 3
(SAFIRE). The target protocol was 120 kVp × 60 mAs with
an IR of 30f, which is the routine scan protocol of Seoul
National University Hospital. Each protocol was scanned five
times to obtain the natural uncertainty between the same-
protocol images. The number of slice images in the scan was
146. We divided the dataset into training and internal test
datasets. Four of the same-protocol CT images were used for
training, and the remaining CT images were used for internal
testing. For the target protocol, an image averaged from five
scans was used as the target image to minimize the influence
of random noise.

For external testing, CT scans were conducted on the
5-year-old age-equivalent anthropomorphic pediatric phan-
tom (ATOM model 705; CIRS, Norfolk, VA, USA) with
another CT scanner, SOMATOM Force (Siemens Medi-
cal Systems, Erlangen, Germany). The scans were obtained
under the three different dose levels with two reconstruction
techniques (FBP and IRwithADMIRE strength 3) and a body
regular smooth filter level of 40. Each scan file has 87 slice
images. Additionally, target imageswere acquired in the same
manner as in the internal testing to obtain the target protocol
image of the external testing phantom.

The following helical scanning parameters were kept con-
stant in all scans: detector collimation, 128 × 0.6 mm;
pitch, 1.5; field of view, 315 × 315 mm; slice thickness,
3 mm; source-to-detector distance, 1085.6 cm with an image
size of 512 × 512. The rotation time was 0.28 seconds
for training and internal testing and 0.25 seconds for exter-
nal testing. The CT scan protocols are listed in Table 1,
and Table 2 summarizes the number of images in each
dataset.

B. PREPROCESSING
For model training, we experimentally employed the adap-
tive image normalization method that utilized each image’s
maximum and minimum values instead of a fixed normaliza-
tion approach with predetermined maximum and minimum
values. The images were first normalized from the CT
Hounsfield value (HU) to [−1, 1], and each 2D axial image’s
minimum and maximum values were stored for denormal-
ization. Gaussian noise with a mean gray value of 0 and
standard deviation of 0.05 was multiplied by 0.01 and
randomly added to the source images to increase model
generalization.
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TABLE 1. CT scan protocols with dose parameters and reconstruction
kernels.

C. NETWORK TRAINING
In prior works [10], [28], G was trained with randomly sam-
pled local patches; however, we trained G with the original
image size of 512 × 512, and the output image was the same
size. This was done tomeasure perceptual and JST losses over
the image rather than a local patch. Additionally, the discrim-
inator network D was trained to discriminate between local
textures. We sampled five patches from the exact location in
the generated and target images as the discriminator input.
The patch size was 64 × 64, and the patches were augmented
with a random left-right flip and up–down flip to maximize
the generalization capability. We used the adaptive moment
estimation optimizer [29] with β1 = 0.9 and β2 = 0.99, and
the learning rate was set to 10−5. The mini-batch size was
set to 1 for the accuracy of the gradient descent direction and
was trained for 1500 epochs. All experiments were performed
using TensorFlow 1.15 on an NVIDIA RTX 2080 Ti GPU
with 11 GB of memory.

D. EVALUATION OF THE IMAGE QUALITY
Image quality was evaluated using two objective metrics:
structural similarity index (SSIM) [30] and peak signal-to-
noise ratio (PSNR) [31]. SSIM is a perception-based model
that measures the structural similarity between two images

and is defined as follows:

SSIM
(
ŷ, y

)
=

(
2µŷµy + C1

) (
2σŷy + C2

)(
µ2
ŷ + µ2

y + C1

) (
σ 2
ŷ + σ 2

y + C2

) ,

C1 = (K1 · max(y))2,

C2 = (K2 · max(y))2, (9)

where ŷ is the source or generated image. µŷ and µy are
the means of images ŷ and y, respectively, and σŷ and σy
are the standard deviations of images ŷ and y, respectively.
σŷy is the cross-covariance between images ŷ and y. C1 and
C2 are constants used to stabilize the equation and prevent
division by zero, where max(y) is the maximum pixel value
of the target image, 255, and K1 = 0.01 and K2 = 0.03.
PSNR measures the ratio of the maximum pixel value of the
target image to the pixel-wise MSE between the target and
generated images and is defined as follows:

PSNR = 20 · log10(max(y)) − 10 · log10(MSE),

MSE =
1
n

∑n

i=1
(yi − ŷi)

2
, (10)

where MSE is the average of the squared differences between
the two images ŷ and y. n is the total number of pixels, and
yi and ŷi are the value of the ith pixel of image y and ŷ,
respectively. The SSIM and PSNR values were calculated for
all slices and reported as the mean and standard deviation.

E. EVALUATION OF RADIOMIC FEATURE
REPRODUCIBILITY
To ensure the reproducibility of the radiomic workflow in our
study, the CheckList for EvaluAtion of Radiomics research
(CLEAR) [32] was utilized as a comprehensive, step-by-step
reporting guideline, as detailed in Supplementary Materials.

We defined 10 anatomically verified locations, includ-
ing tissue, vessel, and muscle, to extract radiomic features
from the test image set. We sampled 32 × 32 local patches
based on the defined locations, and identical patch samples
were extracted from all protocols. A total of 819 radiomic
features, including first-order (intensity), second-order (tex-
ture), and wavelet features, were extracted using Pyra-
diomics (Pyradiomics library version 3.0.1) [33]. Eighteen
first-order statistics-based intensity features, 22 gray-level
co-occurrence matrix (GLCM), 16 gray-level run length
matrix (GLRLM), 16 gray-level size zone matrix (GLSZM),
14 gray-level dependence matrix (GLDM), and five neigh-
boring gray-tone difference matrix (NGTDM) based texture
features were extracted. In addition, 728 wavelet features
extracted in the same manner as the image transformed using
eight wavelet filters were used. The feature extraction set-
tings mostly adhered to the default values of Pyradiomics.
The bin width for discretizing image gray levels was set to
25, consistent with the Pyradiomics default commonly used
in CT Radiomics studies [34], [35], [36], [37]. In contrast,
for wavelet-transformed images, it was adjusted to 10 [33].
Coiflets 1 was selected for the wavelet analysis, which is
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TABLE 2. Number of protocols, scans, and images per dataset.

FIGURE 3. Examples of original computed tomography (CT) images and generated CT images using the proposed model for the image. (a) and (b) are the
source and generated CT images of protocol 100 kVp × 120 mAs with filtered back projection (FBP) 30f. (c) is the target protocol 120 kVp × 60 mAs with
IR 30f. (d) and (e) are the source and generated CT images of protocol 120 kVp × 30 mAs with iterative reconstruction (IR) 30f. (f) is the target protocol
120 kVp × 60 mAs with IR 30f. The values in the corner are SSIM/PSNR values of each slice. The display window is [−160, 240] HU.

Pyradiomics default and has been utilized by several stud-
ies [38], [39], [40].

Lin’s concordance correlation coefficient (CCC) [41],
which was used to evaluate feature reproducibility in both
internal and external tests, represents the agreement of
radiomic feature values between the source and target patches
and those between the generated and target patches across all
protocols in the internal and external test sets. CCC ranges
from −1 (entirely negative agreement) to 1 (entirely posi-
tive agreement). The analysis was performed using NumPy
version 1.21.2 and Pingouin 0.5.3 [42]. We considered a

radiomic feature with CCC ≥ 0.85 as a high-agreement fea-
ture [43], [44].

The proposed EHFS network was compared with four
methods: 1) block-matching and 3D transform-domain col-
laborative filtering (BM3D) [45], 2) Choe et al.’smethod [11],
3) RadiomicGAN [15], and 4) HFS network [16]. BM3D is
the most popular filtering method and has demonstrated suc-
cessful denoising performance in CT images [46], [47]. Choe
et al.’s CNN-based method, GAN-based RadiomicGAN, and
the HFS network showed improvements in CT radiomics
reproducibility in previous studies.
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TABLE 3. Image quality analysis with structural similarity index and peak
signal-to-noise ratio.

F. COMPREHENSIVE ABLATION STUDY
Weperformed a comprehensive ablation study to demonstrate
the effectiveness of sequential channel and spatial attention
modules in the reproducibility of radiomic features. The
HFS network [16] without the attention module is defined
as a baseline model to demonstrate the contribution of the
employed sequential attention module. We tested four mod-
els: baseline (HFS without attention), baseline + channel
attention, baseline+ spatial attention, and baseline+ channel
+ spatial attention (proposed model). Because the sequential
application of channel and spatial attention modules has bet-
ter feature attention performance than the parallel application,
the parallel application was not compared. The loss functions
were not studied because this study is an extension of the prior
HFS network, and the same loss functions of theHFS network
were employed.

IV. RESULTS
A. IMAGE QUALITY EVALUATION RESULTS
The image processing results are presented in Fig. 3. The
generated images exhibited a significantly higher SSIM than
the source images (source vs. generated: 0.83 ± 0.07 vs.
0.94± 0.03). The SSIM of all protocols increased after image
conversion. The protocols can be grouped into low-dose (Int-
P1 to Int-P6) and high-dose (Int-P7 to Int-P9) groups. Before
the image conversion, the SSIM of the low-dose group was
0.82 ± 0.07, and that of the high-dose group was 0.84 ±

0.07. After the image conversion, both groups showed similar
SSIM improvements (0.93 ± 0.03 vs. 0.94 ± 0.03). The
generated images showed a significantly high PSNR (source
vs. generated: 29.90 ± 2.51 vs. 36.46 ± 1.66). The PSNRs
of the low-dose and high-dose groups were 29.14 ± 2.12 vs.

36.52 ± 1.78 and 31.41 ± 2.54 vs. 36.34 ± 1.37, respec-
tively. The PSNR increased in both groups, and the difference
between the groups decreased from 2.27 to 0.18. The image
quality was objectively improved through image conversion,
and the difference between dose groups was reduced, making
these dose groups more homogeneous. The evaluated SSIM
and PSNR values are presented in Table 3.

B. IMPROVED FEATURE REPRODUCIBILITY IN THE
GENERATED CT IMAGES
We analyzed the reproducibility of the radiomic features. The
local sample patches used for radiomic feature extraction are
shown in Fig. 4.

We counted the significantly reproduced features
(CCC ≥ 0.85) to present the image conversion results effec-
tively in the internal test set. The proposed method increased
the number of significantly reproduced radiomic features in
all the protocols. The averages of the number of significantly
reproduced features in the source and generated images were
241 ± 38 and 565 ± 11, respectively. For first-order fea-
tures, all features of the generated images were significantly
reproduced in all protocols. On average, reproducible features
increased from 36% to 84% for second-order features and
from 27% to 67% for wavelet features. The number of
significantly reproduced radiomic features is summarized in
Table 4. Fig. 5 shows the protocols’ CCC heat map for all
radiomic features. We compared the proposed method with
the other methods, as summarized in Table 5. The averages
of the number of significantly reproduced features were as
follows: BM3D: 305 ± 9; the method reported by Choe
et al.: 381 ± 19; RadiomicGAN: 442 ± 32; HFS network:
518 ± 30; and EHFS network: 324 ± 16.
In the external test set, the number of significantly repro-

duced features increased from 239 ± 74 to 324 ± 16 with
the EHFS network. As shown in Table 6, the results of
external testing for all comparative methods were as follows:
BM3D: 226 ± 8; the method reported by Choe et al.: 281 ±

20; RadiomicGAN: 296 ± 34; and HFS network: 306 ± 6.
Through CCC analysis, we confirmed that the EHFS net-
work converts images well, and the radiomic features were
reproducible, similar to the target protocol images relative
to other comparative models. This confirmation was true for
internal and external testing, consisting of a new phantom and
previously unseen protocols.

C. ABLATION STUDY RESULTS
The source images had an average of 241 ± 38 signif-
icantly reproduced features (CCC ≥ 0.85). The baseline
model (without attention) had an average of 515 ± 28 sig-
nificantly reproduced features. When the channel and spa-
tial attention modules were independently applied to the
baseline model, the average numbers of the significantly
reproduced features were 549 ± 19 and 526 ± 39, respec-
tively. This result indicates that channel attention contributes
more than spatial attention to improving feature repro-
ducibility. The EHFS network, the baseline model with a
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FIGURE 4. Examples of local patch images with extracted radiomic features. (a) Int-P5 protocol 100 kVp × 120 mAs with IR 30f. (b) Int-P8 protocol
120 kVp × 30 mAs with FBP 30f. (c) Int-P4 100 kVp × 60 mAs with FBP 30f. (d) Int-P3 protocol 100 kVp × 60 mAs with IR 30f. The values in the corner are
the SSIM/PSNR values of each slice. The color bar for the images is located to the right of the figure. The display window is [−160, 240] HU.

FIGURE 5. Concordance correlation coefficient (CCC) heat map of all radiomic features. The heat maps display each protocol’s CCC of the 819 radiomic
features.

sequential application of the channel and spatial attention
modules, had an average of 565 ± 11 significantly repro-
duced features. The ablation study results are summarized in
Table 7.

V. DISCUSSION
In this study, we developed an EHFS network that success-
fully improves the reproducibility of radiomic features across
various CT protocols and reconstruction kernels. The network
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TABLE 4. Number of significantly reproduced radiomic features by the protocol (CCC ≥ 0.85).

TABLE 5. Algorithm comparison with number of significantly reproduced radiomic features (CCC ≥ 0.85).

outperforms existing methods in reproducibility and general-
ization, as demonstrated by comprehensive experiments on
both internal and external datasets.

Radiomics has shown potential as an imaging biomarker
for improving diagnostic and prognostic performance in
many tumor diseases, such as lung cancer, head-and-neck
cancer, breast cancer, and brain tumors [48], [49], [50]. How-
ever, the reproducibility of radiomic features in radiomics
studies must be established to obtain generalizable results.
We experimentally evaluated the improvement of radiomic
features reproducibility in internal and external testing. Thus,
the proposed EHFS network could be used as a preprocessing

step in CT radiomics studies to minimize the effects of pro-
tocol differences before quantitative analysis and could be
integrated with other methods for improved reproducibility.

Traditional image quality assessment methods, such as
PSNR and SSIM, are defined based on pixel-wise image
differences; therefore, their ability to capture perceptually
relevant differences, such as high texture detail, is limited.
SSIM is relevant to human perception but does not explicitly
incorporate information about image texture [20], [51]. Filter-
based BM3D and CNN-based Choe’s networks showed no
significant difference in SSIM, and only PSNR decreased
in Choe (SSIM/PSNR, BM3D: 0.95 ± 0.02/32.80 ± 2.26,
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TABLE 6. Algorithm comparison with number of significantly reproduced radiomic features in external testing (CCC ≥ 0.85).

TABLE 7. Number of significantly reproduced radiomic features for ablation study (CCC ≥ 0.85).

Choe: 0.93 ± 0.03/25.15 ± 2.72). However, radiomic
reproducibility was significantly higher for Choe than for
BM3D, as confirmed through internal and external test-
ing (Internal/External, BM3D: 305 ± 9/226 ± 8, Choe:
381 ± 19/281 ± 20). Similarly, the SSIM and PSNR val-
ues in GAN-based RadiomicGAN, HFS, and EHFS were
similar (SSIM/PSNR, RadiomicGAN: 0.92 ± 0.03/32.81 ±

2.00, HFS: 0.94 ± 0.03/35.87 ± 1.64, EHFS: 0.94 ±

0.03/36.46 ± 1.66), but a significant difference was obtained
in the reproducibility of radiomic features (Internal/External,
RadiomicGAN: 442 ± 32/296 ± 34, HFS: 518 ± 30/306 ±

6, EHFS: 565 ± 11/324 ± 16). This indicates that a high
SSIM and PSNR do not guarantee improved reproducibility
of radiomic features. The superior radiomics reproducibil-
ity observed in RadiomicGAN, HFS, and EHFS compared
to BM3D and Choe suggests that more than simple filter
techniques or shallow architectures are required to con-
vert CT images of various protocols with different noise

patterns. In addition, the proposed EHFS network signifi-
cantly improved radiomic feature reproducibility compared
to RadiomicGAN and the HFS network. The EHFS network
performed consistently well in both internal and external
testings, demonstrating its robustness and effectiveness on
both seen and unseen data. It is especially noteworthy for
unseen protocols, which are often challenging for other
methods.

Our results confirm that both the newly designed gen-
erator and the adoption of adversarial training techniques
significantly enhance radiomics reproducibility. As shown
in Table 7, the baseline increased the number of repro-
ducible features from 241 to 515 compared to the source
image; and adversarial training improved radiomic feature
reproducibility. Moreover, adding the channel and spatial
attention modules to the generator network further enhanced
the performance from 515 to 565 reproducible features. This
finding underscores the positive contribution of generator
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enhancements in improving the overall reproducibility of
radiomic features.

Recently, many studies have attempted to overcome the
lack of repeatability and reproducibility of radiomic features.
Peng et al. [52] explored the primary source of variability in
radiomic features by testing test-retest, inter-CT (manufac-
turers and models), and intra-CT protocols (acquisition and
reconstruction parameters). They obtained stable, informa-
tive, and nonredundant radiomic features using hierarchical
clustering. This approach can obtain substantial radiomic
features after CT image conversion using the proposed
EHFS network. Shafiq-ul-Hassan et al. [53] applied voxel
size and gray-level normalization to CT images to increase
the reproducibility of target radiomic features. This method
may improve the robustness of the proposed EHFS net-
work as a post-processing technique. However, integrating
image conversion and radiomic feature reproducibility is
difficult. Because the radiomic features are based on a non-
differentiable texture matrix, gradient backpropagation is not
possible, so they cannot be directly used for the training.

Our study has several limitations: First, it was performed
using scanners from a single vendor. CT vendors affect the
reproducibility of the radiomic features. Therefore, further
testing using scanners frommultiple vendors is required. Sec-
ond, an experiment was performed using phantom images.
However, we set as many scan protocols and reconstruction
kernels as possible to assume various noise patterns to over-
come this limitation. Finally, we assigned equal importance
to all radiomic features. In the future, we will study the
reproducibility of the essential features that can help diagnose
diseases.

VI. CONCLUSION
The proposed EHFS network can improve the reproducibility
of radiomic features, and it has the potential to act as a base-
line for the harmonization of radiomic research. Furthermore,
deep-learning-based CT image conversion could be a solution
for standardization in ongoing radiomic research.
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