IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 9 January 2024, accepted 4 February 2024, date of publication 19 February 2024, date of current version 23 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3366074

== RESEARCH ARTICLE

Multi-Retention STT-MRAM Architectures for loT:
Evaluating the Impact of Retention Levels
and Memory Mapping Schemes

BELAL JAHANNIA, SEYED ALI GHASEMI~, AND HAMED FARBEH *, (Member, IEEE)

Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
Corresponding author: Hamed Farbeh (farbeh @aut.ac.ir)

ABSTRACT In recent years, the energy consumption of IoT edge nodes has significantly increased due
to the communication process. This necessitates the need to offload more computation to the edge nodes
to minimize data transmission over the network. To achieve this, higher-performance CPUs and memory
are required on the edge nodes. In this context, we propose an energy-efficient memory architecture
specifically designed for edge nodes. STT-MRAM is a promising memory technology that offers potential
replacements for SRAM and Flash in IoT devices. STT-MRAM exhibits notable advantages over traditional
memory technologies, such as non-volatility for data retention without continuous power supply and
energy efficiency, resulting in extended battery life for portable devices and IoT applications. Its potential
for higher memory density and scalability through standard fabrication processes further enhances its
appeal for next-generation memory solutions. However, the high write energy consumption is its main
disadvantage. Previous works have explored non-volatility relaxation in CPU cache but there is a need to
extend this approach to main memory in IoT devices. In this paper, we propose a multi-retention STT-MRAM
architecture for IoT main memory. Additionally, we propose a memory mapping scheme for the suggested
memory architecture and examine the impact of more relaxed retention levels on energy consumption. To
the best of our knowledge, this is the first study to thoroughly investigate the optimal thermal stability factor
value for STT-MRAM in IoT applications while also considering optimal memory mapping. The proposed
architecture reduces energy consumption by an average of 70% and up to 83% compared to the currently
used non-volatile STT-MRAM architecture. Furthermore, we propose two memory mappings that are easy
to use and achieve an average energy savings that is just 5% away from the ideal mapping.

INDEX TERMS STT-MRAM, multi-retention STT-MRAM, IoT, memory mapping.

I. INTRODUCTION

The energy consumption of IoT nodes is experiencing rapid
growth, primarily due to the significant energy consumed dur-
ing data transmission over the network. Typically, IoT nodes
process input data and transmit the resulting calculations
over the network [1]. However, the increase in data transfer
has led to a substantial rise in energy consumption for both
network transmission and overall node operation. To mitigate
this energy consumption, it is necessary to offload more
computation to the node and minimize data transmission [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

Achieving this requires higher-performance devices with
larger non-volatile memory capacities. However, larger
memory sizes also result in increased energy consumption,
making memory energy efficiency a critical consideration.
In general CPUs, the memory hierarchy alone accounts
for approximately 40% of the total power consumption
[3]. As memory sizes grow, memory becomes a significant
energy-intensive component in IoT devices.

Different types of data in IoT applications have varying
lifetimes. For instance, in a device used for the detection of
wildfires, data lifetimes can differ significantly. these devices
consist of sensors and cameras which work together to detect
wildfires. The sensors collect real-time data like temperature,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

26562 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024


https://orcid.org/0009-0007-6557-512X
https://orcid.org/0000-0002-4204-9131

B. Jahannia et al.: Multi-Retention STT-MRAM Architectures for loT

IEEE Access

humidity, and smoke levels, while the cameras provide visual
images of the surroundings. Since these devices are in remote
and difficult-to-reach locations, we must be careful of their
energy consumption due to the difficulty in replacing their
batteries.

The data generated by these devices has different lifetimes
depending on its purpose and importance. When the device
analyzes data in real-time to identify potential wildfires,
that data has a short lifetime. It only needs to be stored
temporarily. Therefore, a low retention time memory is
employed, proficiently storing the data for a temporary period
until it is no longer required. On the other hand, the device
also generates data that is recorded and used for research
and prevention strategies. This data needs to be stored for a
longer time [4]. To ensure it stays preserved, the device uses
a memory that can keep data even when power is lost, like
Flash memory. This allows the data to be accessed later or
sent over the network in periodic updates.

By understanding the different lifetimes of the data, the
wildfire detection device optimizes its memory usage. It does
not treat all data the same, which would waste energy. Instead,
it uses one type of memory for real-time analysis and another
for long-term storage. This helps manage data efficiently,
reduces energy usage, and effectively detects and prevents
wildfires in sensitive areas.

Spin-Transfer Torque Magnetic Random Access Memory
(STT-MRAM), a promising non-volatile memory with mini-
mal leakage energy, is emerging as a potential candidate to
replace existing SRAM and Flash memory in the industry
[5], [6]. In the context of IoT nodes and embedded devices,
SRAM and Flash memory are losing their position in the
memory hierarchy due to scaling issues and high leakage
energy. STT-MRAM offers benefits over SRAM, including
non-volatility for data retention without constant power,
energy efficiency by reducing leakage energy, and potential
higher memory density and scalability due to its compatibility
with standard CMOS. Additionally, it boasts durability
against radiation, and better read/write endurance. Although
STT-MRAM offers a viable alternative to SRAM, it suffers
from high write energy requirements. Simply replacing
SRAM with STT-MRAM throughout the memory hierarchy
will not provide sufficient efficiency or performance. Thus,
it is crucial to utilize STT-MRAM properly to minimize
power consumption while maintaining performance. The
main contributions of this paper are as follows:

« We determine the optimal retention time adjusted by
thermal stability factor (A) for STT-MRAM in IoT
applications. To the best of our knowledge, this is the
first comprehensive study investigating the appropriate
A for STT-MRAM in the context of IoT applications
while trying to achieve the ideal memory architecture
by adding more retention levels.

o We propose a memory mapping scheme for the sug-
gested memory architecture. Our mapping approach
offers a low-cost solution that is energy-efficient and
comparable to the ideal mapping. Then proposed
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mapping simplifies memory management by consider-
ing the maximum data lifetimes of memory addresses.
This eliminates the need for runtime address mapping
and makes memory utilization more efficient.

o We explore the impact of relaxed retention levels on
energy consumption. Our two-level memory architec-
ture reduces energy consumption by an average of
67%, with the best case achieving a reduction of
82% compared to currently available non-volatile STT-
MRAM. Similarly, the three-level architecture achieves
an average energy reduction of 70%, with the best case
achieving a reduction of 83%.

o For optimum energy efficiency, we also propose
dynamic and static memory mapping. Our dynamic
memory mapping approach performs 67% energy
efficiency, while our static mapping gives 62% while
significantly reducing mapping effort.

The remaining sections of the paper are organized as
follows. Section II provides the necessary background on
STT-MRAM memories. In Section III, we review related
work and discuss their limitations. Section IV presents our
findings and introduces proposed memory architecture and
memory mapping. Section V presents the simulation setup
and results. Finally, we conclude our findings in Section VI.

Il. PRELIMINARY

A. STT-MRAM BASICS

Spin-Transfer Torque Magnetic RAM (STT-MRAM) is an
emerging memory technology that holds the potential to
serve as a universal memory solution. STT-MRAM offers
several advantages, including near-zero leakage energy,
higher density compared to SRAM, and non-volatile behavior
similar to Flash memory, allowing data retention without
power supply.

The structure of STT-MRAM consists of two fero magnetic
layers: a free layer and a fixed layer (also known as
reference layer), separated by an oxid-barrier layer (spacer
layer) [7]. This three-layer structure is known as Magnetic
Tunnel Junction (MTJ). The content of each memory cell is
determined by the magnetic orientation of the free layer. In
the parallel state, where the magnetization of the free layer
aligns with the fixed layer, the cell exhibits lower resistance,
representing a stored “0” (Fig. 1 (a)). Conversely, in the anti-
parallel state, where the free layer has the opposite magnetic
direction to the fixed layer, the cell demonstrates higher
resistance, indicating a stored “1” (Fig. 1 (b)).

B. IMPACT OF RELAXED NON-VOLATILITY ON WRITE
OPERATIONS

Write operation in STT-MRAM involves applying a high
current to change the magnetic direction of the free layer.
However, this process consumes a significant amount of
energy and requires more time compared to SRAM or DRAM
[8]. As a result, STT-MRAM faces performance and energy
inefficiencies when compared to other memory technologies.
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FIGURE 1. Schematic illustration of an STT-MRAM cell in (a) parallel state
(logic “0”) (b) anti-parallel state (logic “1”).

To address these challenges, researchers have explored
various approaches, including the relaxation of non-volatility.
While STT-MRAM is typically classified as a non-volatile
memory, it is possible to create semi-volatile STT-MRAM
cells by relaxing the non-volatility requirements. By doing
so, the retention times of the memory cells can be reduced,
resulting in lower write energies.

Retention time refers to the period between the initial
write to a memory cell and the time at which a bit-flip
may occur, causing the data to become invalid. In the case
of non-volatile memories like Flash, the retention time is
typically considered to be around 10 years. The retention time
of an STT-MRAM cell can be calculated using (1):

1
RetentionTime(tspr) = f—eA (1)
0

where, fy is the thermal attempt frequency, which is in the
order of 1GHz for storage purposes (1ns). fy,ye is the retention
time of a cell. Retention time and write energy as a following
of that, can be reduced by lowering the thermal stability factor
(A). This can be achieved by adjusting the dimensions of the
free layer of MTJ cells during fabrication. A in STT-MRAM
is influenced by the physical properties of the memory cell.
A higher value of A indicates a higher retention time, but it
also implies that the write operation requires more energy or
pulse duration.

Thermal stability factor can be calculated by (2) [9]:

HgMgA,t
- 2kgT
where, Hy is anisotropy field, My is saturation magnetization,
A, is the area of the MTJ, t is the thickness of the free layer,
kp is Boltzmann constant and T is system temperature in
kelvin.

The thermal stability factor, influenced by parameters such
as Hkg, Mg, or A,, directly impacts the retention time of
STT-MRAM. Reducing any of these parameters decreases
the thermal stability factor and, consequently, the retention
time. Similarly, reducing the planar area of STT-MRAM also
decreases A. By lowering A, we can achieve STT-MRAM
cells with shorter retention times. This is beneficial because
it reduces the energy consumption needed for write operation.

@)
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However, there is a trade-off - the downside is that data can be
kept for a shorter period of time. Numerous researchers have
explored the feasibility of modifying these parameters and
proposed different approaches to modify the thermal stability
factor and, consequently, retention time accordingly [10].
However, exploring these modifications further is beyond the
scope of this study.

Table 1 demonstrates the relationship between thermal
stability factor, retention time, and write energy [11], [12].
It demonstrates that reducing the thermal stability factor
significantly reduces the write energy and retention time. It
is noteworthy that achieving a higher retention time in STT-
MRAM requires a higher value of A, which in turn leads to an
increased energy consumption due to higher write current or
longer write latency. Therefore, it is energy-efficient to utilize
a lower retention time whenever possible.

Regarding the write time of STT-MRAM:s, it is noteworthy
that IoT devices often operate at significantly lower clock
frequencies than high-end processors, in our case 100 MHz,
and require around 5ns to perform a write operation, which is
well within STT-MRAM’s capabilities. Moreover, our main
focus in this work is on maximizing energy efficiency to
prolong battery life and enhance the overall device efficiency.

In summary, changes in the cell physics of STT-MRAM
affect the thermal stability factor and thus the retention
time and write energy of the memory cell. To meet the
requirements of storage applications, a retention time of
more than 10 years is necessary, which requires A > 40.
However, there is a potential situation that we can exploit to
reduce the energy consumption of IoT devices. For example,
by reducing A to 18, which results in a retention time
of approximately 65 milliseconds, a vast majority of data
retention requirements can be fully satisfied, and also the
write energy can be reduced significantly. In this paper,
we aim to find the optimal A value for IoT applications.

TABLE 1. Effect of thermal stability factor (delta) on STT-MRAM retention
time and write energy [11], [12].

Retention time | Thermal stability(A) | Write energy (nJ)
10 years 40.3 0.66
1 year 37.99 0.61
1 month 35.42 0.56
1 week 34.04 0.54
1 day 32.09 0.50
1 hour 2891 0.44
1 min 24.82 0.37
1 sec 20.72 0.29
1 ms 13.82 0.17
100 us 11.51 0.13
1 us 6.91 0.06

C. READ OPERATION

The read operation in STT-MRAM involves applying a small
voltage to the memory cell and comparing the resistance
of the cell to a reference cell to determine its content.
Compared to SRAM and DRAM, the read energy and latency
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of STT-MRAM are not significantly different. In addition,
the read energy in STT-MRAM is considerably lower
when compared to the write energy. Furthermore, relaxing
non-volatility does not result in a significant reduction in
read energy. Therefore, our main objective is to enhance
energy efficiency during the write operation. As a result, our
investigation primarily centers around the RAM data section
of the program, where write operations take place. Other
sections of a program, like code, are just read-only.

It is worth noting the difference between retention time
and data lifetime to avoid any confusion in this paper. Data
lifetime refers to the duration between the first write and
the last read of application data or variables. It represents
the period during which data is defined in the application
and remains in use until its final access. This parameter
is determined and calculated by the program. On the other
hand, memory retention time refers to the duration for
which a memory cell can retain data without any changes,
as discussed in Section I. The memory retention time is a
parameter dictated by the physics of the memory cell.

Ill. RELATED WORK

Recent studies in the field of STT-MRAM can be cat-
egorized into several topics. Firstly, there are studies
focused on reducing the write energy of STT-MRAM.
These include approaches that aim to minimize or avoid
write operations, address the 0/1 asymmetry in writing, and
propose hybrid architectures combining different memory
technologies. Some researchers have also explored the use of
multi-retention cells in STT-MRAM, which involves employ-
ing low-retention cells as an alternative to SRAM. These
designs typically utilize different retention times for different
cache levels to optimize energy consumption. Replacing main
memory with STT-MRAM has also been investigated. In
addition, some studies specifically explore the use of STT-
MRAM in IoT applications and address memory mapping
for such applications. Research in alternative domains has
explored the energy efficiency aspects within other memory
technologies, including PRAM and Phase Change Memory
(PCM) [13], [14], [15].

A. WRITE ENERGY OF STT-MRAM CELL

As mentioned previously, STT-MRAM exhibits an
energy-consuming write operation, prompting researchers
to explore solutions for this issue. This section investigates
STT-MRAM studies that try to lower energy consumption by
avoiding energy-consuming write operations [16].

1) ADDRESSING HIGH WRITE ENERGY

Unlike SRAM, where activity does not significantly impact
energy consumption due to high leakage power, STT-
MRAM experiences an increase in energy consumption with
increased activity. Therefore, these research efforts aim to
address this challenge and minimize energy consumption in
STT-MRAM. Moreover, in this section, we explore the efforts
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made in STT-MRAM research to reduce energy consumption
by avoiding write operations.

Bouziane et al. propose a compile-time approach to
reduce overall energy consumption in memory by mitigating
excessive write operations and minimizing the number of
writes to memory [17]. This approach involves comparing
new data with the old data stored in memory, and if they are
the same, the write operation is canceled.

Zhou et al. suggest utilizing the fact that during the early
stage of a write operation in STT-MRAM, the old data
remains valid and can be read [18]. They read the data and
compare it with the new data to determine whether it needs
to be written to memory or not.

Similarly, Bishnoi et al. emphasize the energy inefficiency
of starting a write operation and suggests avoiding redundant
writes altogether [19]. Their approach involves reading the
data from memory first and then deciding whether to initiate
the write operation based on the comparison results.

Yazdanshenas et al. propose a coding mechanism based
on limited weight codes to reduce the number of writes on
last-level STT-MRAM caches [20]. Park et al. introduce an
approach where, upon a write-back request from L1 cache to
L2 cache, unchanged L1 cache lines are not written to the
L2 cache [21]. To achieve this, the authors divide each cache
line into partial lines and assign a history bit to each partition.
Based on the history bit, they decide on whether to write
the partition or not. By selectively writing only the modified
portions of cache lines, unnecessary write operations can
be avoided, reducing energy consumption and improving
efficiency.

Jung et al. utilize the observation that more than 50% of
the data in the L2 cache is zero. To leverage this fact and
reduce energy consumption, they introduce an all-zero-data
flag that is added to the tag arrays [22]. This flag serves to
indicate whether a specific data entry in the cache is zero
or not. Throughout the write process, if the incoming data
is zero, instead of writing the actual data, they simply write
the zero flag and skip the operation of writing the data itself.
This approach avoids unnecessary write operations and saves
energy. During a read access, the system first reads the all-
zero flag. Based on the value of the flag, they make a decision
on the final data to be returned. If the all-zero flag indicates
that the data is indeed zero, there is no need to read the
actual data. However, if the flag indicates that the data is
non-zero, they proceed to read the actual data. By employing
this approach, the authors effectively reduce the number of
write operations and optimize read accesses in the L2 cache,
resulting in energy savings and improved efficiency.

Bishnoi et al. exploit the write asymmetry between
“0” and “1” in STI-MRAM cells. The authors aim
to terminate the write operation as soon as the cell
content matches the data being written [19]. This approach
allows them to optimize both the time and energy
spent on memory write requests, avoiding unnecessary
resource allocation. By leveraging the write asymmetry,
the authors effectively reduce energy consumption and
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improve the efficiency of write operations in STT-MRAM
cells.

2) 0/1 ASYMMETRY

STT-MRAM write latency and energy differ when it comes to
0/1 writing due to the need to change the magnetic direction
to the opposite of the free layer.

Nigam et al. exploit the asymmetric write energy of
“0” and “1” in STT-MRAM to propose an inverted code
architecture [23]. The main idea is to invert data with more
“1”” than “0” to reduce the energy consumption associated
with writing “1”. The authors also propose three methods
to reduce the writing energy of STI-MRAM: two based
on cell parameters (Ms and MTJ structures) and one based
on lowering the thermal stability factor, which leads to
decreased data retentions. It is important to note that while
the physical alterations required to reduce cell retention time
are discussed, the study does not address the need for an
application or software-based approach to appropriately map
data to the suitable memory cell.

Chen et al. aim to reduce the energy consumption of
the last-level cache by introducing a reconfigurable cache
architecture that can turn on/off the SRAM/NVM arrays [24].
However, turning the ways on and off is a wasteful strategy
because there will always be some ways that are turned
off. This is because the data in the memory is not evenly
distributed. For write-intensive data, they use SRAM and
take advantage of STT-MRAM'’s almost negligible leakage
feature.

3) HYBRID ARCHITECTURES

In a hybrid architecture, the downsides of STT-MRAM
are offset by leveraging the strengths of various tech-
nologies. Incorporating a hybrid architecture enables the
compensation of STT-MRAM’s inherent disadvantages by
harnessing the advantages of complementary technologies.
For instance, pairing STT-MRAM with SRAM brings
together the non-volatility of STT-MRAM and the high-speed
accessibility of SRAM, resulting in a memory subsystem
that offers both data retention during power-off states and
rapid data access for critical operations. The combination of
these technologies effectively overcomes the drawbacks of
each component, leading to an overall improvement in system
efficiency and performance.

Sun et al. propose an energy-efficient L2 cache by utilizing
one SRAM way in a 32-way cache (31M1S)(31 STT-MRAM
line along with 1 SRAM line) [25]. The main concept is to
transfer write-intensive blocks to SRAM. While recognizing
that directly replacing SRAM with STT-MRAM is inefficient
in terms of energy and performance, the hybrid architecture
can provide competitive performance compared to SRAM
while maintaining energy efficiency.

Ahn et al. suggest an architecture to enhance the energy
efficiency of STT-MRAM caches [26]. Based on the obser-
vation that higher-order bits of data tend to be similar while

26566

lower-order bits change frequently, the architecture stores
only the changing half of the word instead of saving the entire
word.

Quan et al. utilize a prediction table for the STT-MRAM
and SRAM hybrid cache to determine the appropriate cache
line for data placement [27]. SRAM lines are positioned
alongside non-volatile STT-MRAM in the cache to address
the high write energy and long write latency of STT-MRAM.
By adopting this approach, the architecture leverages the
performance benefits of SRAM while also taking advantage
of the density provided by STT-MRAM. To determine the
proper cache line, a table is employed that utilizes cache line
activity to predict the optimal placement of data. Cache lines
with write-intensive activity are directed to SRAM, while
lines with lower write frequency are assigned to STT-MRAM
lines. However, the downside of this approach is that it does
not consider the non-volatility feature of STT-MRAM.

Imani et al. determine the placement of data by counting
the number of “1”’s in the data [28]. The authors propose a
cache policy and architecture to write data with more “1”’s
than “0”’s and based on a threshold value, decide whether to
store it in SRAM or STT-MRAM. The authors’ goal is to find
an appropriate threshold.

Goswami et al. present an energy-efficient hybrid shared
memory architecture for GPGPU applications [29]. They
utilize the capabilities of SRAM alongside STT-MRAM and
implement overall optimizations to improve efficiency.

B. MULTI-RETENTION STT-MRAM

Although STT-MRAM exhibits significant write energy,
it can be reduced by decreasing the STT-MRAM reten-
tion time and implementing multi-retention designs,
similar to hybrid architectures (SRAM/STT-MRAM).
A  multi-retention STT-MRAM design might surpass
hybrid SRAM/STT-MRAM due to its fine-tuned power-
performance control, optimized write operations, simplified
integration, and enhanced efficiency by tailoring memory
behavior to application requirements.

Sun et al. proposed an STT-MRAM multi-retention cache
architecture that utilizes a low retention time STT-MRAM
(26.5us) for the L1 cache and a high retention time STT-
MRAM (3.24s) for higher levels of cache [30]. The authors
also introduce a simple DRAM-style refresh mechanism
to prevent retention failures for blocks that reach their
retention time limit. For lower cache levels, they suggest
employing a 1-way low retention and 15-way high retention
cache. The authors use bit redundancy to identify read/write-
intensive blocks and place them in the appropriate cache way.
However, the downside is that they do not consider exploring
the actual data lifetime and use a heuristic search on the
delta and find a delta that seems to be good based on the
simulation.

Smullen et al. propose two different types of STT-MRAM
cells: Read-optimized and Write-optimized [11]. These
cells are optimized for efficient read and write operations,
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respectively. The authors demonstrate that completely replac-
ing SRAM with STT-MRAM is energy-efficient due to
the low leakage of STT-MRAM. However, it also results
in performance degradation due to the latency. To address
this, the authors propose a hybrid cache architecture where
SRAM is used for the L1 cache and relaxed STT-MRAM is
used for the L2 and L3 caches, mitigating the performance
degradation.

Samavati et al. investigate the use of multi-retention STT-
MRAM memories in the last-level cache of GPUs [31]. The
study finds that a retention time of 40ms efficiently satisfies
90% of cache block writes in GPUs. After presenting a
2-part STT-MRAM cache with different retention times, the
authors propose energy consumption reduction by migrating
rewritten data blocks from the high-retention (HR) part to the
low-retention (LR) part and vice versa.

Manohar et al. proposed a strategy to store recently
written blocks, which are likely to be rewritten soon, in a
low-retention section [32]. This approach is based on the
prediction that these blocks will be overwritten in the near
future. They also suggest writing code blocks, which are not
frequently written, to a high-retention section. Additionally,
they consider a mechanism for changing between the two data
regions, a requirement for caches but not for main memory.
Their work focuses on cache levels of memory rather than
main memory.

Agarwal and Chakraborty proposed utilizing a multi-
retention STT-MRAM and assigning blocks to corresponding
sets based on their arrival triggers [33]. Specifically, if a read
miss triggers a block’s arrival, it is placed in a set with a
higher retention time, referred to as the read-set. Conversely,
if a write miss prompts the block’s arrival, it is placed in a
write-set with a lower retention time.

Jog et al. explore the trade-offs between the non-volatility
of STI-MRAM and achieving better latency and power
efficiency for write operations [34]. The authors first profile
the lifetime behavior of the last level cache (L2 Cache)
to determine a suitable retention time. By applying this
retention time alongside a refreshing scheme, this approach
ensures data validity, energy efficiency, and performance
improvement.

Arezoomand investigates the use of STT-MRAM in 3D
embedded chip-multiprocessors and utilizes three different
retention times for the shared L2 cache [35]. They employ
a greedy algorithm to determine the number and placement
of ST1 and ST2 memory banks.

Kim et al. employ STT-MRAM with a one-month retention
time for main memory [36]. The results demonstrate that
this STT-MRAM can function as main memory, offer-
ing performance and energy consumption comparable to
DRAM.

Gajaria and Adegbija investigated the use of multi-
retention STT-MRAMSs in caches but did not extend their
exploration to main memory [37]. They employed a set of
predefined retention times and did not explore the full range
of applicable A values.
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C. MAIN MEMORY INVESTIGATION

As observed in the related work, researchers have not exten-
sively explored multi-retention in main memory, particularly
in the context of IoT. In this section, we explore works that
have been done in this domain.

Kim et al. utilize relaxed retention STT-MRAM (one-
month retention time) as the main memory for mobile devices
[36]. Their results demonstrate that this STT-MRAM can
effectively function as main memory, offering performance
and energy consumption levels similar to DRAM.

Shihab et al. present a tailored STT-MRAM architecture
designed to replace DRAM as the main memory [38]. This
proposed architecture achieves comparable storage density
to DRAM while delivering high performance and power
efficiency. However, the authors do not consider the use of
low retention STT-MRAM design.

Bouziane et al. use a program C-Code to find the lifetime
of data, and using a mapping method, try to write data in the
proper STT-MRAM part [39].

D. MAPPING TECHNIQUES FOR EMBEDDED SYSTEMS
AND IOT

Jaykumar finds the best energy-efficient memory mapping by
an exhaustive search in program code binary section mapping
[40]. The authors argue that each application needs to decide
whether to place text, stack, and data sections in non-volatile
Ferroelectric RAM (FRAM) or high-performance SRAM.

Kim et al. analyzed some of IoT applications to find
energy-efficient memory mapping [41]. The authors put the
IoT OS code on FRAM. Based on a thorough investigation,
it is shown that with the help of profiling, the authors can
utilize a static memory mapping that can lower energy and
power consumption.

Kultursay evaluates Flash replacement with STT-MRAM
and indicates that without any optimization, STT-MRAM is
power and performance inefficient [42]. However, by altering
STT-MRAM and using a little optimization, STT-MRAM can
act as a proper Flash replacement. The authors do not consider
STT-MRAM retention relaxation.

As observed, none of the previous studies considered STT-
MRAM non-volatility relaxation in main memory, especially
in the context of IoT. Furthermore, it is worth noting that the
use of a cache is not common in typical IoT devices due to the
constraints on energy efficiency and device size. By relaxing
the STT-MRAM cell’s retention time, which reduces the
write energy, we can achieve significant energy savings. We
can further improve energy savings by adapting the memory
management with IoT applications access pattern and the
memory configuration. The 2-level retention architecture was
introduced in [43], but does not delve deeply into exploring
additional retention levels, which we explore in this paper. We
also define an ideal architecture and a baseline, explaining it
in detail with energy consumption equations to make it easier
to compare with other proposed architectures. Additionally,
we delve into the impact of memory mapping for the first
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time, defining and comparing two techniques. These mapping
techniques aid in the successful application of memory
architectures for various purposes. The detailed analysis of
thermal stability factors and the comparison of mapping
techniques presented in this study provide valuable insights
for optimizing multi-retention STT-MRAM architectures,
specifically tailored for IoT devices’ main memory

IV. PROPOSED ARCHITECTURE AND MAPPING

In this section, we first take a look at the traditional IoT-based
architecture and then define baseline and ideal architectures.
After that, we present our proposed architecture and utilize
our profiling method to propose static and dynamic data
mapping techniques.

A. TRADITIONAL ARCHITECTURE

Fig. 2 (a) illustrates the traditional memory architecture for
an embedded IoT device. Currently, this architecture consists
of Flash memory for non-volatile sections (such as Program-
Code and Read-Only Data) and SRAM for high-performance
requirements in the working RAM (Heap and Stack). This
memory architecture stems from the fact that different types
of data have varying requirements. For instance, program
code and read-only data, which require long-term retention,
are mapped to non-volatile memory. On the other hand, data
with fast and frequent access requirements, like heap and
stack data, is mapped to high-performance memory, such as
SRAM.

However, this architecture has become increasingly energy
inefficient due to scaling issues with SRAM and Flash.
While STT-MRAM can be a potential alternative to SRAM,
it requires more write energy. Simply replacing SRAM with
STT-MRAM can not be energy-efficient or high-performing.
To achieve energy efficiency while maintaining performance,
we must use STT-MRAM thoughtfully.

B. OPTIMUM ENERGY - BASELINE - FIRST APPROACH

In this section, we establish the ideal architecture, a baseline,
and an initial approach. The ideal architecture and the
baseline provide standards against which we assess the
improvements achieved by our proposed architectures.

1) OPTIMUM ENERGY: IDEAL MEMORY AND DYNAMIC
MAPPING (IDEAL-DYNAMIC) (FIG. 2(B))

To design an effective architecture, it is important to first
identify the optimum conditions and then strive to achieve
this optimal architecture. The desired memory architecture
aims to have a range of retention time values, denoted
by A (Fig. 2(b)). In the figure, varying shades represent
different STT-MRAM cell retention times, with lighter colors
indicating low retention and darker colors signifying high
retention. The progression from the lightest to the darkest
shade signifies the full spectrum of attainable retention times.
While this hypothesis might not be immediately feasible,
it serves as a conceptual foundation for exploring possibilities
and defining the ideal scenario. In this case, data mapping
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can be based on the specific lifetime of the data, ensuring
that it remains in the STT-MRAM memory for the exact
duration required to minimize energy consumption (referred
to as optimum energy). The energy consumption of the
architecture can be calculated using (3)):

X=max

Energy = Z Ewa_, X Dx 3)

x=min

In (3), E,,_, represents the energy associated with the
memory retention time specified by A = x. The variable
px denotes the percentage of write requests assigned to the
corresponding memory section.

By summing up the products of the energy values and
their respective write request percentages for each memory
retention level, the equation allows us to model the overall
energy consumption of the memory architecture. It is worth
noting that the focus of this paper is on the RAM sections of
the program, where most of the write requests are occurred.

However, implementing such a memory architecture is
impractical due to the high fabrication costs and the complex-
ities associated with managing a wide and continuous range
of A values, write times, and write energies. It is not feasible
to fabricate a design with a continuous range of A values and
retention levels (Fig. 2(d)).

Considering these challenges, we are forced to choose a
limited number of retention levels. This raises the question:
What is the optimal A value or the number of levels to
use? Determining the appropriate A value becomes a crucial
consideration for these applications. Initially, we chose to
adopt a two-level architecture. However, further investigation
in Section IV-F will explore the leveraging of additional
levels. Nevertheless, before delving into the concept of levels,
it is essential to establish our baseline.

2) BASELINE: NON-VOLATILE STT-MRAM (DELTA= 40.3)
The architecture currently prevalent in the market involves
the use of non-volatile STT-MRAM that serves all purposes
within the memory hierarchy. This architecture is presented
in Fig. 2(c). An example of this adoption is Lucid Motors’
announcement regarding the utilization of STT-MRAM in
their products [44]. We consider this existing approach as our
baseline and proceed to compare our proposed methods with
this architecture.

In the baseline architecture, all code, read-only data, heap,
and stack are mapped to a non-volatile STT-MRAM (with
a A=40.3). However, as we mentioned in Section I, this
memory architecture is inherently energy inefficient due to
applying the same approach to different types of data. In
this architecture, the energy consumption for write operations
is determined by multiplying the number of writes with the
energy required for a single write, considering A=40.3. The
formula representing write energy is provided as (4), where
all requests (100%) are directed towards the non-volatile
section. The use of percentages enables the normalization of
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energy consumption.
Epasetine = Evy_is X %100 = (0.66 x %100) = 66 (4)

The baseline architecture may not be a strong competitor
for the traditional memory architecture due to its high
energy consumption resulting from the write operations. To
become a good competitor to traditional memory hierarchy,
the idea is to utilize STT-MRAM with different retention
times throughout the memory hierarchy. For example,
incorporating semi-volatile STT-MRAM for data with shorter
lifetimes.

To fulfill the requirements of the code and read-only
sections, non-volatile memory is needed, which can be
achieved through the use of non-volatile STT-MRAM.
However, for RAM sections like heap and stack, which
experience frequent write requests and are considered hot
regions, a relaxed STT-MRAM is more suitable. Utilizing
non-volatile STT-MRAM in these regions would be energy
inefficient due to the power-consuming write operations. As
a result, it is assumed that a maximum A value of 40.3 is
assigned to the code and read-only data, but finding the best
and appropriate A value for the low retention level in the
memory architecture hierarchy is necessary.

The question arises regarding the number of levels to be
used in the memory architecture and the proper A value for
each level. This information highlights the need to determine
the best A value for IoT applications. Previous studies
(Section IIT) have mainly focused on the cache level within
the memory hierarchy and proposed suitable A values for
different cache levels. In contrast, our investigation aims to
comprehensively explore the appropriate A value, not limited
to cache levels. However, the A value for IoT applications
has not been extensively studied. This research is crucial
to identify the optimal A value for embedded applications,
particularly for their main memory (RAM).

3) FIRST APPROACH: DELTA = 26

Based on our careful observations, we noticed that the RAM
sections (Heap/Stack) in IoT applications typically do not
require the long 10-year data retention time provided by
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non-volatile memories. Keep in mind that using non-volatile
STT-MRAM with such an extended retention time is energy
inefficient due to its high write energy consumption.

To address this issue, we consider an initial approach: we
find the maximum data lifetime among all benchmarks and
use it as an upper bound for all working RAM sections. This
architecture, presented in Fig. 2(d), employs this approach.
We have divided the memory into two distinct sections:
low retention and high retention. This division essentially
separates the address range into two parts, one for high
retention and one for low retention. Through our analysis,
we discovered that setting A = 26 (equivalent to 200 seconds)
can effectively fulfill all the data requests. Compared to
A = 40.3, this architecture results in a remarkable 42%
improvement in energy consumption. We derived the energy
consumption model (5) by calculating the energy required for
a single write operation at A = 26 and then multiplying it by
the percentage of write requests. Notably, all write requests
(100%) are directed to the A = 26 section, similar to (4).

Ey = Eyy_ys X %100 = (0.38 x %100) = 38 (5)

C. OBSERVATION AND MOTIVATION
1) ADJUSTING DELTA VALUES FOR ENERGY EFFICIENCY
By analyzing the data lifetimes, we have identified that only
a few data items require a A value of 26. Therefore, we can
relocate the data that requires A = 26 to the non-volatile
section and reduce the A value for the low retention section
of memory. This adjustment allows for significant energy
savings. In Fig. 3, we provide an example using X and Y as
retention levels. (5) and (6) outlines the energy consumption
calculation for these points. The energy for Y is equivalent to
the baseline energy (5), while the energy for X is the sum of
write requests to the non-volatile section and the energy of the
relaxed section (low retention) (6). By allocating the majority
of write requests to the lower retention section (A = 17), the
overall energy consumption is expected to decrease.

Fig. 3 illustrates the percentage of satisfied requests
for different A values. This result is obtained by running
the entire MiBench benchmark suit, which we refer to as
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FIGURE 3. Percentage of successfully completed write requests for
various delta values in an average loT dataset [43].

the average [45]. Within the highlighted range, selecting
A = 11.36 satisfies 38.77% of requests, while A = 11.41 sat-
isfies 59.94% of requests. These results indicate that a slight
decrease in A can lead to improved energy efficiency.

Ey = (Eyy_p, X %98.88) 4 (Eyy_y0s X %1.12)
= (0.2278 x %98.71) + (0.6555 x %1.29)
= 22.4861 + 0.8455 = 23.33108 (6)

Increasing the value of A results in a higher number of
write requests being allocated to the low retention section,
while reducing the number of write requests assigned to the
non-volatile section. However, it is important to note that
as A increases, the write energy also increases. From the
perspective of satisfying the percentage of requests, we aim
to increase A. This means that a larger value of A would lead
to a higher percentage of requests being satisfied. However,
considering the energy consumption aspect, we want to
decrease A for every write operation in the STT-MRAM
cell. This is because reducing A results in lower write
energy consumption. Therefore, there is a trade-off between
satisfying request percentages and minimizing write energy
consumption, and finding the optimal value of A requires
careful consideration of both factors.

2) MOTIVATIONAL EXAMPLE

As mentioned in Section VI, the example of wildfire detection
highlights the fact that different types of data have varying
lifetimes. Fig. 4 visually illustrates this concept in two
parts: Fig. 4(a) demonstrates how distinct data can possess
different lifetimes, while Fig. 4(b) shows that even within a
single address, diverse lifetimes can exist. This presentation
strongly emphasizes the crucial role of optimizing energy
consumption by aligning the retention times of STT-MRAM
memory cells with data lifetimes. Variables A and B,
with varying lifetimes, exemplify the potential benefits of
carefully mapping them to suitable STT-MRAM memory
cells using corresponding A values (retention times) to
achieve energy efficiency.
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To further explore this concept, we executed a well-known
mathematical program on an embedded core (Arm Cortex
MO) and conducted a profiling analysis. The aim was to
unravel the memory’s write and read requests, thereby
identifying the data lifetimes in CPU cycles associated
with different memory addresses. The visualization of these
data lifetimes for memory addresses is presented in Fig. 5.
The x-axis in Fig. 5(a) represents the memory addresses,
and the y-axis represents the corresponding data lifetimes.
Each box in the graph contains four critical points: the
minimum, maximum, and two quarter points (Fig. 5(b)),
providing insights into the range of lifetimes required by
memory cell variables. The illustration effectively depicts
the diverse lifetimes, where smaller boxes denote shorter
lifetimes and longer boxes symbolize extended lifetimes.
This observation highlights two pivotal aspects: the variabil-
ity of lifetimes among different addresses (Fig. 4(a)) and
the presence of divergent lifetimes within a single memory
address (Fig. 4(b)). A direct comparison between two chosen
addresses, specifically (13, 117, 154) and (53, 70, 103, 721,
1497), serves to underscore the significant variations in data
lifetimes both across and within memory addresses. This
insightful analysis offers a comprehensive understanding of
the varying lifetimes within the memory addresses, providing
the foundational context for elucidating our strategies for
energy-efficient memory management optimization.

Analyzing memory access patterns in IoT applications
provides useful information about the data retention require-
ments of various addresses. We can identify which addresses
require a higher retention level and which can be mapped
to a lower retention level. This strategy enables us to
increase energy efficiency and overall system performance
by allocating resources efficiently based on the application’s
specific requirements.

D. TWO-LEVEL ARCHITECTURE: (2L-DYNAMIC)

Each A value is selected individually, and the energy
consumption is determined based on that specific A. The
process follows a specific order: if the data lifetime for a
particular A is lower, it is assigned to the low A (Semi-
Volatile) section, and If the data lifetime exceeds the chosen
A, it is written in the high retention section of the memory
(A =40.3).

During the profiling phase, we can determine the needed
retention time for each data by counting the number of cycles
between the first write of that data and the last cycle data
is read. Following profiling, it is known the required A and
the length of retention time required for each write request.
Therefore, during compilation, data could be allocated to a
low- or high-retention area of the RAM.

Fig. 6 shows the energy consumption of a two-level
memory architecture as a function of the A value. This
figure highlights that for A values below 14, the energy
consumption is excessively high. This is due to a large
number of requests being written to the high-volatile (or non-
volatile) section of the memory. On the other hand, for A
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values larger than 17, there is a slight increase in energy
consumption as more requests are written with higher A
values, leading to higher energy consumption per write. It is
found that A values between 14 and 17 provide an energy-
efficient solution.

Some points in Fig. 6 demonstrate a significant decrease in
energy consumption, indicating that by slightly increasing the
A value, a large number of requests can be directed to the low
retention section. While this increases the energy required for
writing, it is advantageous to store a substantial amount of
data in the low-retention section instead of the high-retention
section. This is also exemplified by points A and B in Fig. 3.
((8) and (7)).

Ep = (Byp_y, 3 X %38.77) + (Eyy_ys X %61.23)
= (0.1319 x %38.77) + (0.6555 x %61.23) = 45.25
@)
Ep = (Eyy_, 4 X %359.94) + (Eyy_y5 X %40.06)
= (0.1327 x %59.94) + (0.6555 x %40.06) = 34.21
(®)
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Selecting a A value lower than the maximum is beneficial,
but determining the appropriate A is crucial (as depicted
in Fig. 3 and Fig. 6). Fig. 6 emphasizes the significance
of finding the optimal A for the problem at hand. Using
an incorrect retention time for applications can result in
significant energy and power losses. Thus, the essence of
determining the suitable retention time becomes evident in
ensuring efficient energy consumption and power utilization.

E. MEMORY MAPPING TECHNIQUES
Now, we will move on from discussing the ideal memory
architecture to exploring the best mapping strategy.

1) DYNAMIC MAPPING: IDEAL MEMORY

ARCHITECTURE + DYNAMIC MEMORY MAPPING (FIG. 2(C))
In previous sections, we assumed that it is possible to
differentiate between two distinct data lifetimes within a
single memory address and determined the best A based
on this assumption. From the software perspective, this can
be achieved through application-specific mapping, albeit at
the cost of programmer/compiler overhead expenses. By
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distinguishing between the lifetimes of an address, we mean
that we can allocate these lifetimes to different memory
sections during the runtime of the application.

For instance, consider Fig. 4 (b), which illustrates how a
variable exhibits different lifetimes during the execution of an
application. Initially, it has a lifetime of 40 cycles, followed
by a lifetime of 60 cycles. Until now, we have assumed that
we can assign data lifetime of 40 cycles to the low retention
section and data lifetime of 60 cycles to the high retention
section. This type of mapping is achievable through dynamic
mapping techniques. It becomes apparent that distinguishing
between these two lifetimes is challenging. Additionally, it is
common for data to have varying lifetimes during the runtime
of an application.

Dynamic mapping involves assigning each retention time
to the appropriate memory cell. For example, assume a
variable during the execution of an application, that requires
different lifetimes in the following order: 53, 70, 103, 721,
1497 cycles. Assuming that the low retention section has a
retention time of 500 cycles, dynamic mapping can assign
the lifetimes of 53, 70, and 103 cycles to the low retention
section, while assigning the lifetimes of 721 and 1497 cycles
to the high retention section. The energy consumption for this
memory address can be calculated by summing the energy
consumption of the low retention section with that of the high
retention section. The energy calculation in this scenario can
be modeled as (9):

Edynamic = (EWA:LowRetenrion x 3)

+ (EWA=H[ghRelenlion X 2) (9)

In Fig. 7(a), we can see the dynamic mapping scenario
where we can selectively assign different data lifetimes of an
address to either the low-retention or high-retention sections
of memory. In the case of address A, all retention times are
within the limit of the low retention section, leading to all
requests being written there. On the other hand, for address B,
the low lifetimes are assigned to the low retention section,
while the high lifetimes are written in the high retention
memory.
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2) STATIC MAPPING: IDEAL MEMORY ARCHITECTURE +
STATIC MEMORY MAPPING (FIG. 2(C))

In dynamic mapping, the memory lookup table needs to
be continuously updated as data addresses change during
execution. This introduces additional complexity and over-
head. On the other hand, with static mapping, we identify
the maximum data lifetime for each address and establish
a static mapping based on this information. This eliminates
the need for runtime address updates and simplifies memory
management.

While static mapping may not provide the absolute optimal
energy consumption, it represents a practical compromise
between the constraints of hardware limitations and the
benefits of static mapping. By considering the maximum data
lifetime, we can achieve a more efficient memory allocation
without the overhead of dynamic mapping.

The concept of static mapping combines the notion of the
maximum data lifetime with an ideal memory architecture
to achieve optimal results. In this approach, we first analyze
the data lifetimes of memory addresses and identify the
maximum lifetime for each address by using access pattern
analysis. We then perform a static mapping, where each
address is assigned to a specific memory cell. Our proposed
mapping is based solely on the maximum lifetime of a
variable. This means that all requests for that variable
are directed to memory cells with a retention time of the
maximum lifetime. However, we still need to determine an
appropriate A value for the low retention section. The energy
consumption can be modeled as (10):

EStatiC = (EWA=HighRetenti0n X 5) ( 10)

In Fig. 7(b), we can see the proposed static mapping,
which is used to make decisions based on the longest lifetime
of each address. This method is a simple way to solve
the mapping problem. It involves assigning data to specific
memory areas based on the maximum time they need to be
retained. This mapping is a one-time process that can be
done either during the compilation of the program or by
the programmer manually. Let us take two addresses, A and
B, as examples. For address A, all the data lifetimes are
within the limit, so all the requests are placed in the section
with a low retention time. On the other hand, for address B,
some data lifetimes are within the low retention limit, but
the maximum lifetime goes beyond it. In this case, all the
requests for address B are treated as if they need the maximum
lifetime, and they are stored in the non-volatile section. This
method simplifies the mapping process and only requires
one-time implementation either with the help of a compiler
or manually by the programmer.

Based on our observations, it is evident that a new
retention time should be considered to optimize and utilize
the advantages of the static mapping approach. We need to
examine whether the previously determined A is appropriate
for this scenario or if a different A should be used.
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3) TWO-LEVEL STATIC MAPPING(FIG. 2(D))

A comprehensive investigation is conducted on the A values,
similar to the previous analysis (Fig. 6), to identify the
suitable A. Fig. 8 illustrates the trend of energy consumption
for write requests in the RAM section. It can be observed that
A values between 15-18 are deemed suitable for this mapping
approach. As anticipated, the optimal A range is not identical
to the previous findings.

Normalized Energy Comsumption

Delta (A)

FIGURE 8. Energy consumption at different delta values for Mibench
benchmark (two-level architecture, static mapping).

4) STATIC AND DYNAMIC MAPPING
Ultimately, the selection between dynamic and static map-
ping hinges on the specific demands of the IoT application,
essentially a trade-off between high performance, energy effi-
ciency, adaptability, and implementation cost. While dynamic
mapping is well-suited for applications requiring exceptional
energy efficiency, static mapping offers a practical, low-
overhead solution for most scenarios. By defining both
dynamic and static mapping, we empower users to choose
the most appropriate approach tailored to their application’s
unique needs.

Dynamic memory mapping, while conceptually appeal-
ing, presents several practical challenges that hinder its
widespread adoption in IoT device operating systems.
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These challenges include memory management overheads,
increased memory size requirements, and variability in data
lifetime across applications.

Implementing dynamic mapping necessitates continuous
monitoring of data lifetimes and runtime remapping of mem-
ory addresses. This incurs significant overhead through the
operating system or compilers, as they need to track access
patterns, update mappings, and migrate data. Additionally,
dynamic allocation requires provisioning adequate memory
capacity in both the high and low retention sections to
accommodate potential maximal usage.

Static memory mapping, which allocate data to memory
sections based solely on their maximum lifetimes, presents
a viable alternative to dynamic mapping. While it incurs a
slight increase in energy consumption, typically around 5%
on average, static mapping offers substantial reductions in
mapping complexity while maintaining the energy efficiency
gains offered by multi-retention memory architecture. This
approach balances the trade-off of slightly higher energy
consumption with the advantages of enhanced reliability
and reduced memory management costs. Despite its higher
energy consumption compared to dynamic mapping, static
mapping remains a preferred choice for a wide range of IoT
applications due to its lower complexity compared to other
mapping methods. Furthermore, the energy cost associated
with this approach is deemed acceptable based on the findings
presented in Section V.

F. EXPLORATION OF ADDING RETENTION LEVELS

In seeking to optimize memory architecture, an avenue of
exploration is the inclusion of multiple relaxed retention
levels. The incorporation of more retention levels pro-
vides increased flexibility, enabling a finer mapping of
data to memory sections closely aligned with the data’s
actual lifetime. As mentioned in Section IV-B1, the ideal
architecture is the one that includes every feasible level
of retention. However, adding more layers has challenges,
as detailed in Section IV-B1. Here, we propose a three-layer
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architecture as an initial step. In the evaluations, we compare
the energy efficiency gains for each design and assess
how close we get to the ideal by adding one more layer.
Through a meticulous comparison of the two- and three-level
architectures with the ideal standard, readers can observe the
potential enhancements from introducing additional layers.

1) 3L-DYNAMIC (FIG. 2(E))

In this approach, non-volatile memory can be allocated for
code or read-only data, while a relaxed semi-volatile section
with A = 26 can be utilized for the maximum requirements
of working RAM. Additionally, determining the optimal A
for the third memory section becomes crucial in achieving
the desired performance. This design assumes the presence
of three memory levels, as depicted in Fig. 2(e).

A comprehensive investigation, similar to the one dis-
cussed in Section IV-D, is required for this approach. Through
this analysis, we determine that a A ranging from 12 to
15 is considered desirable and can be effectively utilized. The
trend of changing energy consumption can be explained as
demonstrated in Section IV-D.

2) 3L-STATIC (FIG. 2(E))

Similar to the previous section, our proposed 3-level memory
architecture can be utilized with static mapping. This allows
us to determine the optimal range for A. In addition,
we address the mapping problem by identifying a suitable A
range of 15-16.

G. SUMMARY OF PROPOSED ARCHITECTURES AND
MAPPINGS

Table 2 provides an overview of the various methods
proposed for optimizing the use of STT-MRAM in embed-
ded and IoT nodes. The baseline approach refers to the
conventional usage of STT-MRAM without any specific
optimization. This serves as a reference point for comparing
the effectiveness of the proposed methods.

TABLE 2. Overview of architectures and mappings.

concept proposed proposed
Mappi Memory Ideal 2Levels 3levels
apping
Dynamic Ideal-Dynamic | 2L - Dynamic | 3L - Dynamic
Static Ideal-Static 2L - Static 3L - Static

V. SIMULATION SETUP AND RESULTS

Our system is built around the Arm Cortex-M platform,
running at a CPU frequency of 100MHz. We used the gem5
full-system simulator, which works with the ARM architec-
ture [46]. We also made sure that each MiBench benchmark
could work with the ARM architecture by cross-compiling
it for ARM architecture. It is worth mentioning that in
the context of IoT and embedded devices, where frequency
changes of up to 4-5 times (400-500 MHz) are typical,
the impact of frequency changes on finding the optimal
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delta value is minimal. Table 3 shows the STT-MRAM cell
parameters used in the simulation.

TABLE 3. Critical STT-MRAM cell parameters.

Parameter Value

Shape Round

Anisotropy field (Hy) 80000 A/m

Saturation magnetization (My) 880000 H/m

Boltzmann constant (Kj) 1.38x10~23 J/K

Temperature (T) 300K

Free layer thickness 0.9nm

Vacuum permeability (Up) ~ 1.25x1076

TO Ins

Resistance area product (RA) 10Qum?
Non-volatile 40.62

A High retention 27.18
Low retention 15.38
Nominal 200%

TMR Under bias voltage 160%
A=40.62 3.591k2

Rp A=27.18 5.178Q
A=15.38 9.628k2

Volume A=40.62 TXx36nx36nx0.9nx m>
A=27.18 mx30nx30nx0.9nx m3
A=15.38 mx22nx22nx0.9nx m3

During our evaluation, we employ a benchmark known as
Average to assess the performance of all benchmarks. This
benchmark serves as an average reference, ensuring that the
effects of each benchmark are considered equally. To achieve
this, we normalize the benchmarks based on the number of
write operations per cycle. This normalization prevents a
single benchmark with high computational or write demands
from dominating the evaluation process.

After conducting a thorough analysis of the proposed
solutions, we present a comprehensive comparison based on
the architectures and mapping methods outlined in Table 2.
The key takeaway from the comparison is the poor energy
efficiency exhibited by the commonly used non-volatile STT-
MRAM in the industry. However, by adopting the proposed
architectures, significant energy savings can be achieved.
In our analysis, we concentrated on minimizing the energy
usage for writing data to STT-MRAMSs. This decision was
based on the fact that writing is the major energy consumer
in these memory systems, while read operations have a
relatively lower energy consumption [47].

Our investigation revolves around two primary aspects,
as detailed in Table 2. Firstly, we explore the impact of
incorporating additional levels of retention time into the
memory hierarchy. This involves examining the effects of
different memory levels on energy consumption. Secondly,
we delve into the effects of various memory mapping
methods, studying their influence on energy efficiency.

A. EFFECT OF MEMORY ARCHITECTURE

Fig. 9 illustrates how memory leveling impacts the energy
consumption of MiBench benchmarks. All data in this
figure is normalized with respect to the baseline memory
architecture, which corresponds to a non-volatile memory
architecture. Notably, the key takeaway is that both the
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two-level and three-level architectures exhibit enhanced
energy efficiency compared to the non-volatile memory
architecture and are also in close proximity to the ideal mem-
ory architecture. Furthermore, the three-level architecture
exhibits even greater proximity to the ideal, benefiting from
enhanced flexibility. The proposed three-level architecture
demonstrates approximately a 14% improvement in energy
consumption compared to the previously suggested two-level
architecture in [43].

While Flash has higher write energy per bit, its lim-
ited writability and erase-before-write requirement make it
impractical for working RAM. Therefore, we exclude its
energy consumption from this comparison.

When compared to conventional SRAM, the performance
of the proposed architectures varies depending on the specific
benchmark. For djpeglarge and djpegSmall, the two-level
architecture consumes more energy than SRAM, while the
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three-level architecture consumes less. However, in other
workloads, both the two-level and three-level architectures
demonstrate improved energy efficiency compared to SRAM.
This improvement is attributed to the optimized A values
in the proposed architectures. The ideal architecture consis-
tently outperforms SRAM due to its precisely tuned A values
that match the requirements of each workload. On average,
the proposed architectures consume less energy than SRAM,
and the ideal architecture consistently outperforms all others.

An interesting observation is that bitcntsSmall demon-
strates the highest energy efficiency across all three architec-
tures, achieving energy efficiencies of approximately 85%,
83.4%, and 83.6% for the ideal, two-level, and three-level
architectures, respectively. This indicates that this benchmark
benefits the most from the leveling architecture in terms
of energy efficiency, closely approximating the energy
efficiency achieved by the ideal architecture. Conversely,
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FIGURE 12. Normalized energy consumption for each benchmark in two-level architecture and dynamic memory

mapping.

djpegLarge showcases the lowest energy efficiency among
the benchmarks, with energy efficiencies of 70%, 55%, and
60% for the ideal, two-level, and three-level architectures,
respectively.

CRC328mall and rijndaelSmall demonstrate similar
energy efficiencies in both the two-level and three-level
architectures. This indicates that leveraging the three-level
architecture does not lead to significant energy efficiency
gains, underscoring the inefficiency of adding an extra layer
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when factoring in the associated costs. Conversely, consid-
erable efficiency improvements are evident in djpegSmall
and gsort_small when comparing the three-level architecture
to the two-level alternative. In these two benchmarks,
incorporating an additional level significantly boosts energy
efficiency, suggesting a meaningful advantage in energy
savings.

Analyzing the average benchmark showcases an improved
energy efficiency across all benchmarks with the introduction
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FIGURE 13. Normalized energy consumption for each benchmark in two-level architecture and static memory mapping.

of either a two-level or three-level memory architecture.
While the three-level architecture outperforms the two-level,
the ideal architecture outperforms both in terms of energy
consumption improvements. While greater energy efficiency
can be achieved by adding more retention levels, this comes
at the expense of increased fabrication costs associated with
these additional levels. For instance, the ideal architecture
consumes only approximately 21% of the energy used by
a non-volatile architecture, while a three-level architecture
consumes around 30% of the energy. Beyond three levels, the
benefits become less pronounced due to escalating fabrication
costs. Notably, a three-level architecture is only around 9%
less energy-efficient than the ideal architecture, making it
a practical choice for balancing energy efficiency and cost-
effectiveness.

B. EFFECT OF MEMORY MAPPING
Fig. 10 illustrates the impact of the proposed mapping
methods on energy efficiency. As anticipated, dynamic
mapping consistently outperforms static mapping due to
its enhanced flexibility. The average benchmark in the
figure demonstrates that the energy consumption of the
static approach is closely aligned with dynamic mapping.
Specifically, for the average benchmark, dynamic mapping
achieves 67% energy efficiency, while static mapping reaches
62%, showcasing a reasonable 5% difference that encourages
the use of static mapping due to its lower implementation
cost compared to dynamic mapping. Static mapping, despite
its lower energy efficiency compared to dynamic mapping,
offers cost-effectiveness due to its one-time data allocation
requirement, either by the programmer or compiler. This
straightforward implementation makes it a practical choice
for many applications.

Notably, in certain benchmarks such as bitcntsmall, there
is a significant difference between the energy consumption
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of static mapping and ideal mapping. This observation
indicates that the benchmark contains a significant number
of addresses with substantially longer maximum lifetimes
compared to other lifetimes for those same addresses. This
underscores the high level of variation in address lifetimes
within the benchmark.

Conversely, in the stringsearchLarge and djpegSmall
benchmarks, there is minimal disparity between dynamic
and static mapping. This indicates that the required retention
times for addresses in these benchmarks are closely aligned
for each address, with minimal differences between the
lifetimes of individual addresses

C. ALL TOGETHER

Fig. 11 provides a visual representation of the energy
consumption of the proposed architectures and mappings,
with all results normalized to the baseline architecture.
The comparison shows that the energy consumption of the
minimal section in the 2-level and 3-level architectures is
not significantly different. This suggests that there is not
a substantial disparity between these two configurations.
However, developers aiming to achieve even higher energy
efficiency, have the flexibility to request additional retention
levels. By utilizing our techniques and mapping approaches,
they can further enhance energy efficiency.

Fig. 11 also provides a comparison between static mapping
and ideal mapping for each value of A. As anticipated, static
mapping consistently exhibits higher energy consumption
than ideal mapping in both two-level and three-level archi-
tectures. This discrepancy arises from the fact that static
mapping assigns all data lifetimes of an address to their
maximum lifetime, resulting in energy inefficiency. However,
both mapping methods share a range of A values where
their minimum energy consumption levels are close to each
other. This range signifies that energy inefficiency of static
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mapping is negligible in exchange for the simplicity of using
the static mapping. Hence, we select this range of A values.
Interestingly, the three-level architecture maintains consistent
energy consumption throughout both the early and late stages.
This is due to the utilization of a low A value (6)-(7) in
the initial stages, directing a substantial number of requests
to the A = 26 section. As we transition towards the later
stages, the A value is progressively increased until it reaches
A = 26. As a result, all requests are directed to the memory
section with A = 26.

Table 4 presents the optimal A values for each benchmark
and for each of proposed mappings and architecture, indi-
cating the best retention time for achieving efficient energy
consumption. However, it is worth noting that previous
figures have demonstrated that a range of A can still yield
satisfactory results. For instance, in the case of crcsmall32,
the optimal A is determined as 11, but A values around
15 or 17 are also deemed acceptable. Therefore, there is a
shared range where different A values can lead to satisfactory
outcomes. In the case of static mapping, the best A is
identified as 15, but a range of A values between 14 and
16 can be considered suitable.

While we evaluated the proposed architecture using IoT
benchmarks, the core principles could be applicable to
other domains such as autonomous vehicles. Determining
application data lifetimes, exploring suitable STT-MRAM
retention times, and static mapping policies could potentially
optimize performance and efficiency in other areas. However,
the specific optimal thermal stability factors should be
recalculated based on the data lifetime characteristics of those
applications. More information can be found in the appendix
section.

TABLE 4. Calculated delta for different workloads.

Workload 2L- 2L- 3L- 3L-
Dynamic | Static Dynamic | Static
CRC32Small 11.5 15.0 11.5 15.0
shaSmall 14.6 15.0 14.6 15.0
rijndaelSmall 14.4 14.8 14.4 14.8
ispellLarge 15.1 15.1 12.7 15.1
ispellSmall 15.1 15.1 12.7 15.1
stringsearchLarge | 15.4 15.4 14.4 14.8
stringsearchSmall | 15.3 153 14.5 14.5
patriciaSmall 15.6 15.6 13.0 15.6
dijkstraSmall 144 16.9 13.6 16.4
cjpeglarge 17.6 17.6 17.6 17.6
cjpegSmall 17.0 20.4 17.0 19.3
djpegLarge 20.7 21.2 17.6 18.4
djpegSmall 19.9 20.4 16.9 17.9
typesetLarge 15.1 17.6 13.9 17.2
typesetSmall 15.1 17.6 13.9 17.2
bitcntsSmall 10.2 14.7 10.2 14.7
gsort-small 13.6 23.3 13.5 14.6
SusanSmallE 14.8 15.9 14.8 15.9
Average [ 149 [ 15.6 [ 12.6 [ 15.6

VI. CONCLUSION
In this paper, we proposed an energy-efficient memory
architecture for IoT devices. The key idea was to minimize

26578

memory retention time as a means to mitigate the high
write energy consumption associated with STT-MRAMs. To
achieve optimal performance, it was crucial to implement
a suitable address-mapping strategy. To minimize mapping
costs, we explored the feasibility of utilizing static mapping
as a cost-effective approach. In a nutshell, our proposed
architecture consumed less energy than the base model and
was near the optimum.

APPENDIX. WORKLOAD SPECIFIC RESULT

Figures 12 and 13 illustrate the normalized energy consump-
tion for each workload in a two-level architecture employing
dynamic and static mapping, respectively. It is important
to highlight that, for each specific workload, the energy
consumption of static mapping exceeds that of dynamic
mapping. This observation aligns with the explanation
provided in the paper, where it is clarified that, in static
mapping, all write requests for a given address are done by the
maximum required lifetime among the lifetimes associated
with that particular address.

The energy consumption for the bitcntsSmall workload
presents an intriguing case that merits further discussion.
As depicted in dynamic mapping, it attains optimal energy
consumption at lower A values, gradually increasing after-
ward. This pattern shows that a significant portion of write
requests can be efficiently handled with a A value of ~10.
However, this principle does not hold in static mapping,
where a larger A is required to achieve optimal energy
consumption. This discrepancy implies that a substantial
number of addresses within this workload exhibit a single
large lifetime among their lifetimes. In static mapping, due
to the necessity of accommodating all write operations
within each address using the maximum lifetime, additional
energy is expended. Further analyses akin to those conducted
throughout our paper can be applied to delve deeper into these
observations.
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