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ABSTRACT As Artificial Intelligence (AI) is becoming part of our daily lives, the need to understand
and trust its decisions is becoming a pressing issue. EXplainable AI (XAI) aims at answering this demand,
providing tools to get insights into the models’ behaviour and reasoning. Following this trend, our research
paper explores the explainability of a deployed multimodal architecture applied to a real-world dataset of
multivariate time series. The study aims to enhance the trustworthiness of an AI agent responsible for crash
detection in an insurance company’s automatic assistance service. By introducing an XAI layer, we provide
insights into the AI agent’s decision-making process, enabling the optimization of emergency medical
services allocation. The dataset consists of real-world telematics data collected from vehicles equipped with
black box technology. The challenge lies in explaining the complex interactions within the multivariate time
series data to accurately understand the forces applied to vehicles during accidents. To this end, we adapt
to this context two state-of-the-art XAI model-specific approaches, originally designed for images. We
offer a qualitative and a quantitative evaluation, also comparing with a well-known agnostic method, and
further validating our findings on an external dataset. The results show that Integrated Gradients, among the
methodologies examined, is the most effective approach. Its ability to handle the complexity of the data
provides the most comprehensive and insightful explanations for the considered use case. The findings
emphasize the potential of XAI to enhance the trustworthiness of AI systems and optimize emergency
response in the insurance industry. Code is available at https://github.com/ltronchin/translating-xai-mts.git.

INDEX TERMS Explainability, evaluation, multivariate time series, car crash detection.

I. INTRODUCTION
Artificial Intelligence (AI) has become an integral part of our
daily lives, serving as a precious tool to assist the human
component in numerous tasks, mainly when data is generated
at an ever-increasing pace. A case in point is the processing
of Multivariate Time Series (MTS) data [1], [2], available
in huge amounts due to the ubiquity of sensors and the
advances in the Internet of Things (IoT) technologies [3].
Univariate Time Series (UTS) can be regarded as sequences
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of data points that are ordered according to time and
divided into uniform time intervals, while an MTS is a
collection of different UTS (also named as attributes) [4]. AI
and deep learning techniques have achieved state-of-the-art
performance in their classification [5], [6]. However, there
are still issues with trusting these decisions due to the intrinsic
lack of transparency of the most used AI techniques, artefacts
hidden in the training data, and possible biases inherited from
human prejudices.

Besides the recent trend in the literature to realise
intrinsically interpretable and transparent AI models [7],
there exist several scenarios where the models already
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deployed are ‘‘black boxes,’’ so that their reasoning is
not humanly interpretable by design [6]. In particular,
EXplainable Artificial Intelligence (XAI) has been attracting
the interest of the scientific community [8], [9], [10] since
the complex nature of AI models prevents the end user
from understanding and validating the very decision process
performed by the AI model itself. In this respect, XAI
is aimed at providing insights into the behaviour of such
systems, thus allowing, through algorithm fairness and
through the identification of any potential bias occurring
within the training data, complex AI models to become more
and more transparent and understandable to humans [10].
Hence, research efforts are directed not only towards the
challenge of developing AI models that are interpretable and
explainable by design but also towards answering the even
more pressing demand to explain deployed models that are
black boxes for humans.

The explainability challenge is even more pronounced
when dealing with time series analysis, which is complex
by nature, especially for MTS when multiple variables are
involved [11]. This complexity can make it difficult to iden-
tify patterns and relationships in the data, and consequently to
provide insights that are humanly understandable. Although
there is a pressing need to offer explanations for time
series data, current research predominantly focuses on UTS
rather than the more complex MTS and neglects real-world
scenarios where both datasets and deployed models are
available for analysis.

In this work, we face the challenge of explaining a
real-world black box already deployed to perform the task
of car crash detection on telematics data from vehicles. The
classifier is a Convolutional Neural Network (CNN) trained
to recognise if a crash event occurred or not using an MTS
given by a car acceleration signal that, in turn, collects three
UTS, which are its spatial components (x, y and z). The
development of an XAI approach for MTS-based AI models
is rather challenging due to the peculiarity that characterises
this type of data: the points of each UTS are connected with
the other sequences via the time dimension, thus implying
complex non-linear temporal dependencies between the
attributes. With the aim of considering the temporal and
spatial relationships between each dimension of an MTS
at the same time, we regard each of the samples as a 2D
image such that each pixel embeds visual abstract features,
mapping both temporal and spatial relationships between
UTS. In this way, we manage to gain the advantage that
follows from analysing the MTS as a whole, exploiting the
rich literature available in terms of explainability relative to
images by choosing three approaches that belong to different
XAI families, namely Grad-CAM, Integrated Gradients (IG),
and LIME.

A further issue we tackle in this work is evaluating the
provided explanation for the MTS, a topic that is only in its
infancy in the current literature [12], [13]. Indeed, different
XAI methods produce explanations that might not be the
same or equally interpretable [12]. So a pressing need is
to quantify the quality of the explanations to evaluate and

compare them. Furthermore, it is worth noting that previous
studies on explainable AI have primarily focused on image
data or single-variable time series, whereas this research
explains amultimodal architecture deployed for the insurance
industry by adapting XAI algorithms originally designed for
images.

This work also significantly extends our previous confer-
ence paper [11] for three reasons:

• First, we present an extensive and larger set of exper-
iments providing valuable performance comparison
among three XAI methods, considering three possible
alternative perturbations: this allows us to experimen-
tally validate, in a true industrial use case, the hypothesis
speculated in [11] but not yet quantitatively assessed,
that is, that XAI can be used to explain MTSs.

• Second, we tackle the IG baseline problem, an open
issue when using this approach in MTS. Furthermore,
also in this case, we offer an exhaustive experimental
analysis.

• Third, we include a generalisation analysis that applies
our approach on a different pair of black box and dataset
to assess the ability to explain MTSs in a different
context.

In summary, we hereby introduce three main contributions:
(i) we explain a real-world architecture deployed to perform
crash event detection from vehicles’ telematics data; (ii) we
translate two state-of-the-art XAI methods from the image
domain to the MTS domain, presenting how we customise
and employ them to deal with a black box architecture work-
ing on multivariate data; (iii) we evaluate the explanations
provided by the two methods and compare them with those
provided by another state-of-the-art approach to test their
effectiveness.

The manuscript is structured as follows: the next section
analyses the XAI literature both for UTS and MTS, and
section II-A describes our use case, including both the dataset
and the AI black box to explain. Section III introduces
the explainability methods, their methodological adaptation
to the specific MTS field and the evaluation framework.
Section IV discusses the experimental settings and the results
attained, whereas section V presents the external validation.
Section VI provides concluding remarks.

II. RELATED WORK
XAI aims at building AI methods that are explainable
by design or rather at developing independent methods to
explain existing architectures, a scenario particularly relevant
when dealing with deployed black box models. The literature
distinguishes the XAI approaches according to different
aspects [8], e.g., the problem they try to tackle or the type
of model they are applicable to. Far from proposing a novel
taxonomy, we hereby present the work on XAI for UTS
and MTS, considering as the main categorising aspect the
distinction between agnostic explanators, i.e., comprehen-
sible predictors that are not tied to a particular type of
black box [8], and model specific explanators, i.e., methods
that are tied to a specific architecture type to derive the
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explanation. Most of the XAI approaches have been proposed
principally for problems that deal either with images or
with text and tabular data. So far, only limited effort
has been directed towards XAI on time series and in the
following, wewill focus on approaches to explainMTS-based
models, with particular attention to model-specific methods
designed for CNNs, as this is the type of deployed black
box studied in this work [3], [13], [14], [15], [16], [17], [18],
[19], [20].

Among the agnostic approaches, we account for the work
by Gee et al. [14], which presents a method to learn the
prototypes, i.e., representative data examples encountered
during model training that describe influential data regions.
It exploits a lower-dimension latent representation that
is learnt by relying on an encoder network. The latent
representation is passed to a feed-forward prototype network
to provide relevant insights about the most important features
that are employed to perform the classification task. The
authors evaluate the proposed framework with respect to
three classification tasks using UTS: detecting bradycardia
out of electrocardiograms, detecting apnea out of respiration
and detecting spoken digits out of audio waveforms. Thus,
they show that the prototypes learn features on two-
dimensional time-series data and eventually produce explain-
able insights during the above-mentioned classification tasks.
Ates et al. [16] introduce an agnostic explainability technique
providing counterfactual explanations for individual predic-
tions. The counterfactual explanations are artificial samples
that have to be as similar as possible to the instance that needs
to be explained while obtaining a different classification
label from the model. This framework is evaluated on
classifiers working on 4 different MTS datasets, namely
three datasets relative to high-performance computing system
telemetry and one motion dataset. To the best of the authors’
knowledge, the proposed approach outperforms state-of-the-
art explainability methods, exhibiting satisfactory evaluation
metrics, especially in terms of faithfulness and robustness.
Other methods that regard agnostic time series explainability
are based on shapelets, i.e., time series sub-sequences that
are maximally representative of a class distribution [21].
Karlsson et al. [15] exploit shapelets to formulate the problem
of counterfactual explanations in terms of interpretable time
series tweaking: such a problem requires the identification
of the minimum number of changes that have to be applied
to a time series in order to switch the decision of the
classifier. In this work, explainability is evaluated starting
from time series shapelets derived by a random shapelet forest
classifier [22]. The authors test the proposed algorithm on
two UTS use cases, finding that the proposed method is
both computationally efficient and valuable. Further to these
agnostic explanation approaches designed for time series,
Saluja et al. [20] use different model agnostic explainability
methods, i.e. Local Interpretable Model agnostic Explana-
tions (LIME) [23], and Shapley Additive explanations [24] to
assess explainability in anMTS forecasting task of a company
sales activities, analysing the explanations resulting from a
human evaluation study.

With respect to the model-specific solutions, their main
characteristic is the strong tie with the black box model
nature. A popular recent research direction for time series
classification exploits CNNs on multivariate data [6], which
achieved state-of-the-art performance in terms of classifi-
cation accuracy using MTS data [25], [26], [27]. Both [3]
and [17] employ as specific explanator for their CNNs
the Gradient-weighted Class Activation Mapping (Grad-
CAM), applied in different configurations depending on
the designed CNN. Assaf et al. [3] use a two-stage CNN
performing a sequence of 2D and 1D convolutions to harvest
both spatial and temporal features in an MTS prediction
task. Grad-CAM is applied at two different levels of the
CNN: (i) in the first stage, with respect to the output of
the last 2D convolutional layer for explaining the feature
importance, i.e., spatial inference; (ii) in the second stage,
with respect to the feature maps of the last 1D convolutional
layer to obtain the timestamp importance, i.e. temporal
inference. The authors test the proposed approach on two use
cases, the former relative to photovoltaic energy forecasting
and the latter relative to server outage prediction, finding that
the proposed framework allows to visualise the attention of
the network over the time dimension and features. Fauvel
et al. [17] proposes a different strategy to apply Grad-CAM:
they introduce a CNN with parallel branches, one branch
using 2D convolutional filters and the other using 1D filters,
extracting directly from the input MTS samples both spatial
and temporal features. Grad-CAM is then applied to the last
convolutional layers in both branches. The explainability is
tested on a synthetic dataset ofMTS, comparing this approach
against the one in [3]. They observe that even if both [3]
and [17] correctly identify the discriminative time window,
reference [17] provides more precise attribution maps and
thus amore informative explanation. Inspired by the approach
of Network Dissection, namely a method showing the spatial
locations that each unit in the CNN is looking at [28],
Siddiqui et al. [18], and Cho et al. [19] rely on the neuron
and filter activation of a CNN with the aim of identifying
the contribution of the raw input data when performing
MTS classification. The former [18] creates a dummy
dataset for time series anomaly detection with three features,
that is, pressure, temperature and torque. The latter [19]
interprets deep temporal representations using two open-
source MTS datasets. A final interesting contribution is by
Schegel et al. [13], which evaluates 5 explainability methods,
considering both agnostic and model-specific approaches
previously used for image and text-domain. They apply the
selected algorithms on UTS data from 9 public datasets.
To evaluate the relevance of the obtained explanations, they
perform a perturbation-based analysis, modifying the values
of the relevant time stamps and computing the change in
model performance. The authors use both a CNN and a
Recurrent Neural Network (RNN) as baseline models for
performing binary classification on each of the datasets. Their
findings underline that the heatmap obtained from each of the
XAI methods is hard to interpret, raising the need for further
exploration of CNN and RNN explainability.
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The literature analysis reported so far highlights some
limitations regarding the study of XAI for MTS. First, the
majority of the efforts are directed towards UTS, which does
not consider the more demanding scenario of MTS. Second,
only a few multivariate public datasets are available [6],
making it even more challenging to provide a fair comparison
between available XAI methods. Third, to the best of our
knowledge, the literature has not considered real-world
scenarios where not only the dataset is available but also
the model to be explained is already deployed. Given these
limitations, we decided to consider the extensive literature
about XAI for image data as a starting point to enrich the
contributions in the field of XAI for MTS. In detail, we study
how to adapt, employ and evaluate their applicability to MTS
in a real-world scenario.

A. USE CASE
Insurance companies have recently started using artificial
intelligence to gain valuable insights about drivers and
vehicle security, analysing data retrieved from telematics
smart boxes mounted on board [29]. Our work considers a
specific use case in this domain where an AI model, also
referred to as an ‘‘AI agent,’’ is employed to optimise the
assistance service of the insurance company Generali Italia
S.p.A. Whenever the vehicle is involved in an accident, the
AI agent processes the deceleration burst collected by the
black box on board and automatically triggers a call to an
insurance operator who, in turn, dials the driver to check
his/her conditions and the general situation. If necessary, this
call is forwarded to the Emergency Medical Services, to offer
any necessary pre-hospital treatment, and/or to the tow truck
in charge of removing the vehicle itself. In this scenario,
the insurance operator receiving a call should be able to
understand and trust the decision of the AI model to properly
take the subsequent actions, without uselessly bothering the
driver, starting any intervention of third parties or, rather,
potentially missing a dangerous event. This is not only an
advantage for the insurer but also for the driver to whom the
insurance operator can explain and detail the reasons behind
the call and potentially provide interpretations about further
relevant elements, such as his/her driving style.

Before delving into the details of the XAI methods
employed to tackle this issue, the next subsections illustrate
the dataset and AI agent provided by Generali S.p.A.

B. DATASET
This paper uses as a relevant dataset a collection of telematics
data that result from being retrieved from the vehicle’s black
box, which, in turn, is equipped with a global positioning
system and an accelerometer in charge of returning informa-
tion about any possible crashes experienced by the car. The
dataset is composed of 81173 samples. Each sample contains
a multivariate acceleration signal recorded along the x, y,
and z directions and a univariate speed magnitude signal.
The former consists of a 2490-timestamp sample per axis.
It is extracted from raw accelerometric data, considering a
total temporal window of 15 seconds divided in the following

way: (i) 9 seconds sampled at 10Hz; (ii) 6 seconds sampled
at 400Hz. The latter, instead, consists of a 41-timestamp
sample acquired over a 41 seconds time window at 1Hz.
Each sample is annotated as a crash or non-crash event,
and each crash/non-crash event comes from a different car.
These two labels are assumed hereinafter to correspond to
the positive and negative classes, respectively. With the aim
of building the AI agent, the dataset was randomly split
into training (50%), validation (25%) and test (25%) sets,
as shown in TABLE 1. Furthermore, TABLE 1 shows how
training, validation, and test sets are distributed among crash
and non-crash samples, revealing that the dataset is skewed
with more examples belonging to the non-crash class. The
strategy to tackle this issue is presented at the end of the next
subsection.

C. THE AI AGENT
Note that the problem can be formulated as a multimodal
task since the two types of time series represent two
distinct quantities sampled at different rates. Hence, the AI
agent described in the next section is a multimodal CNN
that processes both the acceleration MTS and the speed
magnitude UTS. However, as demonstrated in section IV-A,
the acceleration MTS retains the significant information
exploited by the AI agent to detect a crash. This is why we
will neglect the speed magnitude UTS from the XAI analysis,
focusing only on the multivariate input.

The insurance company chose to employ a CNN to detect
any car crash events from the telematics data described in
section II-B, and FIGURE 1 presents the related multimodal
architecture using both acceleration and speed signals.
It is worth noting that the task at hand can also be
tackled with anomaly detection techniques. However, the
exploration of different classification approaches as well as
their comparison, is out of the scope of this work, as it will be
also discussed at the end of Section IV-C. In FIGURE 1 on
the left side of each block, convolutional layers are denoted
with Conv1D followed by the size of the kernelK×C , withK
andC representing the kernel size and the number of channels
respectively, and by the number of filters F . On the right side
of each block, the figure reports the size and the number of
output images for each layer.

The chosen convolutional-based architecture exploits an
MTS-to-image encoding approach for acceleration, with the
aim to catch both the relationships between the attributes and
similar patterns present at different time stamps.

TABLE 1. A-priori class distribution between crash and non-crash classes
per set (training, validation, and test).

Due to the fact that the acceleration and speed recorded in
the dataset exhibit different sampling rates and different time
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windows, the designers relied upon a joint fusion strategy,
which combines the feature representations learned by the
intermediate layers of two neural networks (NNs) as input
to a final model. Such an approach allows us to employ the
loss, as a result of being back-propagated to the two NNs, for
creating a better representation of the twomodalities. In more
detail, let us now discuss this multimodal architecture: the
first NNworks on the image-likeMTS relative to acceleration
(left branch in FIGURE 1), it accepts 2490 × 3 input tensors
and foresees two consecutive blocks, each containing a stack
of one 1D convolutional layer with ReLU activation and
max-pooling, in order to reduce the size of the MTS itself.
The filter being used in each convolutional layer has 5 × C
size, with C accounting for the number of channels from the
previous layer, i.e., the width of the MTS as a result of each
convolution operation. The second NN, instead, processes the
incoming signal related to speed (right branch in FIGURE 1);
it accepts 41 × 1 input tensors and it consists of a single
100-neuron dense layer with ReLU activation, due to the
necessity to cope with the low dimensionality intrinsic to the
UTS modality.

FIGURE 1. AI agent architecture for car crash detection.

The features that are extracted from the two modalities
are then concatenated and fed to a multi-layer perceptron
model in charge of performing the classification task. The
multi-layer perceptron is composed of three dense layers with
500, 250, and 100 neurons, respectively, andReLU activation.
Eventually, the final layer includes one dense neuron layer
with a sigmoid activation function, and returns the posterior
probability of a crash event. To update the weights, the
designers relied on the Adam algorithm with a 0.001 learning
rate. The loss was measured using binary cross-entropy.

With the aim of maximising the recall, since one more
call to assist the customer (i.e., false positive) is better
than leaving a customer in need of assistance in a crash
event (i.e., false negative), the threshold to make binary the
continuous output of the network was set to 0.506, using

the precision-recall curve measured on the validation set.
The experiments on the test set get the values of recall and
precision equal to 70% and 63%, respectively.

III. METHODS
FIGURE 2 shows an overview of the proposed approach for
MTS to explain the CNN decisions and also to evaluate the
explanation quality. FIGURE 2 can be read by following
the arrow in bold at the bottom of the figure itself. More in
detail, the proposed approach consists of four steps: namely,
training, testing, explanation extraction and explanation
assessment.

FIGURE 2. An overview of our approach.

Training, as already described, relies on the training and
validation sets (‘Tr+Vl’ in FIGURE 2) related to both the
speed signal (denoted with ‘MOD 1’) and the acceleration
signal (denoted with ‘MOD 2’), to train a CNN classifier
aimed at solving the task of telling car crash events from non-
crash ones. Validation is carried out in order to determine
the best model that is ultimately adopted for testing as the
so-called ‘Trained CNN’ (refer to the dashed arrow in the
figure).

At the subsequent step (i.e., testing), the input speed and
acceleration signals arranged in a suitable test set (‘Te’ in
FIGURE 2) as described in Section II-B are fed to the trained
CNN in order to evaluate the test performances. The resulting
black box (or trained CNN) is, in turn, fed to the three
explainability methods – that is, Grad-CAM denoted with
‘XAI 1’, IG denoted with ‘XAI 2’ and LIME denoted with
‘XAI 3’ – for the purpose of extracting visual explanations,
one for each XAI method, capable of explaining what the
black box has learnt so far.

Eventually, for the purpose of explanation assessment,
a quantitative evaluation of the three XAI methods is run,
based on the following inputs: the three XAI methods
themselves, the test set and the trained CNN.

Below we will provide a more detailed discussion of
the most relevant aspects of the proposed methodology:
section III-A presents the MTS-to-image encoding proposed
to leverage XAI techniques typically applied to image
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analysis; section III-B illustrates the three different XAI
techniques employed, both agnostic and model specific,
focusing on the methodological adaptations needed to fit the
task at hand; finally, section III-C describes the evaluation
strategy that is considered for the resulting explanation.

A. MTS-TO-IMAGE ENCODING
The strategy of transforming a time series into a
bi-dimensional object that can be treated as an image is
quite common in the time series classification research
landscape [30]. This is the approach also employed by the
AI agent provider to treat the multivariate acceleration input.
We hereby propose a formalisation of such modelling that
we take as a reference when retrieving the corresponding
explanations.

We remap an MTS signal to a grayscale 2D image as
follows. Let us denote by M = [m1, . . . ,mQ]T an MTS
with N timestamps and Q attributes, such that each attribute
mq = [m1q, . . . ,mNq] is an UTS. It is straightforward to
remap such an object into a Q × N image I2D−MTS that has
a number of rows equal to the number of attributes and a
number of columns equal to the number of timestamps.

FIGURE 3 shows this procedure applied to the accelera-
tionsMTS of the dataset at hand, generating an image denoted
as a2D−MTS , with a size equal to 2490 × 3. After the MTS
acceleration signal, denoted with ‘MOD 2’ in FIGURE 3,
is acquired from the telemetry of vehicles, each UTS is
combined to create a 2D image where each row indicates
a UTS and each column the timestamp. Each pixel is also
rescaled into the interval [−1, 1] to cope with the negative
peak values observed from the samples.

It is worth reminding that this encoding applies only to
the acceleration MTS input, whereas we do not provide
any specific modelling of the speed magnitude UTS.
Indeed, as anticipated in section II-B and further proven in
section IV-A, the speed UTS is not relevant with respect to
the XAI aims, since it actually does not retain significant
information for the classification task.

FIGURE 3. Summary of the procedure to build the image-like MTS.

B. XAI FOR MTS
As aforementioned, in this work we address the challenge of
explaining a real-world black box. By leveraging the MTS-

to-image encoding presented in the previous section as well
as the convolutional nature of the AI agent, we now introduce
three main XAI methods:
(i) a model-specific solution, namely Grad-CAM [31],

which is intentionally designed for convolutional archi-
tectures, considering CNN activation on the specific
input sample;

(ii) amodel-inspection approach, namely IG [32], a method,
designed for deep networks, that gains its explanation as
a result of examining the internal model behaviour when
varying the input sample;

(iii) for the sake of completeness, we include in this section
an overview of LIME [23], an agnostic solution which
generalises by definition to any model and outputs a
comprehensible local predictor and is here employed for
comparison purposes in the eventual evaluation of the
explanators.

All the above-mentionedmethodswere originally designed
for image explanation purposes and provide a Saliency Map
(SM) as output. SMs are an efficient way of pointing out
what causes a certain outcome, mainly when images are being
treated. Indeed, a SM can be regarded as a ‘‘mask’’ that
visually sheds light on the critical aspects of the analysed
data, i.e., the very timestamps that are relevant to the crash-
detection task. In other words, a SM can be considered as a
visual representation of feature importance. This ultimately
allows the end user to visually inspect the explanation.

We now present how we customise and employ Grad-
CAM, IG and LIME to deal with a black box architecture
working on multivariate telematic data.

1) GRAD-CAM
Grad-CAM [31] is a suitable method for explaining the
decision made by the output layers of CNNs. Indeed,
it relies on the gradient information that flows into the
last convolutional layer, with the aim of understanding
the importance of each neuron in the decision of interest.
The reason why the last convolution layer is used is that
this approach is able to capture the higher-level semantics
extracted by the convolutional block as well as it retains any
spatial information which is generally lost in fully-connected
layers. This way, we can expect the last convolutional layers
to eventually yield the best compromise between high-level
semantics and detailed spatial information [31]. Grad-CAM
returns an attribution map, that is, a SM with the same size
as the input data, such that the colour intensity is correlated
with the input features and, as a consequence, the activated
areas highlight which timestamps and which attributes the
CNN looks into within the synthetic image when it comes
to making its predictions.

With the aim of obtaining the class-discriminative attribu-
tion map denoted with SM c

Grad-CAM for a class c, Grad-CAM
computes, first, the gradient information of the prediction
score for class c, yc, with respect to feature map activations
Ak of the last convolutional layer, i.e., ∂yc

∂Ak with k ∈

[1, . . . ,F] and F identifying each feature map and the total
number of feature maps in the considered convolutional
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layer, respectively. These gradients that flow back are
global-average-pooled over the image-like MTS signal
dimensions with the aim of determining a weight wck that
represents the importance of each feature map k for the target
class c:

wck =
1
Z

∑
i

∑
j

∂yc

∂Aki,j
, (1)

with Z denoting the number of pixels in the feature map
k , and the pair (i, j) denoting each pixel. These weights
are then exploited to compute a weighted combination of
all the feature maps for the class under investigation; then,
the use of a rectified linear activation function or Rectified
Linear Unit (ReLU) [33] keeps only the features that exert
a positive influence on the class of interest, that is, any
pixels whose intensity should grow to increase yc [31].
Thus, Grad-CAM returns a linear combination between
weight values and feature maps and relies on a ReLU in
order to keep only the positive attribution to the prediction,
which results in a coarse heatmap of the same size as the
filter (or feature map) appearing in the last convolutional
layer:

SM c
Grad-CAM = ReLU

( F∑
k=1

wckA
k
)

. (2)

where F is the total number of feature maps in the last
convolutional layer.

Although this approach can work on our data, it does
not explicitly exploit the information given by the rela-
tionship between the attributes. This way, we modify the
baseline Grad-CAM method by introducing a recombination
method to provide a finer grade for the explanations of
each MTS attribute. In detail, we face the problem of
matching the localization map SM c

Grad-CAM with the input
exploiting the last Conv1D layer of the image-like MTS
branch (FIGURE 1). As the Conv1D layer comprises k =

32 feature maps, each of dimension 1245 × 1, we need
to map the final 1245 × 1 heatmap (SM c

Grad-CAM) onto
the 2490 × 3 input signal. To this aim, we design both
an ablation-based perturbation on the multivariate input
a2D−MTS and a recombination approach, thus finally adapting
Grad-CAM to the multivariate nature of the telematics data
received in input. The proposed approach works as follows
(FIGURE 4).

1) According to classical Grad-CAM (denoted with
‘XAI 1’ in FIGURE4), we calculate a 2490×1 heatmap
SMI (represented by the corresponding block in the
left handside of FIGURE 4) and we compute the
probability of crash (denoted with pI ), with respect
to the original acceleration signal (denoted with
‘MOD 2’ in FIGURE 4), returned by the black-box
model (represented by the ‘Trained CNN’ block
in FIGURE 4).

2) We apply an ablation-based perturbation onto theMTS-
to-image encoding by alternatively setting 2 out of
3 univariate signals to zero. This results in three

perturbed MTS signals, named respectively x̃, ỹ, z̃,
each saving only the information of one attribute of the
originalMTS (in this respect, refer to the right handside
of FIGURE 4).

3) We alternatively feed each perturbed signal to the
black-box model by employing the classical Grad-
CAM algorithm (‘XAI 1’). This allows to extract three
2490 × 1 heatmaps SMx̃ , SMỹ, SMz̃ together with the
prediction score px̃ , pỹ, pz̃.

4) Finally, we aggregate the outputs of the previous steps
(refer to the ‘Recombination Rule’ layer in the lower
part of FIGURE 4), thus achieving a final heatmap
SMa2D−MTS , according to the following recombination
rule:

SMa2D−MTSx
=

∣∣pI − px̃
∣∣ (SMI − SMx̃) + SMx̃ (3)

SMa2D−MTSy
=

∣∣pI − pỹ
∣∣ (SMI − SMỹ) + SMỹ (4)

SMa2D−MTSz
=

∣∣pI − pz̃
∣∣ (SMI − SMz̃) + SMz̃ (5)

Instead of simply replicating the same heatmap SMI on the
three attributes of the multivariate input, the recombination
rule allows to differentiate among the individual univariate
contributions using the perturbed signals (blue ones or SMx̃ ,
SMỹ, SMz̃) and relying on the network prediction as a weight
of relevance and on the linear combination of SMI with SMx̃ ,
SMỹ, SMz̃.
Hence, SMa2D−MTS is the concatenation of SMa2D−MTSx

,
SMa2D−MTSy

and SMa2D−MTSz
to build a final 3×2049 heatmap.

Note that the classical Grad-CAM approach delivers
heatmaps of the same dimension of the feature maps in the
convolutional layer under consideration: so in our case the
Conv1D layer with 1245 × 1 feature maps. Hence, in order
to gain the 2490 × 1 heatmaps cited in steps 1 and 3,
we duplicated each pixel intensity value of the calculated
heatmap to match the largest dimension of the original input.

In this scheme, the contribution of the saliency map
extracted using the original signal (orange ones or SMI ) is
always retained in the linear combination as it represents the
explanation of the full interaction among attributes, so the
multivariate contribution.

To better understand this rationale, let us consider the
following example: if the CNN prediction as a result of
applying the perturbed input x̃ deviates considerably from
pI , so the value

∣∣pI − px̃
∣∣ is high, which implies that all the

information for the Grad-CAM is embedded in one or both
of the ablated axes (set to zero). Therefore, the component
x which did not get perturbed does not provide any relevant
information about the correct class and, according to the
recombination method, the corresponding heatmap SMx̃ is
weighed less.

Although this is presented as a task-specific solution,
the recombination strategy can be potentially applied to all
MTS-based CNNs to recover the importance information
retained in each specific attribute, so offering a compre-
hensive and fine-graded explanation of the multivariate
input.
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FIGURE 4. Customized ablation-recombination methodology aimed at extracting a 2490 × 3 final heatmap SMa2D−MTS .
Notation: MOD 2 acceleration signal, x̃ , ỹ , z̃ perturbed signals, px̃ , pỹ , pz̃ , prediction with perturbed signals, pI prediction
with original sample, SMI explanation for original sample, SMx̃ , SMỹ , SMz̃ explanations for perturbed samples.

2) INTEGRATED GRADIENTS
Integrated Gradients [32] is a path method measuring the
changes in model prediction that result from changes to
the intensity of input features. To this end, it realises a
transformation between a baseline, on the one hand, –
i.e., an object that generates no response through the network
and that can be regarded as an instance of feature absence –
and the input value, on the other hand. Such transformation
is linear and incremental: namely, IG computes the variation
in the model predictions with respect to the input feature at
each step, averaging these incremental changes together. This
method, too, was originally designed for images: IG exploits
gradients with the aim of identifying, relative to the model’s
prediction function, which pixels (features) are responsible
for strongly influencing the prediction at a given point. With
respect to other gradient-based XAI methods, the intuition
behind IG is that of accumulating the local gradients of each
pixel and assigning their importance as a score that accounts
for how much it adds or subtracts to the overall output class
probability of themodel. This aspect contributes to eventually
avoiding the problem of gradient saturation. More formally,
IG represents the path integral of the model gradient along a
straight line path moving from the baseline to the input.

In our application, the image is our MTS-to-image
encoding and the pixels, or features, are actually attribute
values at specific time instants.We also would have theMTS-
to-image encoding baseline denoted as abaseline: it is a sample
that does not provide any activation for the CNN and thus
results in a nearly null posterior probability for the target
class, i.e., the output of the model that has to be explained.
This is an intrinsic challenge introduced by the considered
task and a suitable approach for solving it is one of the

main contributions of the paper. In detail, we proceed in the
following way:

• we interpolate small steps along a straight line in the
feature space, by considering an intensity step ε that
varies between 0 (a baseline or starting point) and 1
(value of the input pixel);

• at each step we compute gradients between the model
predictions and the current input;

• we approximate the integral between the selected
baseline and the input by collecting (namely, according
to cumulative average) the local gradients computed at
the previous step.

This procedure can be formalised by the following IG-like
mathematical notation:

IGi(a2D−MTS )

= (a2D−MTS,i − abaseline,i)

×

∫ 1

ε=0

∂f (abaseline + ε(a2D−MTS − abaseline))
∂a2D−MTS,i

dε (6)

where f represents the input-output function of the CNN
to be explained, i the i-th feature (pixel) in the input and
∂f (a2D−MTS )/∂a2D−MTS,i denotes the gradient of f along the
i-th dimension of a2D−MTS .
The Baseline Problem: A significant challenge of IG is the

need to identify a baseline that is uninformative to the task.
For most deep convolutional networks dealing with images,
it is possible to choose a baseline such that the prediction at
the baseline is near zero (f (abaseline) ≈ 0), e.g., a completely
black image. Indeed, the baseline should convey a complete
absence of signal, since when we assign attribution to a
specific cause we implicitly consider the absence of the
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cause as a baseline for comparing outcomes [32]. In our
case, a black image-like MTS would be a zero signal, which
actually results informative for predicting the non-crash class,
i.e. a low probability of a crash event. Thus, the aim is to
find input signals where the feature values do not provide
any activation in a CNN designed to work on time-series
data. To this end, we design a mixed baseline which varies
depending on the predicted class of the signal that we want to
explain and we validate it with an exhaustive analysis.

For a signal predicted as crash event, we exploit as baseline
the zero acceleration signal and the constant speed equal to
0.1 in a normalised scale. These two signals are supposed to
be an input that does not produce activation for the crash class,
as they model a vehicle moving at a constant very low speed.
As a specular case, for a signal predicted as a non-crash event,
we exploit as baseline the average of a subset of validation set
signals predicted as a crashwith a confidence larger than 0.95.
This averaged high confidence crash input is supposed not
to produce any activation in the network with respect to the
non-crash class, so responding to the definition of baseline
but only for the specific class we want to explain.

To analyse and prove the effectiveness of the proposed
baselines, we perform an exhaustive analysis according to the
following rationale. Given a specific class that we want to
explain (either crash or non-crash), we consider the prediction
of the AI agent for the corresponding baseline pbaseline and
for the original sample pinput : the more pbaseline and pinput
are different, ideally with pbaseline → 0 and pinput → 1, the
more our baseline reflects the definition required by the IG
method. Hence, for all inputs in the test set, we computed
the difference δ = pinput − pbaseline between the prediction
of the crash-alert system for the baseline (pbaseline) and for
the current signal (pinput ) and we provided a meaningful
visualisation of the results on the test set (20, 293 samples) to
comprehensively check if the rationale is respected. In other
words, as we look for the probability of the target class being
picked near 0 for the baseline (pbaseline ∼ 0) and near 1 for
the input signals (pinput ∼ 1), we want large δ values for the
instances correctly predicted by the CNN, encoded as a high
difference of the posterior probability for input and baseline,
i.e., high values of δ.

3) LIME
For completeness let us now briefly present another XAI
method that we employed as a competitor. The Local
Interpretable Model-agnostic Explanations (LIME) approach
is suited to explain any black box since it does not inspect
its internal parameters, but it relies on the intuition that
the explanation can be locally derived from a surrogate
model, starting from records that are randomly generated
in the neighbourhood of the sample to be explained and
are weighted according to their proximity to the sample
itself [23]. We hereby consider its design for images,
which has a straightforward application for working on our
image-like MTS so it does not need any methodological
adaptation. Given an image I ∈ Rd , i.e., the original instance
being explained, LIME uses the concept of super-pixels,

i.e., regions or patches of similar pixels in the original sample,
and defines I ′ ∈ {0, 1}d as a binary vector indicating the
‘‘presence’’ or ‘‘absence’’ of a super-pixel [23]. Thus, I ′ is
equal to a vector containing only values equal to 1, with a
length equal to the number of super-pixels captured in the
image. In order to identify the super-pixels LIME exploits a
segmentation algorithm.

To learn the local behaviour of the model f that we need to
explain, LIME perturbs the vector I ′ with the aim of sampling
new instances, named z′, lying both in the proximity and far
away from I ′. This enables the creation of a binary dataset
which is suitable for training the interpretable surrogate
model. As a result, given a perturbed sample z′ ∈ {0, 1}d

that contains a fraction of the non-zero elements in I ′,
we extract the corresponding segmented regions belonging
to the original sample. This procedure creates a new image
z exhibiting the original I pixel values in the segmented
regions selected by z′, and zero elsewhere. Then, we feed
z to the black box, thus obtaining the prediction f (z), that
is, the posterior probability of a sample belonging to a
class, which is subsequently used as a label for training the
surrogate model together with z′. We repeat this process for
all perturbed instances, and this way we create a dataset
Z of perturbed samples together with the associated labels
(z′, f (z)).
Based on the surrogate model g ∈ G, where G is a class

of potentially interpretable models (e.g., linear classifier,
decision trees etc.), the explanation ξLIME is obtained
according to the following:

ξLIME (I ) = argmin
g∈G

L(f , g, πI ′ ) + �(g) (7)

with �(g) denoting a measure of complexity (by contrast
with interpretability) of the explanation, L(f , g, πI ′ ) =∑

z,z′∈Z πI ′ (z)(f (z) − g(z′))2 a measure of how unfaithful
g is at approximating f in the locality defined by πI ′ ,
i.e., an exponential kernel attributing higher weights to
instances similar to I ′ (if we consider the concept of
proximity). Therefore, LIME is aimed at hitting a compromise
between fidelity and interpretability, and, with the aim of
ensuring both, it minimises L(f , g, πI ′ ) while ascertaining
that �(g) stays low enough to be interpretable by humans.
Thus, even though the original model may be too complex for
being explained globally, a locally faithful explanation (linear
in this case) can still be gained.

C. QUANTITATIVE EVALUATION
With a fast-growing body of literature about XAI, the
most important challenge lies in finding an evaluation
methodology that is at the same time robust, cheap and
effective. Moreover, there is still no consensus at all in
the literature relative to the choice of the most appropriate
method for evaluating explainability [34]. Doshi-Velez and
Kim in [12] provide a first path toward the definition
and rigorous evaluation of explainability, distinguishing
between application-grounded evaluation, human-grounded
evaluation, and functionally-grounded evaluation. In the first
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two approaches, the explanation is assessed by humans.
The former involves domain experts/end users evaluating the
XAI method on the specific task for which the machine
learning model was trained, while the latter presents the
explanation to ordinary people in a simple experimental
task where the quality of the explanation is independent on
the prediction accuracy of the learning model. Finally, the
functionally-grounded evaluation does not require humans,
resulting cheaper than human-level evaluation in terms of
time, effort, and cost and involves a proxy task based on some
formal definition of explainability to evaluate the quality of
explanations [12].

Within this framework, a saliency maps-based explanation
is feasible to our scope of increasing interpretability and user
trust about a model working on MTS. This could be directly
evaluated with a qualitative approach by visual inspection,
however such an evaluation of the explanation is not suited
to compare different XAI methods for three main issues:
(i) it does not allow us to assess the effectiveness of the XAI
methods on a large dataset; (ii) it does not evaluate if the
XAI method is able to capture the temporal dependencies
learned from the model; (iii) it relies on the subjectivity of
the evaluator.

In this respect, here we adapted to MTS two perturbation-
based strategies presented by Schlegel et al. [13] for UTS. The
evaluation procedure can therefore be carried out as follows.
First, we compute the explanation provided by each one of the
XAI methods included in the comparison, i.e., Grad-CAM,
IG and LIME. Second, we perform two types of perturbation
to the input signal: (i) the XAI perturbation, that modifies the
input time points identified by the XAI method as relevant;
(ii) the random perturbation, which modifies random regions
of the input signal. Third, we measure both the performance
drop 1 of the AI agent for the samples given by the
XAI perturbation (1XAI ), and by the random perturbation
(1random). This evaluation is based on the assumption that
if relevant features (time points) get changed, the model
performance should decrease more than in a scenario where
only random regions undergo the modification.

Defining M as the original MTS sample, MXAI and
Mrandom as the samples having undergone a XAI-based and a
random-based perturbation respectively, and using F1 score
as quality metric for evaluating the CNN performance, the 1

drop can be computed as follows:

1XAI = F1M − F1MXAI , 1random = F1M − F1Mrandom

(8)

If the XAI method returns correct explanations, we expect
that:

1XAI > 1random. (9)

We perform two types of perturbation distinguished into
two categories, namely perturbation analysis and sequence
evaluation. The former locally exploits punctual perturba-
tions to the signal pattern: in this respect, it defines a zero
perturbation, that is, time series values corresponding to
relevant regions are set to 0. The latter takes into account the

signal trend over time by evaluating the importance of time
series features such as slopes or minima defining swap and
mean perturbations. The first one inverts the time ordering
of the time series relevant/random values whereas the second
one replaces them with the mean value over the selected
window.

Finally, since we aim to carry out an exhaustive evaluation,
we perform this procedure on all 20, 293 test set samples,
using the trained CNN to obtain the predictions on the test
data. Then, we retrieve an explanation with the selected
XAI methods and, on the basis of the resulting time point
relevance, test data are perturbed by the XAI and random
perturbations. Each of the newly created test sets is therefore
predicted by the model and the quality measure is evaluated
for comparison purposes (eq. 8-9).

IV. EXPERIMENTS AND RESULTS
This section first presents the preliminary analysis of the
dataset at hand (section IV-A), then section IV-B describes
the specific settings employed to run the experiments,
whereas the final results are reported and commented in
section IV-C.

A. PRELIMINARY ANALYSIS
We conducted a preliminary analysis to study whether the
two modalities (i.e. the MTS acceleration signal and the
UTS speed signal) have the same importance in the model
and are worthy to be contextually explained. To this end,
we conducted an ablation test over the two modalities: we
alternatively put to zero one of the inputs, and then we mea-
sured the drop in classification performance. As performance
indicator of interest, we considered precision, as a metric
that summarises both the contribution of the true positive
(i.e., correctly recognised crash events) and false positive
samples (i.e., non-crash instances recognised as crash events).
A significant drop in this performance score would imply
two possible and adverse scenarios: (i) the false positive
samples have increased, so the AI agent would trigger a high
number of emergency calls; (ii) the true positive samples
have decreased, so the AI agent is missing true emergency
situations.

To avoid any bias we considered the validation set for this
analysis, finding that precision undergoes a 36.8% reduction
when ablating the accelerationMTS, versus the almost absent
reduction (1.5%) when ablating the UTS speed signal. This
preliminary experiment suggested that the model considers
the acceleration-based MTS as the most informative input for
the task at hand. Consequently, we froze the speed signal,
therefore ensuring that the explanations depend only on the
acceleration.

B. EXPERIMENTAL SETUP
In this section we detail the experimental setup and the
parameters chosen to extract the desired explanations and
to evaluate them. We point out that the evaluation for the
explainability uses the test dataset since we are interested
in assessing explainability for new data with respect to the
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training set to provide insights on the internal represen-
tation learned from the network. The code is available at
https://github.com/ltronchin/translating-xai-mts.git.

First, as stated in the previous section, we froze the speed
signal by implementing a straightforward application of the
Grad-CAM approach for MTS (described in section III-B).
On the contrary, for IG and LIME we proceeded as follows:
(i) to apply IG we only considered in the path integral
the contribution of the gradient with respect to the varying
acceleration MTS input, and consequently also the baseline;
(ii) to apply LIMEwe did not perform any perturbation on the
speed signal to ignore its contribution in training the surrogate
model.

Regarding the XAI parameters, on the one hand Grad-
CAM does not require any fine-tuning phase as it is directly
applied to the last convolutional layer of the CNN. On the
other hand, for IG and LIME we adopted the following
settings.

1) IG
The integral of IG can be approximated via a Riemann
summation: we sum the gradients at points occurring in
sufficiently small intervals along the path from the baseline
abaseline to the input a2D−MTS . Following the recommen-
dations reported in [32], we checked that the attributions
approximately would add up to the difference between the
score at the input and that at the baseline. According to this
rationale, we chose 200 as the number of steps to faithfully
approximate the IG integral.

Besides this, as reported in section III-B, the crucial point
in applying IG is the baseline choice, which we inspect
by adopting the visual representation shown in FIGURE 5.
In the chart, each box depicts one test sample, where the
green and red denote a hit or a miss, i.e., a sample that
the model correctly or incorrectly recognises, respectively.
The shapes represented in the boxes, i.e., × or ◦, define the
ground truth of the sample, crash and non-crash, respectively.
Finally, the grey level in each cell describes the magnitude
of the performance difference δ, from 0 (black) to 1 (white).
Recalling the rationale for the baseline choice, we expect the
difference δ between the prediction at the input (pinput ) and at
the baseline (pbaseline) to be high, ideally equal to 1. The full
representation is available in the GitHub repository.

Hence, FIGURE 5 confirms the effectiveness of our
mixed baseline approach since the difference δ between
pinput and pbaseline is 1 for the majority of the samples.
Moreover, it is worth noticing that for the majority of wrongly
classified samples (red ones) the grey-level intensity is lower
than 1 (darker than those correctly classified): indeed, this
is reasonable and expected since the AI agent is actually
making a mistake, so it shows lower confidence in the
prediction (pinput ). From a preliminary analysis, we also
observed that using the same baseline both for the crash
and non-crash samples, i.e., considering a zero acceleration
signal for the image-like MTS and a constant speed equal to
0.1 in a normalised scale for the velocity signal, results in

FIGURE 5. The figure shows the δ value for 500 randomly selected test
samples.

uninformative SM for non-crash signals. These results are not
reported here for the sake of brevity.

2) LIME SETTINGS
LIME trains a transparent model to explain the black-box
locally: hence, it requires a fine-tuning phase to fit the
parameters and to create the perturbed training datasets of
the surrogate model. As a segmentation function, we use
the Felzenszwalb representation [35] that copes with the
grayscale nature of the image-like MTS, and we fix other
LIME’s parameters coherently with the original implemen-
tation [23], except for the feature selection approach and
the number of coefficients considered as important in the
linear model. These two settings are worth studying since
the former allows to select which crucial regions (super-
pixel) result in the best representation for the surrogate model
to approximate the complex one, whereas the latter defines
how many important regions are needed to assess the visual
explainability on the considered sample. On the one hand,
as feature selection strategy we tested both the highest weight
and the forward selection. The former technique selects
the highest features resulting from the product between the
original data point and the absolute values of the coefficients
learned from the linear model using all features. The latter
iteratively adds features to the model evaluating the increase
in R2 score. On the other hand, to choose the number of
coefficients considered as important we performed several
experiments considering 5, 10, 15, 20, 25 among the highest
features.

To evaluate the tuning procedure, we use the R2 score
and the Accordance Accuracy (AA) score as a measure of
agreement between the CNN and linear model prediction on
original samples. The former aims to estimate how well the
linear regression fits the training data, whilst the latter aims
to estimate how well the linear model locally resembles the
complex model computing the formula:

AA =
1

nTEST

nTEST−1∑
i=0

1 (g(a′

2D−MTS,i) = f (a2D−MTS,i)) (10)
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where 1(g(a′

2D−MTS,i) = f (a2D−MTS,i)) is the indicator func-
tion which is worth 1 when g(a′

2D−MTS,i) = f (a2D−MTS,i),
0 otherwise, nTEST indicates the number of test samples in
the dataset and a2D−MTS,i and a′

2D−MTS,i are the acceleration
image-like MTS and the corresponding vector of superpixels,
respectively. We find an R2 and AA scores equal to 79% and
96% using forward selection and 94% and 99% using highest
weight obtaining no difference by changing the number
of considered parameters, i.e. from 5 to 25 with a step
equal to 5. Thus, in order to investigate the interpretability
ability of LIME heatmaps we visually inspect the explanation
for crash and non-crash events finding that progressively
incrementing the number of features does not increase the
effectiveness of the explanation, achieving the opposite effect
on the interpretability. FIGURE 6 clearly shows that as the
number of selected regions rises, it is no longer possible
to identify a clear pattern of features in the input sample
that lead to the decision of interest. Summarising, we found
that the best parameters that fit our application are: (i) the
highest weights features selection procedure; (ii) the number
of features extracted from the linear model equal to 5.

C. RESULTS
FIGURE 7 reports the saliency maps attained by the
three XAI approaches on two instances of different classes
as representative examples. The left column shows the
explanations related to the crash sample, whereas the right
column includes those related to the non-crash sample.
Furthermore, the legend of the saliency maps colours is
located in the top right corner of FIGURE 7 and it shows that
we adopt two different colour coding. The first is applied to
Grad-CAM and IG since they provide real valued importance
scores: hence, they are represented by red shades which get
darker for higher importance values. The second is used for
LIME for which we adopt a binary importance map, where
green areas indicate the relevant time-stamps for the given
predicted class.

Regarding Grad-CAM saliency maps shown in the top
row of FIGURE 7, we point out the following remarks.
Considering the crash sample, the explanation highlights as
important the signal trend following the crash event: after the
shift in x acceleration values, there is a transition period that
leads the car cinematic to a new stable state. On the contrary,
saliency maps on y and z axes do not show significant
activation, outlining two main findings: (i) the x component
is the most significant UTS when it comes to predicting the
event as a crash; (ii) y and z contributions are independent
with respect to that of the x-axis. This finding is reasonable
as, in general, the strongest fluctuations of the acceleration
for a crash event occur along the vehicle’s travel direction,
i.e., the x-axis, proving the reliability of the explanations.
For the non-crash example, we observe a less clear focus
of the black-box model on a precise pattern. Grad-CAM
heatmaps exhibit lower and more distributed intensity signals
with respect to the crash sample saliency maps: long-term
temporal relationships are detected as important for the non-
crash prediction. Indeed, a bumpy road is characterised by

less intense and longer disturbances with respect to those that
emerge in a crash event. From FIGURE 7, we further notice
that the Grad-CAM explanation presents spurious peaks in
the heatmap along the three axes, especially for the crash class
(activation on the y-axis). This effect is probably due to the
ablation study described in section III-B. Indeed if, on the
one hand, it allows us to determine which attribute of MTS
is most important for the prediction, the recombination rule
propagates the activation from oneUTS to the others resulting
in a saliency interval that does not solely depend on the
explainability of the considered UTS. However, we alleviated
this effect using the network prediction for re-weighting as
stated in section III-B1.

Let us now turn the attention towards IG explanations,
shown in the second row of FIGURE 7. In the case of
the crash sample we notice that most of the information
relevant for the prediction is in the x-axis, but in different
time instants compared to those chosen by Grad-CAM:
specifically the time instants of the negative peak and two
small intervals immediately before it. For the y and z axes the
results are similar to Grad-CAM confirming the x component
as the most important UTS for predicting a crash. The
considerations made for Grad-CAM explanations on the
non-crash example also hold for IG: the saliency map shows
almost a uniform colour with lower and distributed peaks
highlighting the long-term temporal relationships. A final
confirmation of these results is provided by LIME, shown
in the last row of FIGURE 7. When we compare the results
on the crash sample we observe that the relevant intervals
comprehend time instants of the x-axis negative peak and
two small intervals immediately before it. Less clear is
the correspondence between the results on the other two
axes or rather on the non-crash sample. This behaviour
can be explained with the followings observations. First,
LIME explanation does not present a clear evidence of the
difference between each UTS, since it uses a surrogate model
to approximate the CNN and it does not directly inspect
the convolutional architecture inner workings. Second, IG
and Grad-CAM offer a diverse kind of explanation than
LIME: IG and Grad-CAM succeed in explaining the sample
at time instant level, i.e., the importance score is defined
for each point composing the signal; on the contrary, LIME
is designed to explain the input sample at the region level,
returning to the user the highest weight of the trained linear
model. Third, since LIME relies on segmentation to define the
regions to be perturbed over the image-like MTS, it captures
the importance in a blended fashion: in fact, it explains
the model considering at once both temporal (namely, the
presence of slope and minima) and spatial features. As a
result, the algorithm neglects the contribution of each UTS
separately and fails to provide the importance of each
component. This can be is observed from the LIME binary
saliency map reported in FIGURE 7: each detected region is
shared across the three axes with a few exceptions.

Overall, from a qualitative perspective we can state that
IG and Grad-CAM are successfully able to exploit the
cross-correlation in UTS learned from the CNN defining
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FIGURE 6. Visual evaluation of LIME fine-tuning. By increasing the number of valuable features, the explanation becomes less interpretable: as the
number of selected regions rises, it is no longer possible to identify a pattern of features in the input sample that lead to the decision of interest.

FIGURE 7. Explanation over the acceleration signal for a crash and a non-crash event using Grad-CAM, IG and LIME.

which UTS is most valuable for the prediction. The
explanations result reasonable in finding the crucial features

used from the model to perform the crash detection task,
casting light on the black-box’s decision process.
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Turning the attention to the quantitative analysis, TABLE 2
shows the results emerging from the XAI evaluation
described in section III-C. Results point out that IG-based
perturbations in all cases exceed the random drop, yielding
also the absolute highest drop in performance for the zero
and swap perturbations (58.2% and 15.2%). Hence, the
quantitative analysis suggests IG as the most informative
explainability method among the competitors, for it is able to
detect the time points that are the most valuable for the CNN
to perform the prediction. Indeed, if the points identified
as valuable by IG are perturbed, we always obtain a higher
performance drop than in the random case. The opposite
happens in the case of Grad-CAM: indeed, it is assessed as
the least reliable algorithm for the considered task as two
out of three times it is overtaken by random drop. As a
further observation, we notice that all the swap andmean drop
values are lower than the zero ones. This could imply that
the temporal trend exerts less influence on the CNN when
it comes to performing the classification task. We deem that
themodelmainly focuses on sudden or instantaneous changes
in the acceleration values, i.e., the presence of spikes, since
deleting them (zero XAI perturbation) results in an average
performance drop of 44% by comparison with the average
drops of 12% and 6% for swap and mean XAI perturbations,
respectively.

Before discussing the external validation, a few remarks
are in order. It is worth noting that given the temporal nature
of the task it would indeed be possible to use a recursive
architecture or networks based on its applications, but the
choice to maintain a CNN approach was motivated by two
main rationales: (i) for the purposes of explainability of
network decisions, a CNN lends itself better to be interpreted
with visualisation mechanisms such as those shown in the
manuscript; indeed, recent studies have shown that XAI
methods applied to networks generally usedwith Time Series,
such as RNN, GRU and LSTM, are directly transferable into
them only in some cases that are highly task-dependent [36];
hence, in order to favour the generalisability of the methods,
we chose an approach that was more easily explainable even
in possible different contexts; (ii) the performance that can
be achieved with an LSTM network, even if implementing
an Attention logic, is comparable with that of a CNN,
by appropriately processing the input data [37]; however, the
execution times are significantly lower with a CNN, thus
making this choice the most adapt for real world deployment.

V. EXTERNAL VALIDATION
We validate the generalisability of our approach by including
a different CNN, i.e., MTEX-CNN [3], applied to the
BasicMotions dataset [38]. With reference to the network
architecture, the MTEX-CNN is a state-of-the-art two-stage
CNN network, so its design straightforwardly allows the
application of our XAImethodology. In the first step,MTEX-
CNN employs 2D convolution filters to extract features
related to each attribute, whilst in the second step, it utilises
1D convolution filters to extract temporal information. It then

TABLE 2. Each box reports the performance drop per XAI method and
perturbation type (Pert.). The results are in bold if 1XAI > 1random.

processes the output feature map from the convolutional
steps with fully connected layers for classification purposes.
Interested readers can refer to [3] for a detailed description of
the network architecture.

Turning our attention to the dataset, its use allows us to
maintain the context of multivariate time series retrieved
from motion sensors as accelerometers and gyroscopes.
The BasicMotions is an MTS dataset from the UCR Time
Series Classification Archive [38]; it comprises multivariate
signals from 80 subjects acquired using the accelerometer
and gyroscope of a smartwatch. For each acquisition, the data
were sampled once every tenth of a second for ten seconds,
resulting in a 100-length signal. The dataset contains data
from people doing four activities: walking, resting, running,
and badminton, which we use as classification labels in our
analysis. We adhered to the original hold-out split of the
dataset [38], resulting in 40 subjects for training and 40 for
testing. We trained the MTEX-CNN on the training data for
100 epochs with a batch size of 32 and using the Adam
optimiser with a learning rate of 0.001, using categorical
cross-entropy as a loss function. We achieved a performance
coherent with the state-of-the-art, with an accuracy of 92.5%
and a F1-score of 92.1% on the test portion.

Given the trained model, we applied the customisation of
Grad-CAM, IG and LIME to extract the SMs on the test set
using the same experimental setup detailed in Section IV for
the telematic dataset. We extract Grad-CAM SM using the
last 1D convolutional layer of the MTEX-CNN architecture.
For IG, we use the zero signal as a baseline for the
accelerometer and gyroscope data. We use 500 steps to
approximate the IG integral faithfully. Turning our attention
to LIME, we use 5 as the maximum number of features for
the explanation.

FIGURE 8 displays the SMs generated by the three
XAI approaches for four different class instances: standing,
walking, running, and badminton. We used the same colour
map as in FIGURE 7. The first three signals in each plot
represent accelerometer data, while the last three are from
the gyroscope. From the first row of FIGURE 8 (Grad-
CAM saliency maps), we observe that the network primarily
focuses on the accelerometer signal for the walking and run-
ning classifications. For the standing class, the SM highlights
the temporal periods following the movement-triggered shift
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FIGURE 8. Explanation over the MTS from basic motion dataset for standing, walking, running and badminton samples using Grad-CAM, IG and LIME.

from sitting to standing in each subject. It is reasonable for
classification purposes, as the network looks for the absence
of a signal post-trigger rather than the trigger itself, which,
on the contrary, holds for the other classes. In the badminton
class, the network considers the variations in the gyroscope
signal, aligning with the classification of a less repetitive
sports activity.

Moving to the second-row of FIGURE 8 we notice that
IG saliency maps provide less information than Grad-CAMs.
This could be due to the limited temporal length of the
signals, which restricts IG from providing detailed point-wise
information.

The last row of FIGURE 8 shows LIME’s saliency
maps. From these SMs, it is challenging to discern
a clear distinction in importance between accelerometer
and gyroscope signals. Thus, we encounter similar lim-
itations for LIME as observed in our crash/non-crash
application.

Overall, combining the three methods offers a compre-
hensive view of the temporal period in which the network
predominantly focuses on performing the classification task.
The insights from the Grad-CAM, IG, and LIME saliency
maps provide an understanding of network reasoning,
proving the effectiveness of our approach in enhancing
the interpretability of CNN models working on MTS
data.

VI. CONCLUSION
In this paper, we faced the challenge of explaining a deployed
multimodal architecture applied to a multivariate time series
real-world dataset. To this end we proposed the adaptation
of two state-of-the-art XAI algorithms and investigated their
effectiveness with a quantitative evaluation analysis.

The targeted problem consists in optimising the automatic
assistance service by which an insurance company triggers
a call to the EMS whenever a vehicle mounting a suitable
black box is involved in an accident. Introducing a XAI layer
into the considered application scenario aims at increasing
the trustworthiness of the AI agent that performs the crash
detection task and enhances the emergency team’s effective-
ness. Indeed, if the EMS were provided with complementary
information about the crash event given by the explanation
itself – e.g., the forces applied to the vehicle due to a collision
exploiting the explanation heatmap – the EMS dispatching
teams could accurately allocate their resources according to
the severity of damages. As a result, prior knowledge of the
severity of the accident not only has the potential to improve
EMS teams’ key performance indicator of time-to-the-scene,
but it can also save critically scarce resources via data-driven
precision dispatching.

More specifically, we showed how to adapt different
methodologies, originally designed for images, to the chal-
lenge of explaining multivariate time series.
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In our comparative analysis, we found that Integrated
Gradients is the most effective approach, fitting with
the complex nature of the data, and providing the best
explanations.

In general, this study provides insight into the quality of
explanation and sheds light on the most significant features
that are exploited by CNN when it performs the crash
detection task.

Although this work shows promising results in a rather
challenging real-world scenario, some aspects can benefit
from further investigation. As a first direction for future
work, we plan to study XAI methods able to provide a more
human-interpretable representation, since the saliency maps
provided by all the XAI methods can be hard to interpret
depending on the skills of the specific end-users. A second
direction could focus on developing a XAI method able to
explain both signals available in the telematics data at hand
(i.e., acceleration and speed), fully exploiting the multimodal
nature of the task at hand.

Also, whilst this study makes significant contributions to
the field of explainable AI, it is important to acknowledge its
limitations.

• Dataset specificity. The study focuses on specific
datasets of multivariate time series data generated by
motion sensors (i.e. accelerometers and gyroscopes).
Although we show that our findings and methodologies
generalise to another dataset, including data from the
same sensors in a different domain, there is the need
to further investigate other domains and different data
sources.

• Lack of human evaluation. The study primarily relies
on quantitative evaluation measures to assess the effec-
tiveness of the XAI algorithms. Whilst these measures
provide valuable insights, a more comprehensive evalu-
ation involving human feedback and interpretation could
enhance the understanding of the explanations’ quality
and usefulness.
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