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ABSTRACT This paper presents a comparison between compressed sensing (CS) and auto-encoder (AE) for
compression and restoration of signals. The study used K -sparse vectors and generated an under-determined
system, which is a system of linear equations with fewer equations than unknowns. By using CS and AE
under various specific conditions, the accuracy of the signal restoration is compared with mean squared error
(MSE). The experimental methodology includes comparing and analyzing the signal recovery performance
by altering the algorithm and various parameters. The result represents the performance and accuracy of
signal compression and restoration obtained using both techniques. It also provides a comprehensive analysis
of CS and AE methods. The importance of this research and the possibility of practical application in various
fields are discussed. Overall, this study provides insights into the comparison of CS and AE techniques in
the field of sparse signal compression and restoration.

INDEX TERMS Compressed sensing, auto-encoder, signal processing, compression, restoration.

I. INTRODUCTION

Signal processing technology allows us to see things that
cannot be seen through direct observation and to analyze
scientific data. Signal processing encompasses analyzing,
converting, and manipulating various signals such as audio,
images, video, and waveforms [1]. The signal initially
starts in the analog format. This means that the signal is
constantly changing. Sampling obtains discrete samples of a
continuous-time signal at regular intervals. It is necessary to
determine the sampling interval to restore the original signal
through sampled data.

The Nyquist-Shannon sampling theory is an essential
principle in digital signal processing. It was developed about
100 years ago by Nyquist [2], [3]. According to the theory,
the sampling frequency (f;) should be set at more than twice
the maximum frequency (f;,) of the signal [4]. If i < 2f,,
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a distortion occurs since the frequency components overlap.
It is called aliasing. When a signal is reconstructed, aliasing
can generate a different signal from the original signal. Signal
recovery based on the Nyquist-Shannon framework can be
performed as a linear process through minimal calculation
with sinc interpolation [5].

A. WHAT IS COMPRESSED SENSING?

Compressed sensing (CS) is a technology that enables
signal processing with fewer data than the Nyquist-Shannon
sampling theory requires. CS expresses the original signal
with a reduced number of measurements and restores the
signal through a recovery algorithm. Two conditions must be
met for successful signal recovery [6]:

o Sparsity: The sparsity means most elements of the signal
must be zero [7]. This signal is called a K-sparse
vector, where K is the number of nonzero elements.
Transforming the original signal into another specific
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domain requires solving the under-determined system.
Due to the additional constraint that the initial signal is
sparse, solutions can be found even in under-determined
systems.

« Incoherence: The incoherence is a characteristic that
appears sufficiently in sparse signals and is applied
by isometric properties [7], [8]. It can be calculated
using the two columns of the sensing matrix and how
dissimilar these columns are, indicating a low level of
interference. Through the coherence of @, the sparsity of
the K -sparse vector can be determined, which allows the
signal to be fully recovered through measurement [9].

CS technologies are related to the fields of signal
processing and data acquisition, and they find applications in
a variety of fields such as radar imaging [10], [11], antenna
array [12], [13], photography [14], image codec [15], and so
on [16].

B. WHAT IS AUTO-ENCODER?

The neural network (NN) is one of the technologies that
compresses and restores data. It projects the original data
into a low-dimensional latent space and restores the data
as output. The NN consists of a structure that follows a
neuron [17]. The artificial neuron acts as a node, receives
input signals, multiplies by weights, and generates output
signals through nonlinear functions. NNs are composed of
several layers, each layer consisting of a set of neurons.
Weights and biases are learned by using data sets, enabling
the model to make predictions or classify the data. The
performance and characteristics of NN vary depending on
factors such as the number of layers and the presence
of a specific structure in NN. For example, deep NN is
widely employed in iterative learning and backpropagation
techniques for increasing the number of intermediate layers
known as hidden layers [18]. Convolutional NN constructs
the convolution layer and pooling layer in an integrated way
to create algorithms and examines adjacent components of
data to identify characteristics [19]. Recurrent NN uses a
cyclic structure to reflect past learning into current learning
using weights [20].

Auto-encoder (AE) is a type of NN consisting of an
encoder and a decoder. The encoder compresses input data
and transforms data into low-dimensional data. Conversely,
the decoder restores compressed data to the original data.
There are two items for AE to operate effectively compared
to CS.

o Large-scale datasets: In general, AE requires large
datasets for training efficiently. Using small-scale
datasets can lead to overfitting to specific examples
and makes generalization difficult. Therefore, to learn
better features and improve the expressiveness and
performance of the model, large-scale datasets are
used. Additionally, the AE performs unsupervised
learning, which means that the model learns patterns
and representations from the input data without explicit
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labels [21]. Using large-scale datasets allows the model
to better learn meaningful representations of the data and
better understand the structure of the data.

o Latent space: The encoder compresses the data by
representing the input data in a low-dimensional latent
space. Nonlinear dimensionality reduction is performed
to convert high-dimensional data into a low-dimensional
space, and this is called manifold learning [22]. In this
process, the main characteristics and patterns of the
data are trained. The decoder uses this low-dimensional
representation to reconstruct the original input data.
These characteristics help learn data effectively.

AEs have variations depending on their learning methods
and roles. Sparse AE is a method to solve the overfitting
problem and trains the network by creating sparse nodes [23].
Denoising AE removes noises from data and is used to restore
the original data [24]. Variational AE has a similar structure
to basic AEs, however, its role is entirely different [25].
Variational AE models the data as a distribution when given
input data. More recently, a denoising AE algorithm was
proposed to remove noise by learning noise, and it was shown
that noise learning-based denoising AE is more effective than
denoising AE when the distribution of noise is simpler than
that of the original data [26].

C. MOTIVATIONS AND CONTRIBUTIONS

CS and AE are able to be the main algorithms used in
sparse signal processing, and their functions are similar.
Existing papers have successfully integrated algorithms from
CS and AE by using their similarities [27], [28]. Despite the
similarities between CS and AE, to the best of our knowledge,
there is a notable absence of research fundamentally com-
paring CS and AE. Therefore, this paper analyzes recovery
performance, investigating the methodologies employed in
CS and AE and drawing comparisons between the two
algorithms.

CS and AE have similar capabilities for compressing and
restoring data. Fig. 1 shows that CS and AE have similar
mechanisms for compressing and restoring input data. In the
case of CS, the input data is compressed by multiplying with a
sensing matrix and then restored through a recovery process.
In the case of AE, input data is compressed into latent space
through an encoder, and important features of the data are
learned. Similar to the sensing matrix of CS, AE compresses
and restores data using a weight matrix for encoding. The
AE finds the weight matrices by training. In the process of
compressing data, the two techniques have a very similar
bottleneck structure, however, there are differences between
CS and AE in the process of restoring the signal.

In CS, a solution to an under-determined system is obtained
by restoring compressed data through a recovery algorithm
such as L1-norm minimization [29]. An under-determined
system has fewer equations than unknowns, and since the
signal is a K -sparse vector, a solution to the under-determined
system needs to be found. The performance of the recovery
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algorithm varies based on sparsity, the sensing matrix,
and the presence or absence of noise. On the other hand,
AE learns more effectively using various nonlinear functions
to compress and restore data. Unlike CS, which can customize
the sensing matrix, AE optimizes the weight matrix on its
own by learning to make the restored signal similar to the
original signal. In other words, the characteristics of data
can be identified through unsupervised learning. Performance
is determined by parameter settings such as epoch, learning
rate, and number of data sets.

The objective of this paper is to investigate the fundamental
similarities and dissimilarities between CS and AE in terms
of signal compression and restoration according to 1) the
sparsity, 2) the sensing/weight matrices, 3) the recovery
algorithms, 4) the required conditions, and 5) the noisy
observations. Based on these intensive comparisons, we fur-
ther provide inspirations for open challenges and potential
applications of CS and AE in wireless communication
systems, especially focusing on their potential usefulness,
theoretical solidification, and complementary collaborations.

D. ORGANIZATIONS AND NOTATIONS
Section II describes the operating conditions of CS and the
algorithm of AE in more detail. In Section II1, signal recovery
of CS and AE is simulated and analyzed according to various
conditions and algorithms. Section I'V discusses how to apply
it through the analyzed results.

The following notations will be used throughout this paper.

o x: the original signal.

e X: the restored signal.

o K: the sparsity of original signal x.

o @: the sensing matrix.

« y:ameasurement vector, which is the compressed signal.
o M: the size of the measurement vector.

o N: the size of the original signal vector.

e f(), g(-): the encoding and decoding function of AE.

o L(-): the loss function.

o N: Gaussian distribution.

Il. PRELIMINARIES

A. A BRIEF DESCRIPTION OF COMPRESSED SENSING

CS is a signal processing technique that can restore sparse
signals from a few linear measurements. In CS, an original
signal x of length N can be expressed with a sparse vector
with K nonzero elements. M x 1 measurement vector y can
be obtained with M x N sensing matrix ® multiplying x [30],
[31]. The linear measurement y in CS can be represented as
follows:

y = dx. 1

As explained earlier, for CS to function effectively, x must
have sparsity, and the recovery of x relies on ® and y.
Since y is determined by ®, designing ® is one of the
primary objectives of operating CS. The mathematical criteria
for the sensing matrix in CS are spark, coherence, and
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FIGURE 1. lllustration of frameworks of CS and AE.

the restricted isometry property (RIP), which are important
concepts that help determine the number of measurements
needed to recover signals [30]. Spark is the minimum number
of linearly dependent columns in a matrix &.

spark(®) = min ||x||p s.t.dx =0 2)
x#0

If the spark(®) is larger than 2K, measurement vector y
exists at most one signal x. As spark(®) € [2,M + 1],
the requirement M > 2K is valid. In general, calculating
the spark of the matrix @ is computationally complex
since it is necessary to ensure that all sets of columns are
linearly independent. Therefore, coherence, which is easier
to compute, is preferred for use. Coherence is defined as
the maximum value of the inner product between matrix
columns, which is mathematically defined as follows:

(@i )

nw(@®)= max —.
1<i#j<N ||é:ll2 1191l

3

The coherence u(®) has a range of [ %, 1] according

to the Welch bound [32]. When N > M, the lower bound is
approximately u(®) < 1/+/M. Additionally, when N = M,
the lower bound becomes 0. For any matrix &,

1
spark(®) > 1 + ——. “4)
w(®)
Since M > 2K isrequired, it is possible to exist measurement
vector y at most one signal x such that y = ®x.

1 1
K < 2(1+M(<I>)) (%)
The sensing matrix provides guarantees of uniqueness if the
measurement vector y is obtained perfectly. However, if x’ =
x+n and n represent additive noise, the sensing matrix cannot
provide guarantees of uniqueness due to a mismatch between
the sensing matrix of x” and x. If the distance between x
and x" and the distance between the measurement vectors
y = ®x and y = ®x’ are proportional, two sparse vectors
that are different cannot lead to the same measurement vector,
as the noise is small enough. This is called (K, §)-RIP and is
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expressed as an equation as follows:
(1= ®)lxll3 < x5 < (1 +8)llx]l5. Q)

The (K, §)-RIP means all submatrices of sensing matrix & of
size M x K are close to an isometry [30]. This characteristic
creates a denoising function that the recovery is stable even
if noise is added to x. When M is O(K log(N /K)), the signal
recovery algorithm can achieve a high probability.

B. A BRIEF DESCRIPTION OF AUTO-ENCODER

AE is an algorithm that should obtain output data most similar
to input data [33]. The AE must learn to reconstruct the input
observations enough. In the most typical form, an AE consists
of the encoder and the decoder, which is NN. If the function
of the encoder is f for the input data x, y can be represented
as follows:

y=f), N

where y is the output of the encoder. In this process, the
encoder aims to extract the important features of the input
data. Then restored data can be represented as follows:

X =g =g(f(x). ®)

The restored y should be similar to x, therefore, to train an AE
means to find f (-) and g(-) that satisfy the equation as follows:

arg I;lign < [Lx, g(f ()] > ©))

where L is loss function between input data and output data
and < - > is the average of all observations. The trained AE
can restore the input data through the reconstruction process.

AE training involves optimizing the weight matrix, and
there are various parameters that affect this. During training,
a substantial dataset is necessary, however, to train the
entire dataset all at once can lead to memory limitations or
processing constraints. Therefore, it is necessary to split the
data. The AE process includes dividing the data by epoch,
batch size, and iteration to repeat the learning process several
times for optimization. One epoch is completed when all
forward or backward passes of training overall the entire
dataset. Batch size means the number of data to be used
in one batch. Iteration is also called step and represents the
total number of batches for the entire data. During training,
the optimizer updates the parameters by calculating the error
between the predicted value by the AE and the true value by
using the data as the batch size.

When updating weights, the performance of AE is adjusted
using a learning rate. If the learning rate is large, an overflow
occurs, and errors cannot be reduced. On the other hand, if the
learning rate is low, the training process will be prohibitively
time-consuming, and the error values to be verified increase.
Therefore, it is important to find an appropriate learning rate.
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TABLE 1. Default parameter set for simulation.

Default parameters CS ‘ AE
N 128
M (8,16, 32, 64]
# train dataset — | 10000
# (test) dataset 10000
Distribution of sensing matrix N(0,1) -
Recovery algorithm Basis pursuit —
Max epochs - 1000
Mini-batch size — 32
Optimization — Adam
Activation function - Leaky ReLU
Loss function - MSE

8 16 32 64
Measurement size

FIGURE 2. MSE depending on sparsity.

IIl. INTENSIVE COMPARISON OF CS AND AE ON
VARIOUS PERSPECTIVES

In this section, we compare the performance of compressing
and restoration of K-sparse vectors through CS and AE
methods. The experimental default values of CS and AE
were set as Table. 1. CS basically uses L1-minimization,
while AE also consists of a single hidden layer with a
fundamental structure. To generate a K-sparse vector, K
indices are randomly chosen from the original vector of size
N, and Gaussian distributed values with the mean of 0 and
standard deviation of 1 are generated and inserted.

A. ON THE SPARSITY

CS performance is determined by the sparsity and compres-
sion size of the original signal. As explained previously, the
recovery algorithm is performed when M = O(K log(N /K)).
Fig. 2 shows the comparison of the MSE of CS and AE
according to changes in K value. When K = 3, CS has a
lower MSE for all M values compared to AE. The MSE drops
sharply when M increases from 16 to 32, and when M is
32 and 64, the MSE becomes almost 0. Unlike CS, where
the MSE changes drastically depending on the M value, the
MSE value of AE is relatively constant.
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FIGURE 3. An example of signal restoration with CS and AE.

As K increased to 9, MSE overall increased slightly, and
performance changes occurred in CS according to M. Unlike
when MSE decreased sharply from M = 32 when K =
3, MSE became almost 0 from M = 64. When M is 8§,
MSE is higher compared to AE, indicating that recovery
performance is gradually decreasing. It was confirmed that
AE also increased MSE compared to when K = 3, although
the shape was similar. This indicates that the performance of
AE is relatively insensitive to M.

When K = 30in Fig. 2, the MSE of CS was higher than AE
when M was 8 and 16. In CS, as M increases, MSE decreases,
however, the reduction in MSE when comparing K values of
3 and 9 is relatively small. It shows that 64 observations are
not enough to recover the signal, even though the system is
under-determined. The result shows that CS performs better
than AE when certain conditions are met, however, the MSE
of AE is relatively stable across changes in M compared to
CS.

Fig. 3 shows how the original signal is restored to CS
and AE when K is 3 and M is 32. In CS, the value for a
specific index was restored to a similar value. The recovered
signal maintains sparse characteristics. On the other hand,
when AE restores a sparse signal, the restored signal loses
its sparse characteristics, and a value is added to the index
that originally had a value of 0.

B. ON THE SENSING/WEIGHT MATRICES

Constructing sensing matrices that satisfy the RIP is
important in CS. The sensing matrices serve to compress
and reconstruct the signals. The sensing matrices include
random sensing matrices and structured sensing matrices.
The random sensing matrices mean a matrix with a random
distribution, offering the advantage of ease to construct
[34]. However, it requires a large amount of calculation
and memory, above all, there is no efficient algorithm to
verify the RIP condition, so it is not suitable for real
applications. Examples of random sensing matrices are
Gaussian, Bernoulli random matrix, and so forth.
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FIGURE 4. MSE depending on sensing matrix.

Structured sensing matrices are divided into subsampled
incoherent bases, structurally subsampled matrices, sub-
sampled circulant matrices, and separable matrices [30].
Subsampled incoherent bases are famous for random sub-
sampled Fourier and Walsh-Hadamard matrices and random
Toeplitz matrices. Structurally subsampled matrices can be
used as a discrete Fourier transform and can simplify signal
recovery with greedy algorithms. Subsampled circulant
matrices use Toeplitz and circulant structures and have fewer
degrees of freedom since rows and columns are repeated.
Separable matrices are a method for measuring very large
signals. These matrices have a special structure that makes
them efficient in construction, computation, or hardware
implementation.

In this paper, uniform random sampling matrix, Gaussian
random matrix, binary random matrix, Toeplitz matrix,
and Rademacher matrix were used. Fig. 4 shows how the
MSE changes with measurement size and the performance
differences between different types of sensing matrices. As M
increases, MSE generally decreases in all cases. It shows
that when M increases, the Gaussian matrix and Rademacher
matrix show better performances. This indicates that when
compared to other matrices, these two matrices exhibit
relatively strong signal recovery performance and can be
considered effective sensing matrices.

In CS, the Gaussian matrix satisfies RIP and compresses
data effectively. This has been confirmed through 4, and
it has also been observed that the weight matrix in the
AE. Fig. 5 represents the distribution of the weight matrix
of the encoder, which has a similar role as the sensing
matrix. Fig. 5 shows the weight histograms learned by
AE according to the K value. As the K value increases,
it becomes possible to more precisely check how the weight
data in latent space is distributed. As a result, the weight
histogram becomes increasingly closer to the Gaussian
distribution, which indicates that the Gaussian distribution
has an influence on the weight learning of AE.
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FIGURE 5. Histograms of weight matrix of trained AE when M = 64. The distribution of weights follows a Gaussian distribution.

C. ON THE RECOVERY ALGORITHMS

As x is a K-sparse vector, CS solves the solution of the under-

determined system. To find the solution to this sparse system,

three methods are introduced the characteristics respectively.
The L2-norm is also called the Euclidean distance, and this

method minimizes the distance between two vectors, which

is mathematically described as:

min ||x|]2 s.t. y = Px. (10)

It is a common technique in the least squares problems.
However, this method is not suitable for finding K-sparse
signals solution. Non-sparse solutions can be derived and this
may lead to significant differences from the actual sparse
solution.

The LO-norm is the total number of nonzero elements in
a vector. The LO-minimization method can be effective in
restoring K -sparse signals [35].

min ||x|]p s.t. y = Px (11)

This process of minimization can result in NP-Hard prob-
lems, meaning that the problem is computationally extremely
difficult or the algorithm cannot efficiently solve all instances
of the problem. In other words, it can be difficult to use
for large problems, as it requires checking all the K-sparse
vectors.

The L1l-norm is the sum of the absolute values of all
elements of the vector. L1-minimization, known as basis
pursuit [36], is defined as follows:

min [|x]]; s.t.y = ®x. (12)

Using L1-minimization, K -sparse vector can be restored with
only the measured value
of M = O(K log(N /K)) [37].

Through the LO-norm, the exact location of the element
can be found, however, the NP-hard problem occurs. It is
necessary to make the solutions of the LO-minimization and
the L1-minimization the same. To find the L1-minimization
solution, we will express the relationship between the matrix
@ and the sparse signal x. The sensing matrix ® has a lot
of influence on signal recovery. To find a unique solution in
the linear equation system (1), Donoho and Huo introduced
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the necessary condition for uniquely obtaining sparse signals
through coherence ©(®) [38]. The condition for the LO-
minimization solution to be unique is defined as follows:

1

K < —— 13
= (@) (13

As the coherence value of the sensing matrix decreases,
the recoverable K value increases. The condition for the
LO-minimization solution to match the L1-minimization
solution is (5). This is a more detailed equation than (13).
Consequently, if the equation (5) is met, it implies that the
condition of (13) is also satisfied.

In general, when solving a system of N linear equations,
the complexity becomes O(N?3). As the length of the signal
increases, the problem becomes more difficult to solve.
To solve this problem, a greedy algorithm was suggested.
There are matching pursuit (MP), orthogonal matching
pursuit (OMP), and compressive sampling matching pursuit
(CoSaMP) [39], [40], [41]. Additionally, the least absolute
shrinkage and selection operator (Lasso) proposed by Tib-
shirani is also one of the algorithms to find the K-sparse
signal [42].

MP is a sparse approximation algorithm proposed by
Mallat and Zhang in 1993 [39]. To find the most similar
signal, a Fourier transform is conducted. This transforms
the signal into a K-sparse vector form to allow finding the
optimal matching. However, this has the limitation that it
can only find the global features of the signal and cannot
apply to analyzed signals. In addition, MP is effective when
the sparsity of the signal is high and can be time-consuming
to calculate. To overcome this, an enhanced version known
as OMP has been proposed [40]. In contrast to MP, OMP
computes an orthogonal projection of the signal and updates
the coefficients after every step. CoSaMP has an algorithmic
structure similar to OMP. CoSaMP selects and learns from
multiple supports while OMP selects one support in one
iteration [41]. Lasso uses the Ll-norm penalty for linear
regression. The Lasso problem is defined as follows:

min [y — dx[3 s.t x]ly <1, (14)
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where ¢ is a tuning parameter determining the degree of
regularization [42]. The purpose of the Lasso is to minimize
the sum of the MSE and the penalty L1-norm.

In AE, various optimization processes are used to perform
signal processing. First, gradient descent (GD) is the most
basic method which was first suggested by Augustin Louis
Cauchy in 1847 [43]. The GD updates the parameter as
follows:

O1+1 =0 —aVL(©O)) (15)

where [ is iteration number, « > O is learning rate,
0 is parameter vector, and VL(-) is the gradient of loss
function [44]. GD uses the entire dataset to perform updates
at each iteration. This method guarantees steady convergence
until the optimal solution of the convex function is found.
However, this can be computationally intensive for large
datasets, as the gradient must be computed over the entire
dataset. Stochastic gradient descent (SGD) is a variant
algorithm of GD [44], [45]. The parameter update formula of
SGD is the same as (15), however, SGD uses mini-batches
which are randomly selected at each step. Another GD
algorithm variation, momentum, is characterized by larger
weight changes at each step [46]. It accelerates learning
by mitigating the oscillation problem, which helps learning
rapidly. The parameter of SGD with momentum update
equation is defined as follows:

O141 =601 —aVLEO) + yO —6-1), (16)

where y determines the contribution of the previous gradient
to the current step. SGD with momentum can determine
the direction of progress by accumulating the gradient of
the previous step through this parameter. Root mean square
propagation (RMSProp) is an algorithm developed to solve
the learning rate vanishing problem [47]. It does not simply
accumulate gradients, instead, accumulates gradients using
an exponential moving average. This approach stabilizes
the learning process and reduces the oscillation of the
optimization path. The moving average of the RMSProp is
defined as follows:

vi = Bavi—1 + (1 — B)VLEDP, (17)

where v; is the moving average of the squared gradients, S is
the decay rate, which is a hyperparameter for controlling the
moving average. The parameter update formula of RMSProp
is defined as follows:

aVL(®O)
NEEXE

where « is the learning rate, V £(6;) is the gradient of the loss
function, and € is a small constant added to prevent division
by zero. Adam is the most common optimization method
combining RMSProp and Momentum, which contributes to
minimizing the loss function by simultaneously adjusting the

0141 =01 — (18)
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FIGURE 6. MSE depending on CS recovery Algorithm (K = 4).

weight change rate and step size [48].

my = Bam—1 + (1 — BHIVLO)], (19)
vi = Bavie1 + (1 — B)IVLEDP, (20)

where $; is exponential moving average of Momentum, §; is
exponential moving average of RMSProp. With this moving
average, Adam updates the parameters as follows:

amy

JViFe

This method allows more efficient and accurate learning. The
activation function was simulated by setting the alpha of the
leaky ReLU function to 0.01.

In the case of CS, the MSE of OMP, CoSaMP, and Lasso
were compared, and the results are shown in Fig. 6. RIP
affects the operating conditions of CoSaMP, and M must
be greater than O(K log(N /K)) for operating the recovery
algorithm well. Based on Fig. 6, the recovery performance
of CoSaMP becomes better than OMP when M ranges from
16 to 64. It was confirmed that CoSaMP performs better than
OMP when the operating conditions are met.

In the case of AE, when comparing Adam, RMSProp,
and SGD with momentum, the differences may be obscure
from a graphical standpoint. Upon closer examination of
the results, Adam achieves a lower MSE compared to other
optimizations. During the learning RMSProp, a bias problem
which is the continuous gradients in a specific direction
can occur. This problem can disturb the learning process.
Adjusting the learning rate to a more moderate level in Adam
provides better performance. As a result, the performance of
AE is determined in various ways depending on the algorithm
and setting parameters.

Activation function also has an important role in AE
learning [49], [50]. It is a nonlinear function that determines
what to do with the output by calculating the value obtained
by multiplying the input value by a weight. The sigmoid
function is one of the most commonly used nonlinear
activation functions [51]. As an activation function of early

6141 =0 — 21
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FIGURE 7. MSE comparison based on changes in optimizer and activation function.

NNs, it was mainly used for classification problems. The
function outputs the values between 0 and 1. The sigmoid
function is defined as follows:

sigmoid(x) = (22)

l+e
where x is the input value, and e is the Euler’s number. The
shape of the sigmoid function is S and approaches 0O as the
input approaches negative infinity and approaches 1 as the
input approaches positive infinity. This has the limitation of
a vanishing gradient problem in which the output value of
the function approaches 1 or 0 when the input value is very
large or small. The shape of the tanh function is similar to
the sigmoid function [52]. The tanh function is defined as
follows:

e — 1

e+ 1

tanh(x) = (23)
The average of the output values becomes 0 since the output
range is —1 to 1, unlike the sigmoid function. However,
there is still a vanishing gradient problem, so other activation
functions have been proposed. The rectified linear unit
(ReLU) function, found in 2011, is one of the functions
currently used in many NNs [53]. If the input value is
negative, the output is 0, and if the input is positive, the
input values remain unchanged. ReLU function is defined as
follows:

ReLU(x) = max(x, 0). (24)

This function solves the vanishing gradient problem and has
the advantage of being simple to operate. However, it causes
the dying ReLU problem, which is a phenomenon in which
a neuron outputs 0 when the input value is biased toward a
negative number. This means that weight updates no more.
The leaky ReLLU function was proposed in 2013 [54]. Leaky
ReLU applies some output to negative inputs using a linear
function with a slight slope when the input is less than zero.
It can prevent the output from always zero and solve the
gradient vanishing problem. The leaky ReLU function is

41974

defined as follows:

X, ifx >0 (25)

leaky-RelLU(x) = .
o -x, otherwise,

where « is the small gradient applied when the input value
is less than zero. The performance of AE can be adjusted
by the o value. Fig. 7 indicates MSE according to the
optimizer and activation function. The optimizer used SGD
with momentum, RMSProp, and Adam, and when these
are changed, the trend of MSE according to the activation
function is different. In general, the MSE of sigmoid was low
when using SGD with momentum, and the MSE of ReLU
was the lowest when using RMSProp. In Adam, leaky ReLU
generally had a relatively low MSE.

This paper used leaky ReLU functions, where o =
0.01, and the simulation was performed using Adam as
the optimizer. Since the data is generated according to
the Gaussian distribution in this experiment environment,
to prevent the vanishing of the hidden layer, it is good to use
functions that can activate real values in all ranges, including
negative values, in the activation function. In the case of
ReLU, it can be useful when the input data has many positive
values, and in the case of sigmoid, it is good to use when the
value of data is in (0, 1) [33].

D. ON THE SIGNAL RECOVERY GUARANTEES

The CS recovery algorithm has the required conditions to
guarantee performance. The Coherence and RIP are two
representative conditions that affect the performance of
algorithms [30]. The first case is about coherence. In base
pursuit or OMP, it is defined that signal recovery is possible if
the sensing matrix @ satisfies (5) in a noise-free environment.
The upper bound of sparsity K can be obtained according to
the Welch bound, which is described as:

K = OWM). (26)

Since OMP is a greedy algorithm, it needs the minimum
absolute value entry of x to detect support correctly. RIP also

affects OMP. In condition (6), If (K +1, §)-RIPand § < #E’

OMP can restore the K-sparse vector in K iteration [30], [55].
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FIGURE 8. Comparing MSE with respect to AE parameters.

Similarly, in the case of CoSaMP, if (cK, §)-RIP, where the ¢
is a parameter of RIP, x can be restored from y.

Next, as a guarantee by metrics by coherence and RIP, the
signal can be restored if the coherence and spectral, which is
the L2-norm of the sensing matrix, are sufficiently small. The
sparsity level required is defined as follows:

K =0W). (27)

This scaling is called the square root bottleneck and is
why random distributions and sparse signal models can
be used [30], [56]. AEs also use a bottleneck structure
to reduce the number of dimensions [33]. The algorithm
is performed by compressing to a dimension smaller than
the input size. According to the universal approximation
theorem, a single hidden layer neural network can be a
universal approximator for real-valued continuous functions
when utilizing a nonpolynomial activation function [57],
[58]. This theorem makes the ability of the network to possess
approximation properties. Additionally, if the number of
neurons in the hidden layer is constrained, the performance
of AE can have a limit to reconstructing the data. Signal
recovery performance varies depending on the type of
algorithm, architecture, dataset, parameters, and so forth.

Fig. 8a visualizes MSE changes according to epoch.
As epochs increase, MSE generally decreases, indicating
that AE is doing better reconstructions. As the degree of
compression increased, the MSE increased, however, it was
confirmed that the smaller the M size, the less sensitive the
performance was to epoch. When the epoch is small, there is
no significant difference in MSE. In contrast, the difference
gradually increases, as the epoch increases.

Fig. 8b shows the change in MSE according to the
learning rate. As the learning rate decreased, MSE generally
increased. The MSE value generally decreases as the degree
of compression increases. However, the MSE at M = 64 was
found to be the highest at 107>, This indicates that selecting
appropriate hyper-parameters helps performance.

Fig. 8c shows the MSE variation with respect to the
number of training data. It shows a similar pattern to Fig. 8b.
As the value of M increases and becomes sufficiently large,
a performance gap is large when the number of training
data is limited. However, as the amount of data increases,
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the AE model reconstructs data effectively. Additionally, the
performance of AE is maintained when the training data
exceeds a certain value. This shows that when the amount
of training data grows beyond a certain level, the model can
generalize the data better.

The larger the M value, the less data is lost during
compression. As in the example above, It was confirmed
that better restoration performance was achieved under
conditions where the parameters were the same. This
indicates that the model can learn more accurately with the
same parameters. In the case of AEs, when trying to improve
model performance, better generalization performance can be
obtained by selecting appropriate parameter values and using
sufficient training data above a specific value.

E. ON THE NOISY OBSERVATIONS

In this section, we will discuss the performance of CS and
AE when noise is added to x. If noise is added to x in CS,
it can be expressed with the formula y = &x + n and
the optimization (12) can be changed to allow for noise as
follows:

min [|x|[y s.t. [y — Px|l2 <€, (28)

where € < ||n||2 is parameter about noise magnitude. This is
called basis pursuit with inequality constraints (BPIC) and
limits y and ®x through € [30], [59]. If we redefine this
optimization problem using Lagrange multipliers, we get the
formula as follows:

min [[x|[1 + Ally — $x]l2, (29)

which is called basis pursuit denoising (BPDN) [30], [60].
When additive white Gaussian noise (AWGN) is added as
noise according to A(0, 02), where y = ||n||2 and X is the
output, the guarantee of BPIC can be defined as follows [30]
and [61]:

e — &2 < rre
ST @K =D

where K < %(ﬁ 4+ 1) and € = oM + nv/2M when

y < € and a parameter n prevents ||n|2 being too large.
These parameters ensure that the algorithm performs with a
high probability. In this section, data was restored by using

(30)
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TABLE 2. MSE performance according to the K value and SNR in the CS and AE.

(a) MSE performance (Nonzero values follow a Gaussian distribution.)
K=3 K=9 K =30
M Method SNR [dB]
0 10 20 30 0 10 20 30 0 10 20 30
8 CS 0.0340 0.0218 0.0166 0.0177 0.4147 0.1112 0.0766 0.0721 — — — —
AE 0.0229 0.0223 0.0221 0.0221 0.0680 0.0666 0.0659 0.0658 0.2274  0.2232 0.2201 0.2200
16 CS 0.0265 0.0082 0.0045 0.0033 0.3221 0.1918 0.0511 0.0488 — — — 8.6172
AE 0.0207 0.0184 0.0176 0.0175 0.0659 0.0630 0.0616 0.0615 0.2203 0.2116 0.2057 0.2054
32 CS 0.0356 0.0030 0.0003 0.0000 0.3380 0.0193 0.0030 0.0003 — — 5.6537 5.7681
AE 0.0207 0.0184 0.0176 0.0175 0.0616 0.0555 0.0530 0.0527 0.2062 0.1884 0.1769 0.1764
64 CS 0.0285 0.0034 0.0003 0.0000 0.3252 0.0248 0.0031 0.0003 — — 2.7611 2.2802
AE 0.0179 0.0131 0.0118 0.0117 0.0533 0.0405 0.0357 0.0353 0.1785 0.1401 0.1192 0.1180
(b) MSE performance (Nonzero values are fixed at 1.)
K=3 K=9 K =30
M Method SNR [dB]
0 10 20 30 0 10 20 30 0 10 20 30
s CS 0.0308 0.0243 0.0231 0.0232 0.1267 0.0849 0.0808 0.0797 - — - -
AE 0.0222 0.0215 0.0215 0.0215 0.0639 0.0617 0.0613 0.0613 0.1794 0.1718 0.1695 0.1695
16 CS 0.0280 0.0126  0.0081 0.0076 0.1146 0.0762 0.0707 0.0694 - — 3.2098 0.9938
AE 0.0216 0.0202 0.0200 0.0200 0.0626 0.0580 0.0572 0.0572 0.1787 0.1634 0.1583 0.1582
39 CS 0.0213 0.0024 0.0002 0.0000 0.1092 0.0143 0.0014 0.0001 - 2.3945 0.4458 0.1537
AE 0.0202 0.0175 0.0172 0.0172 0.0595 0.0505 0.0490 0.0489 0.1713 0.1425 0.1358 0.1359
64 CS 0.0253 0.0024 0.0002 0.0000 0.1267 0.0149 0.0014 0.0001 - 2.6602 0.3830 0.1520
AE 0.0177 0.0121 0.0114 0.0114 0.0538 0.0359 0.0327 0.0325 0.1597 0.1072 0.0911 0.0907

BPIC with € = 0.1. In the case of AE, denoising AE is used
for signal reconstruction. It has the same structure as the AE
used previously. However, the difference is that noise is added
when inputting input data.

Table 2 shows the performance of CS and AE according
to SNR for each M value. In case (a), the nonzero value of x
follows a Gaussian distribution, while fixed at 1 in case (b).
We generally observed lower MSE under conditions where
the value was fixed at 1. In both cases, AE shows relatively
consistent performances regardless of signal-to-noise ratio
(SNR), while CS shows sensitivity to SNR. As M decreases,
the MSE of CS becomes higher than AE. Additionally, as K
increases, the performance of CS starts to become severely
unstable. As the SNR approaches zero, the performance of
the CS lags behind AE. This indicates that CS tends to be
vulnerable to noise and that AE can identify and remove noise
during the data reconstruction. When noise management is
crucial, utilizing AE can be suitable.

IV. OPEN CHALLENGES AND POTENTIAL APPLICATIONS
A. AVAILABILITY OF CS AND AE IN WIRELESS
COMMUNICATIONS
Analog to digital converter (ADC) refers to converting a
continuous signal into a discontinuous signal based on the
time axis. It goes through filtering, sampling, quantization,
and encoding. After the filtering and sampling steps, the
y-axis value is digitized and quantized, and the degree of
delicacy of the signal varies depending on the resolution [62].
Finally, the signal is converted to binary through encoding.
A one-bit ADC is used in the receiver antenna to
reduce implementation complexity and power consumption
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in the multiple-input and multiple-output (MIMO) system.
Information loss occurs during quantization using a one-
bit ADC, resulting in performance degradation. If a few-bit
ADC is used to increase resolution, the maximum sampling
rate will inevitably decrease as the number of bits per
measurement increases. The CS method can be used to
alleviate the challenges with ADC design. CS minimizes the
number of bits per measurement with higher sampling rates
and is helpful for sparse signal recovery. This advantage can
be used to improve battery-related issues in non-terrestrial
networks (NTN) with efficiently handled data.

Both CS and AE are effective signal processing methods
and can be used for noise processing and signal improvement
in communication systems such as orthogonal frequency
division multiplexing (OFDM). Computational cost and
performance must be considered, and how it can be used
in a real environment is important. If the K value of
the sparse signal is known, the CS method may be more
advantageous. In cases where CS does not work, overall
recovery performance is expected to improve if AE is used
as an alternative method. CS is an effective method when the
signal is sparse, so if the signal is not sparse, it is necessary
to consider other reconstruction methods, such as AE.

Noise signals are generated in the process of transmitting
and receiving signals. Denoising the AE method to remove
noise, in addition to directly recovering the original signal,
learning noise or learning in another dimension through a
linear transformation of the signal is also a new method.
For example, in denoising AE, an algorithm learns noise
rather than learning the original signal, then the algorithm can
recover the signal or can be used for specific applications in
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wireless communications such as symbol demodulation and
precise localization [26].

B. ESSENTIAL UTILIZATION OF CS AND AE IN WAY
FORWARD OF 6G AND BEYOND

Using mmWave/THz frequency bands in 6G communica-
tions enhances high-speed data transmission and spectral
efficiency. Massive MIMO and extremely large-scale massive
MIMO (XL-MIMO) have emerged to improve data transmis-
sion rates and support inter-device communication in these
high-frequency bands [63], [64]. As the frequency band-
width widens, the center frequency rises and the straightness
of the wave is strengthened, leading to phenomena such as
diffraction, scattering, and reflection. This causes the channel
to have sparse characteristics, and algorithms such as CS and
AE can be used to estimate this efficiently.

Furthermore, applications of CS and AE include the
essential technologies in wireless communications such as
channel estimation and beamformer design [65]. The CS
mechanism was used to estimate channel state information
in the mmWave large-scale MIMO system [66], enabling
high performance of channel estimation even in low SNR
environments. Optimizing the beamforming patterns using
AEs in mmWave massive MIMO vehicular networks [67].
To alleviate the delay overhead issues encountered in
high-rate mmWave applications, multiple base stations
jointly serve one mobile station and learn an optimal beam
selection policy.

In 6G networks, integrating communication and sensing
functions optimizes network utilization, supporting various
applications and services. Integrated sensing and communi-
cation (ISAC) combines signal detection and communication,
enabling the entire communication network to function as a
sensor. This integration allows for precise channel modeling
through sensing, leading to increased accuracy. Beyond
6G, scenarios demand both advanced sensing and wireless
communication capabilities, with the potential to enhance
spectral efficiency by sharing the same frequency band and
hardware [68]. Furthermore, the incorporation of artificial
intelligence presents advantages like improved RF detection
performance and the potential for faster operation through
parallel calculation in 6G applications [69]. Various sensors,
including radar, lidar, ultrasonic waves, and cameras, play a
crucial role in sensing environments. Specifically, radars that
can be utilized in the automotive field operate at frequencies
between 76 - 81 GHz [70], leading to a sparse signal
characteristic. This sparsity facilitates efficiently utilizing
technologies such as CS and AE.

C. THEORETICAL SOLIDIFICATION OF AE BY TAKING A
HINT FROM CS

This subsection elucidates specific application cases that
provide the intersection between CS and AE, which might
be a chance for AE to take inspiration from the diversified
mathematical analysis of CS. A deep learning-based CS
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framework is proposed in [28] and [71]. In these frameworks,
the encoder employs a fully connected layer that serves as
an adaptive sensing matrix. This implies that the layer of the
encoder is able to compress the data efficiently and create a
more effective sensing matrix for compressing data. On the
other hand, the decoder uses a deconvolution network for data
restoration.

The data collection process is performed more efficiently
through sparsity, which is one of the benefits of CS [72].
Additionally, the network was trained to restore the original
data using a pattern of the CNN recognition function. This
shows the synergy between CS techniques and deep learning
for effective data restoration.

The research in the preceding papers shows how AE
technology leverages CS methods to collect and reconstruct
data efficiently and improve overall performance. This fusion
of AE and CS techniques demonstrates the potential for a
variety of applications, such as signal processing, where data
compression and reconstruction are important.

D. POSSIBILITY OF COLLABORATIONS OF CS AND AE

In the previous subsection, we provide the potential the-
oretical specification of AE through the concepts of CS.
The relevant literature references suggest significant potential
for collaboration between CS and AE, indicating operating
together effectively [28], [71], [72]. Through experimental
results, it has been verified that if certain conditions are met,
CS shows remarkable performance. Conversely, when the
conditions are not met, the performance of AE remains stable.
This implies that CS and AE complement each other, raising
the expectation for enhanced overall signal compression and
restoration performance.

V. CONCLUSION

In this paper, we compared CS and AE in various aspects,
considering that they have similar structures and approaches
in terms of signal recovery. Using the K-sparse vector,
numerical experiments were performed depending on various
algorithms and linear or nonlinear mathematical properties.
Signal recovery performance is evaluated by considering
various algorithms and mathematical characteristics of the
signal. As described in the theory, if the required conditions
for CS, i.e., sparsity, coherence, and RIP, are satisfied,
CS shows almost perfect performance in signal recovery.
If these conditions are not met, the performance of signal
recovery using CS is significantly lower, indicating that
the effectiveness of CS is highly affected by the level
of sparsity and the type of sensing matrix. Additionally,
AE requires overhead for an NN model optimization to learn
the distribution of signals with big data, while the recovery
performance is relatively stable compared to CS. Both CS
and AE can be effective methods in signal processing, and
the performance guarantees of the two techniques appear
to be different depending on the sparsity of the signal and
specific conditions. Both schemes use different approaches
and have their advantages and applicability, and future
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research methods that combine the frameworks of CS and AE
can improve performance to achieve more robust and flexible
solutions in signal processing.
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