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ABSTRACT This study presents a hybrid HHO-AVOA which is a novel optimization method that
combines the strengths of Harris Hawks Optimization (HHO) and African Vulture Optimization Algorithm
(AVOA) to address the path planning challenges encountered by differential wheeled mobile robots
(DWMRs) navigating both static and dynamic environments, while accommodating kinematic constraints.
By synergizing the strengths of both algorithms, the proposed hybrid method effectively mitigates the
limitations of individual approaches, resulting in efficient and obstacle-avoiding navigation towards the
target within reduced timeframes. To evaluate its efficiency, the proposed approach is compared against HHO
and AVOA as well as other established methods which include whale optimization, grey wolf optimization
and sine-cosine algorithms. Simulation results along with Monte Carlo analysis consistently demonstrate the
superior performance of the hybrid method in both environments. In static scenarios, the hybrid algorithm
achieves an average reduction of approximately 14% in path length and a 17% decrease in DWMR travel
duration. In dynamic cases, it outperforms the rest with an average reduction of 27.6% in path length and a
27.2% decrease in travel duration. The algorithm’s low computational complexity is also exhibited via its fast
convergence during path optimization which is a crucial attribute for real-time implementation, particularly
in dynamically changing environments that demand quick decision-making. The superiority of the proposed
hybrid method to balance the exploration and exploitation is also affirmed through aWilcoxon rank-sum test
with a 95% confidence interval.

INDEX TERMS Dynamic environment, Harris Hawks optimization, hybrid, mobile robot, path planning,
SCA, WOA.

I. INTRODUCTION
The adoption of autonomousmobile robots, particularly those
employing differential drive configurations, has experienced
a significant upsurge in recent years [1], [2]. This trend
can be attributed, in part, to changing global dynamics that
extend beyond the COVID-19 pandemic. Various sectors,
including but not limited to healthcare, security patrols, and
the food industry, have increasingly shifted their focus toward
reducing human-to-human interactions [3]. Instead, they are
embracing human-to-machine interactions to enhance safety
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and efficiency. Differential wheeledmobile robots (DWMRs)
are well-suited to this transition due to their ability to navigate
with precision and autonomy [4], [5].

In the domain of autonomous mobile robots, path planning
emerges as a critical task, encompassing the determination
of the optimal route while addressing performance objectives
such as minimizing travel duration, distance, or energy
consumption [6]. The extensive body of literature in this
domain emphasizes the complexity of path planning for
mobile robots and underscores several crucial challenges.
One of these challenges is the imperative to generate
routes that are not only collision-free but also well-
structured, ensuring feasible navigation for mobile robots
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particularly those that are subject to kinematic and dynamic
constraints [7], [8], [9], [10].

Addressing these challenges has led to a variety
of approaches. Classical techniques like the Roadmap
Approach [11], Cell Decomposition [12], and Artificial
Potential Field [13] have historically prevailed due to
their effectiveness in solving path planning problems [14].
However, they come with certain limitations, including
computational complexity in dense environments, rigidity
in accommodating additional constraints or objectives,
suboptimal performance in dynamic settings, and lack of
robustness. To address these limitations, various artificial
intelligence-based approaches have been proposed, including
neural dynamics [15], adaptive neuro-fuzzy inference
system [16], Ant Colony Optimization(ACO) [17], Particle
Swarm Optimization (PSO) [18], Artificial Bee Colony
(ABC) [19], Grey Wolf Optimization (GWO) [20], [21],
and Whale Optimization algorithm (WOA) [22], [23]. These
methods draw inspiration from the collective behavior of
natural systems, such as ants, birds, bees, whales and wolves,
to solve complex problems [24].
While the direct application of the aforementioned

algorithms to robot path planning has shown promise,
they come with inherent problems and limitations, often
revolving around the delicate balance between exploration
and exploitation phases in the quest for optimal paths [25].
Consequently, many researchers have turned to modifying
these algorithms to achieve improved results [26], [27],
[28], [29], [30]. For instance, in [31], an enhanced WOA
is presented, addressing the original algorithm’s deficiencies
in indoor robot path planning by incorporating improved
chaotic mapping for population initialization and employing
fused Corsi variance and weighting strategies to enhance
path quality. Another approach by fusing WOA and
fuzzy logic (FL) is introduced in [32] which leads to a
20.63% improvement in path length optimization. In [33],
an enhanced variant of the sine-cosine algorithm (SCA) is
introduced to address multi-robot path planning challenges
in complex environments featuring both static and dynamic
obstacles.

The Harris Hawks Optimization (HHO) algorithm,
introduced in 2019, draws inspiration from hawks’
collaborative hunting strategies, where they surprise their
prey through coordinated attacks and adapt to prey
movements [34]. In the context of static environment path
planning, as demonstrated in [35], HHO exhibits faster
computation speeds compared to WOA and SCA. Moreover,
a fusion of HHO and the Dijkstra method, as presented
in [36], outperforms HHO alone in static environments.
Further enhancements to HHO are introduced in [37],
addressing issues like out-of-bounds rates and precision by
incorporating a circle map for initial population generation
and a nonlinear jump strength mechanism, proving its
efficiency in terms of accuracy, and convergence speed,
especially in 2D grid map path planning applications.

Another significant challenge in path planning is the
algorithm’s capacity to adjust to uncertain or dynamic
environments [38], [39], [40], [41], [42]. Vega-Brown
and Roy [43] for instance, introduced a factored orbital
Bellman tree technique aimed at manipulating movable
obstacles to facilitate the creation of the shortest path for
a manipulator. In environments featuring dynamic non-
movable obstacles, generating the shortest path requires
identifying uncertain zones, but this may pose a disadvantage
due to the extensive computation needed for optimal path
generation [44]. In such cases, the necessity for local
planning with rapid computation becomes crucial to ensure
timely goal attainment for the robot. In the work by
Hasankhani et al. [45], the path planner is crafted using
reinforcement learning to tackle the highly nonlinear and
uncertain oceanic environment. Nakrani and Joshi [46]
introduced a fuzzy-based obstacle avoidance controller with
ulstrasonic sensor outputs as inputs to the FL to accomplish
autonomous parallel parking in the presence of static and
dynamic obstacles. In [47], the primary emphasis is on
addressing the challenges of longitudinal and lateral control
coupling to ensure safety and stability in collision avoidance
scenarios. Another study referenced in [48] leverages the
African Vulture Optimization Algorithm (AVOA), which
was a new metaheuristic algorithm introduced in 2021 by
Abdollahzadeh et al. [49], inspired by the foraging and
navigation behaviors of African vultures. Simulation results
demonstrate AVOA’s exceptional proficiency in obstacle
avoidance, even in challenging local minima scenarios.
Furthermore, in terms of improving path length, AVOA
surpasses PSO by 2.21% and the fuzzy-based method by
1.02% [50].

While the aforementioned techniques have displayed
potential in enhancing path planning strategies, addressing
dynamic obstacles continues to pose challenges, primarily
because of the necessity to incorporate computation time
as an additional constraint to optimize the route. The main
contributions of this study are summarized as follows:

• A new optimization method based on hybrid HHO-
AVOA is proposed for path planning of a DWMR
operating within both static and dynamic environments
while accommodating kinematic constraints. The
superiority of the proposed HHO-AVOA algorithm to
balance the exploration and exploitation is verified via
Wilcoxon rank-sum test with a 95% confidence interval.

• Simulation results along with Monte Carlo analysis
comparing the proposed algorithm to its individual
components, i.e. HHO [35] and AVOA [49]), as well
as other state-of-the-art algorithms (i.e. WOA, GWO
and SCA) demonstrate the significant performance
improvement introduced by the proposed hybrid
method. In the static case, it achieves an average
reduction of approximately 14% in path length and a
17% decrease in DWMR travel duration. In the dynamic
case, the proposed algorithm exhibits remarkable
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FIGURE 1. Portrayal of the DWMR in [X , Y ] and [XR , YR ] planes.

superiority over its strongest competitor, with an average
reduction of 27.6% in path length and a 27.2% decrease
in travel duration.

• In both environments, the proposed algorithm’s low
computational complexity is evident through its fast
convergence during path optimization. This attribute
is essential for real-time implementation where
rapid computational speed is crucial, particularly in
dynamically changing environments that demand quick
decision-making.

The remainder of the paper is organized as follows:
Section II presents the methodology, covering DWMR
modeling, the HHO algorithm, the AVOA algorithm, and the
proposed hybrid HHO-AVOA approach specifically tailored
for DWMR path planning. Section III presents a thorough
examination of simulation results accompanied by Monte
Carlo analysis, covering scenarios in both static and dynamic
environments. Section IV concludes the paper by providing
a summary of the study’s key findings and contributions, and
outlining potential directions for future research.

II. METHODOLOGY
A. DIFFERENTIAL WHEELED MOBILE ROBOT (DWMR)
In odometry, the robot’s current position relies on the
measurement of change from the robot’s known starting
position. The odometry-based localization is based on robot
wheels’ movement data collected by motion sensors to
estimate the change of position over time. In this work, the
estimation of the path taken and the heading direction of the
mobile robot is done by using the data from the encoders
on both wheels. Fig. 1 depicts the position of robot in
relation to two different frames, namely [X ,Y ] and [XR,YR].
[X ,Y ] represents the world coordinate system while [XR,YR]
denotes the robot-attached frame [51]. Both linear velocity, v
as well as angular velocity, ω of the robot can be represented
by the following equations:

v =
(ωr + ωl)r

2
, ω =

(ωr − ωl)r
D

, (1)

where r is wheel’s radius, D is the azimuth length between
the wheels, and ωr and ωl represent the right and left wheels’
angular velocities respectively. Let (x0, y0, θ0) denote to the
robot’s previous position. When the robot is moving forward
along the XR-axis, only the linear velocity v is non-zero, and
θ = θ0. Consequently, we have ẋ = v cos θ0 and ẏ = v sin θ0.
The robot’s current position can be obtained by integrating ẋ
and ẏ, resulting in:

x = vts cos θ0 + x0,

y = vts sin θ0 + y0,

where ts is the sampling time. Due to nonholonomic
constraints, the robot is unable to move sideways. Thus, when
the robot steers, the trajectory is a circular arc with a radius
ρ = v/ω. The current heading angle of the robot can be
calculated as θ =

∫ ts
0 ωdt . The position of the robot can

therefore be estimated withxy
θ

=

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ρ sin(ωts)
ρ(1 − cos(ωts))

ωts

 +

x0y0
θ0

 .

In this study, we examine a DWMR operating within
specific constraints, where the maximum angular velocity is
set at 3 rad/s, and the maximum linear velocity is limited to
0.5 m/s. Consequently, paths of comparable lengths but with
distinct shapes may not yield identical travel durations due
to these imposed restrictions. Notably, paths featuring more
curves necessitate additional turning, resulting in slightly
longer durations.

B. HARRIS HAWKS OPTIMIZATION (HHO)
The Harris Hawks Optimization (HHO) algorithm mimics
how hawks hunt prey to find the best solution for a problem.
It starts with an initial guess and then continually refines it
through two phases: exploring broadly and exploiting locally.
It uses energy as a guide during the search, and the switch
between global exploration and local exploitation depends on
the prey’s energy equation. The mathematical expression for
the energy-based search is as follows:

E0 = 2ϵ − 1 (2)

E = 2E0
(
1 −

k
kmax

)
; (3)

whereE denotes the escape energy of the rabbit,E0 ∈ [−1, 1]
denotes its initial energy, and kmax is the total number of
iterations. If E ≥ 1, HHO initiates the global exploration
phase, where it searches extensively across the search space
for a solution. Conversely, when E < 1, HHO transitions
into the local exploitation phase. In this phase, it focuses
on refining and enhancing a solution previously discovered
within a more restricted area of the search space.

In the global exploration phase, the Harris Hawks
algorithm explores the search space to find a solution. It does
this by conducting random inspections and surveillance of the
area, along with employing two strategies for random prey
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searching. The position is updated during each iteration based
on the probability of ‘‘q’’ using the following equations:

X (k + 1) (4)

=

{
Xran(k) − r1|Xran(k) − 2r2X (k)| if q ≥ 0.5
Xrab(k) − Xm(k) − r3|lb+ r4(ub− lb)| if q < 0.5

(5)

where X (k + 1) denotes the position of the hawks in the
next iteration, Xrab(k) is the current position of the rabbit,
X (k) is the current position vector of hawks, the variables
rj, j = 1, . . . 4 and q are random numbers ranging from 0 to 1,
with values updated in each iteration. Additionally, ‘‘lb’’
and ‘‘ub’’ denote the lower and upper bounds of the search
space respectively. Xran(k) represents a randomly chosen
hawk from the current population, while Xm(k) represents
the average position of the current population of hawks. This
average position is calculated using the following formula:

Xm(k) =
1
N

N∑
i=1

Xi(k) (6)

where Xi(k) represents the position of i-th hawks in the k-th
iteration, and N signifies the total number of hawks.

In the local exploitation phase, the HHO algorithm actively
engages in improving a previously located rabbit. During this
process, the rabbit may attempt to escape, and the energy
level,E , is utilized to decide themost effective strategy for the
hawks to pursue the rabbit. Furthermore, the probability of
successfully capturing the escaping prey, denoted by r which
is randomly generated during initialization, influences the
choice of the optimal approach. To handle this scenario, the
algorithm employs four distinct strategies, which are detailed
below:

i. Soft Besiege: This behavior is represented by the
following equations:

X (k + 1) = 1X (k) − E|JXrab(k) − X (k)|
1X (k) = Xrab(k) − X (k)
J = 2(1 − r5)

(7)

where 1X (k) represents the positional difference
between the rabbit’s current location and its initial
position vector, r5 ∈ [0, 1] is a randomly generated
number which is utilized to calculate the random jump
strength of the rabbit during the escape procedure,
and J denotes the stochastic nature of the rabbit’s
movements which undergoes random variations in each
iteration, mimicking the inherent unpredictability of
rabbit motion.

ii. Hard Besiege: At this stage, the rabbit’s available
energy for escaping is insufficient, leading the hawks to
aggressively chase the rabbit. Consequently, the rabbit’s
position is updated according to the following equation:

X (k + 1) = Xrab(k) − E|1(k)| (8)

iii. Soft Besiege with progressive rapid dives: The
hawks will first begin with a soft besiege strategy
when the escaping energy is deemed sufficient, before
transitioning to an aggressive approach. The HHO
algorithm integrates the Levy function to mimic the
jumping behavior and escape tactics of the rabbit.
To execute a soft besiege, it is assumed that the hawks
can determine their next move according to the rule
described by

A1 = Xrab(k) − E|JXrab(k) − X (k)| (9)

It is also assumed that they will engage in a dive pattern
based on the Levy-based patterns as follows

A2 = Y + S × Levy(D) (10)

where D represents the problem dimension, S is a
random vector with a size of 1 × D, and ‘‘Levy’’ is the
Levy flight function computed using

Levy(x) = 0.01 ×
u× σ

|v|1/β
, (11)

σ =

( 0(1 + β) × sin(
πβ

2
)

0(
1 + β

2
) × β × 2(

β − 1
2

)

)1/β
(12)

This condition is formulated as follows:

X (k + 1) =

{
A1 if F(A1) < F(X (k))
A2 if F(A2) < F(X (k))

(13)

where A1 and A2 are obtained from (9) and (10)
respectively.

iv. Hard Besiege with progressive rapid dives: As the
rabbit lacks the energy required for escape, the hawks
will initiate a hard besiege before executing a sudden
maneuver to capture the rabbit. This mathematical
movement is represented as:

X (k + 1) =

{
A1 if F(A1) < F(X (k))
A2 if F(A2) < F(X (k))

(14)

where A1 and A2 can be computed as follows

A1 = Xrab(k) − E|JXrab(k) − Xm(k)| (15)

A2 = Y + S × Levy(D) (16)

The pseudocode for the standard HHO algorithm is presented
in Alg. 1

C. AFRICAN VULTURE OPTIMIZATION ALGORITHM (AVOA)
The African Vulture Optimization Algorithm (AVOA) is
a versatile and easy-to-implement meta-heuristic method
inspired by African vultures’ eating and orientation
behaviors [49]. AVOA is widely used across various
optimization domains, offering flexibility for adjustments and
applications that lead to optimal results. Vultures in the wild
exhibit distinct behaviors based on their physical capabilities,
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Algorithm 1 HHO Algorithm
1: Initialize hawks population with random positions,
Xi(i = 1, . . . ,N )

2: while k ≤ kmax do
3: Evaluate the fitness of each hawk
4: Let Xrab(k) be the best position of the rabbit
5: for i = 1, . . . ,N do
6: Update E0 and J based on (2)
7: Update E based on (3)
8: if E ≥ 1 then
9: Update X according to (4)
10: else if E < 1 then
11: if E ≥ 0.5 and u ≥ 0.5 then
12: Update X according to (7)
13: else if E < 0.5 and u ≥ 0.5 then
14: Update X according to (8)
15: else if E ≥ 0.5 and u < 0.5 then
16: Update X according to (13)
17: else if E < 0.5 and u < 0.5 then
18: Update X according to (14)
19: end if
20: end if
21: end for
22: k + +

23: end while
24: Return Xrab

falling into two groups. They are adept at evading traps due to
their insatiable hunger and persistent hunting for food. In the
algorithm, the two strongest and most efficient vultures are
considered as the most robust and optimal solutions. The
following subsections will outline the algorithm’s general
steps.

1) DETERMINING THE BEST VULTURE IN ANY GROUP
Following the formation of the initial population, the
fitness of all solutions is evaluated, and the top-performing
solution is designated as the best vulture in the first
group, denoted as BV1, while the second-best solution
is identified as the best vulture in the second group,
denoted as BV2. The corresponding rule is written as
follows:

R(k) =

{
BV1 if pi = B1
BV2 if pi = B2

(17)

where B1 and B2 are quantified values determined prior to the
search operation. These parameters have values ranging from
zero to one, and B1 + B2 = 1. Additionally, the selection of
one of the best solutions is achieved through a roulette wheel
mechanism as follows:

pi = Fi/(
n∑
i=1

Fi) (18)

2) RATE OF STARVATION OF VULTURES
The frequent food-seeking behavior of vultures and their
increased endurance after eating allows them to travel farther
during their pursuit of food. They lose energy when they are
hungry, making it harder for them to travel great distances in
search of food. In such circumstances, they frequently seek
food close to stronger vultures and may become combative
out of hunger. This behavior can be modeled mathematically
as follows:

t = h×
(
sinw

(π

2
×

k
kmax

)
+ cos

(π

2
×

k
kmax

)
− 1

)
(19)

F = (2 × rv1 + 1) × S ×
(
1 −

k
kmax

)
+ t. (20)

In (19) and (20), F represents the vultures’ satiety level,
S ∈ [−1, 1], h ∈ [−2, 2] and rv1 ∈ [0, 1] are random
numbers. When the value of S drops below 0, it signifies
that the vulture is in a state of hunger, while an increase in
S to 0 indicates satiety. In the AVOA algorithm, the variable
F plays a pivotal role in determining whether the algorithm
enters an exploration or exploitation phase. Specifically,
if |F | > 1, the algorithm initiates the exploration phase,
whereas if |F | ≤ 1, it begins the exploitation phase.

In the exploration phase, the vultures employ one of two
strategies to investigate random areas, and the selection of
the strategy is governed by a predefined parameter called
P1 ∈ [0, 1] which is determined prior to the commencement
of the search operation. To decide which strategy to utilize
during the ‘‘randP1’’ exploration phase, a random number
is generated within the range of 0 to 1, denoted as rp1.
If P1 ≥ rp1 parameter, then the following rule is applied{

VP(k + 1) = R(k) − D(k) × F
D(k) = |X × R(k) − VP(k)|

. (21)

where VP(k) and VP(k + 1) represent the vector positions of
the vulture in the current and next iterations respectively, R(i)
denotes one of the best vultures, F is the satiation rate of the
vulture, and X indicates the random movement of the vulture
for safeguarding the food from other vultures. The random
motion, which varies with each iteration and is calculated
using the formula X = 2 × rand , where rand ∈ [0, 1] is
a random number that acts as the amplifying coefficient of X .
In the case where P1 < rp1, then the following equation is
applied

VP(k + 1) = R(k) − F + rv2 × ((ub− lb) × rv3 + lb) (22)

where rv2, rv3 ∈ [0, 1] are random numbers, and ‘‘ub’’ and
‘‘lb’’ represent the lower bound and lower bound of the
variables respectively.

During the exploitation stage, there are two main phases
involved, namely Phase 1 and Phase 2. The AVOA transitions
to Phase 1 when |F | ∈ [0.5, 1). This phase consists of two
strategies called rotating flight and siege-flight strategies,
which are detailed below:
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a: SIEGE FLIGHT
The fierce rivalry for food acquisition between weaker
and stronger vultures is simulated through the following
rule: {

VP(k + 1) = D(k) × (F + rv4) − d(t)
d(t) = R(k) − VP(k)

(23)

where r4 ∈ [0, 1] is a random number used to amplify
the random coefficient. The equation gives the distance
between one of the best vultures of the two groups and the
vulture.

b: ROTATING FLIGHT
The rotational flight patterns of the vultures can be modeled
mathematically into a spiral motion. With this approach,
an equation involving all the vultures and one of the two
best vultures is created. This movement can be expressed
mathematically as follows:

S1 = R(k) ×
( rv5 × VP(k)

2π

)
× cos(P(k))

S2 = R(k) ×
( rv6 × VP(k)

2π

)
× cos(P(k))

VP(k + 1) = R(i) − (S1 + S2)

(24)

where rv5, rv6 ∈ [0, 1] are random numbers.
To select the strategy, a variable P2 ∈ [0, 1] is introduced

before the search operation begins. A random number, rp2,
is generated at the onset of this phase. Based on rp2 and P2,
the selection of strategy is formulated as follows

VP(k + 1) =

{
(23) if P2 ≥ rp2
(24) if P2 < rp2

(25)

The AVOA transitions to Phase 2 when |F | < 0.5.
This phase consists of two strategies, namely ‘‘Congregation
of various types of vultures around the food source’’ and
‘‘Aggressive competition for food’’. These strategies are
described below:

c: CONGREGATION OF VARIOUS TYPES OF VULTURES
AROUND THE FOOD SOURCE
In this stage of AVOA, the vultures’ movement to gather
around the food source is observed. When vultures are
starving, there can occasionally be fierce competition for
food, which can cause several different kinds of vultures to
congregate around a single food source which can bemodeled
as follows:

A1 = BV1(k) −
BV1(k) × VP(k)
BV1(k) − VP(k)2

× F

A2 = BV2(k) −
BV2(k) × VP(k)
BV2(k) − VP(k)2

× F

VP(k + 1) =
A1 + A2

2

(26)

where BV1 and BV2 are the best vulture from the first group
and second group respectively.

d: AGGRESSIVE COMPETITION FOR FOOD
At this stage of AVOA, the leading vultures become weak
and famished, thus unable to compete with other vultures for
food. While other vultures which are starving will become
aggressive and start to move toward the leading vulture. Their
movement can be expressed as

VP(k + 1) = R(k) − |d(t)| × F × Levy(d) (27)

where d(t) represents the distance between a vulture and
one of the best vultures of both groups. The usage of the
Levy flight function increases the efficacy of the AVOA
algorithm.

To select the strategy, a variable P3 ∈ [0, 1] is introduced
before the search begins. A random number, rp3, is generated
at the onset of this phase. Based on rp3 and P3, the selection
of strategy is formulated as follows

VP(k + 1) =

{
(26) if P3 ≥ rp3
(27) if P3 < rp3.

(28)

The pseudocode for the standard AVOA algorithm is
presented in Alg. 2.

D. PROPOSED HYBRID HHO-AVOA FOR PATH PLANNING
OF DWMR
To improve the efficiency of path planning for a DWMR,
we introduce a hybrid algorithm called HHO-AVOA, which
combines the HHO and AVOA algorithms. In our proposed
approach, we leverage the AVOA algorithm for global
exploration, and when the value of F falls below 1, the
algorithm seamlessly transitions to the HHO strategy for local
exploitation.

In the field of robot path planning, the primary focus is
on minimizing the path length when determining a robot’s
route. This is crucial because the path length has a direct
impact on both the robot’s energy consumption and travel
duration. The ultimate goal is to identify the shortest feasible
route while effectively avoiding obstacles. In our notation,
we represent the path length as q, which is computed as the
cumulative length of all individual segments comprising the
path as follows:

fL(q) =

n−1∑
i=0

|qi, qi+1| (29)

where |qi, qi+1| denotes the distance between two adjacent
points. Another objective in path planning is to ensure path
safety. In this work, the obstacles are assumed to be circular.
This avoidance strategy is vital as it safeguards the robot
from potential damage and ensures a smoother path without
abrupt alterations, ultimately leading to more efficient robot
motion. The formulation for the obstacle avoidance rule is as
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Algorithm 2 AVOA Algorithm
1: Initialize vultures population with random positions,
VPi(i = 1, . . . ,N )

2: while k ≤ kmax do
3: Evaluate the fitness of each vulture
4: Set VPbv1(k) as the location of the best vulture from

Group 1
5: Set VPbv2(k) as the location of the best vulture from

Group 2
6: for i = 1, . . . ,N do
7: Select R using (17)
8: Update F based on (20)
9: if |F | ≥ 1 then
10: if P1 ≥ rp1 then
11: Update VP according to (21)
12: else
13: Update VP according to (22)
14: end if
15: else if |F | < 1 then
16: if |F | < 0.5 then
17: if P2 ≥ rp2 then
18: Update VP according to (23)
19: else
20: Update VP according to (24)
21: end if
22: else
23: if P3 ≥ rp3 then
24: Update VP according to (26)
25: else
26: Update VP according to (27)
27: end if
28: end if
29: end if
30: end for
31: k + +

32: end while
33: Return VPbv1

follows: 

d(i) =

√
(x − xoi)2 + (y− yoi)2

γ (i) = max
(
1 −

d(i)
Robs(i)

, 0
)

vL(γ ) =
1
no

no∑
i=1

γ (i)

(30)

where d(i) represents the distance between the DWMR and
the center of the i-th obstacle, denoted as (xoi, yoi), no is the
total number of obstacles, and Robs(i) is the radius of the i-
th obstacle. If the magnitude of the vL is more than zero,
the robot has entered the obstacles’ region. Thus, to optimize
the search for the shortest route while ensuring obstacle
avoidance, the cost function can be expressed as follows:

f = fL × (1 + µvL). (31)

whereµ refers to a penalty constant. This formulation yields a
higher value when the DWMR enters a hazardous zone close
to obstacles, effectively penalizing such occurrences.

In addition, as elaborated in Section II-A, equivalent path
lengths for a DWMR may not necessarily correspond to
similar travel durations. Thus, the search for the optimal route
also encompasses seeking an optimal travel duration,wherein
the goal is to prevent an increase in duration after each
iteration. The travel duration of the DWMR is computed
using the formula:

Tf =

nw−1∑
j=1

√
(xj − xj+1)2 + (yj − yj+1)2

v
+

nw−1∑
j=1

θj+1 − θj

ω

(32)

where nw refers to the total number of waypoints, v is the
DWMR’s linear velocity, ω is the DWMR’s angular velocity,
and (xj, yj, θj) and (xj+1, yj+1, θj+1) are coordinates of
adjacent waypoints. This formula eliminates the requirement
for simulating the DWMR before recording the duration,
thereby avoiding computational intensity during the path
optimization.

Furthermore, the assessment of the proposed method,
particularly in dynamic environments, is contingent on
addressing the computational burden. Hence, the maximum
computation time is considered as the stopping condition. The
detailed representation of the proposed algorithm is provided
in Alg. 3. The combination of AVOA-based exploration
and HHO-based exploitation can improve the path planning
strategy of a DWMR in both static and dynamic environments
as demonstrated in the next section.

To further evaluate the proposed algorithm, the Wilcoxon
rank-sum statistical test with a 5% significance level is
conducted. This involves forming two hypotheses: the null
hypothesis assumes no significant difference between the
two groups, while the alternative hypothesis challenges this
assumption. The test begins by separately grouping the
generated waypoints of both the hybrid and comparison
algorithms. These waypoints are then combined and ranked
in increasing order. The rank sum of each group is calculated
and the minimum value, U between both groups is recorded.
Once the sample sizes, n1 and n2 are calculated for both
groups, the expected value of U under the null hypothesis is
calculated as follows:

E(U ) =
n1 × n2

2
.

Next, the standard deviation, σ (U ), for the null hypothesis
and the z-score, are computed using the following equations

σ (U ) =

√
n1 × n2 × (n1 + n2 + 1)

12
, z =

U − E(U )
σ (U )

.

By using the value of z obtained above, the cumulative
probability in a standard normal distribution is recorded
and the two-tailed p-value is calculated by mutiplying the
probability obtained with 2. In the context of path planning,
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Algorithm 3 Proposed Hybrid HHO-AVOA Algorithm
1: Initialize vultures population with random positions,
VPi(i = 1, . . . ,N )

2: Initialize hawks population with random positions,
Xi(i = 1, . . . ,N )

3: while stopping condition is not met do
4: Evaluate the fitness of each vulture using (29)-(31)
5: Set VPbv1(k) as the best location from first vulture

group
6: Set VPbv2(k) as the best location from second vulture

group
7: for i = 1, . . . ,N do
8: Select R using (17)
9: Update F based on (20)
10: if |F | ≥ 1 then
11: if P1 ≥ rp1 then
12: Update location according to (21)
13: else
14: Update location according to (22)
15: end if
16: else if |F | < 1 then
17: if E ≥ 0.5 and u ≥ 0.5 then
18: Update location according to (7)
19: else if E < 0.5 and u ≥ 0.5 then
20: Update location according to (8)
21: else if E ≥ 0.5 and u < 0.5 then
22: Update location according to (13)
23: else if E < 0.5 and u < 0.5 then
24: Update location according to (14)
25: end if
26: end if
27: end for
28: end while
29: Set Xrab as the best location

obtaining a low p-value below 0.05 is crucial as it indicates
that the proposed algorithm dominates the other in terms of
performance.

III. RESULTS AND DISCUSSIONS
This section presents the simulation results of the proposed
hybrid HHO-AVOA in both static and dynamic environments.
In these settings, different-sized obstacles are positioned at
coordinates (xoi, yoi), where i denotes each specific obstacle.
The corresponding coordinates are detailed in Table 1. The
simulations are executed using MATLAB R2022a on an
Intel(R) Xeon processor with 64-bit architecture and 8GB of
RAM. For each scenario, both the length of the optimal path
and the time taken for the DWMR to traverse the path are
recorded. Table 2 provides the list of the parameter settings
utilized for all the path planning algorithms.

To demonstrate the effectiveness of the proposed method,
it is compared against its constituent components, namely, the
AVOA [48] and HHO [35] algorithms, both of which have

TABLE 1. Simulation setup for the static and dynamic environments.

TABLE 2. Parameter setting for all the algorithms.

FIGURE 2. Optimal paths generated by the algorithms in the static
environment from one of the trials.

been recently introduced in the literature for path planning in
static and dynamic environments. Furthermore, we extended
our comparisons to other well-established algorithms in the
field of path planning, specifically WOA, GWO, and SCA.
A comprehensive Monte Carlo analysis, comprising 50 trials
with diverse initial conditions, including varying start and
goal positions, is conducted to ensure a fair assessment
among the algorithms aswell as to demonstrate the robustness
of each algorithm. This analysis also serves to reinforce the
substantial improvement achieved by the proposed algorithm.

Fig. 2 visualizes the optimal paths generated by the
algorithms in the static environment from one of the
trials where the positions of the obstacles, represented by
maroon circular blocks, remain stationary. The corresponding
convergence curves are displayed in Fig. 3 which clearly
demonstrates that the proposed hybrid HHO-AVOA not only
achieves the lowest best cost but also converges to this value
in approximately 2 s, which is significantly faster than the
other methods.
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FIGURE 3. Convergence curves corresponding to the paths shown in
Fig. 2. It is evident that the proposed method achieves a significantly
faster convergence with the lowest best cost compared to the other
methods.

FIGURE 4. Box-plot depicting the comparison of path lengths obtained
through the proposed hybrid HHO-AVOA and other algorithms across
50 trials in the static environment.

The outcomes of the Monte Carlo analysis are illustrated
in Fig. 4 where the box plots compare the path lengths across
50 trials in the static environment, evaluating the proposed
hybrid HHO-AVOA against other algorithms. While the
interquartile range (IQR) of the proposed algorithm,
represented by the green-colored box, is marginally larger
than that of WOA, SCA, and HHO, it is noteworthy that its
minimum and maximum values are considerably lower than
theirs. Moreover, the proposed algorithm distinctly presents
the lowest median value which is a crucial factor for optimal
route generation in the context of path planning.

To better visualize the significant performance
improvement of the proposed algorithm, Figs. 5 and 6 present
another statistical analysis encompassing average path length
and standard deviation, both derived from the 50 trials.
By analyzing Fig. 5, it is evident that the proposed algorithm
outperforms every other algorithm considered in the static
environment. The consistency of each algorithm in producing
the path is also verified by the standard deviation value

FIGURE 5. Comparison of average path lengths obtained through the
proposed hybrid HHO-AVOA against other algorithms based on 50 trials
in the static environment.

FIGURE 6. Comparison of standard deviations obtained through the
proposed hybrid HHO-AVOA against other algorithms based on 50 trials
in the static environment.

recorded in Fig. 6 which is almost similar to all. Fig. 7
visualizes the time taken for the DWMR to traverse the
paths generated by each algorithm in the static environment.
Similar to the analysis in Fig. 4, the minimum and maximum
values of the IQR, along with the median value resulting from
the proposed method are significantly lower than those of the
other methods. This result suggests that the proposed method
is capable of minimizing both the path length and the travel
duration of the DWMR.

With regard to the dynamic environment, the outcomes
presented in Fig. 8 reveal a parallel pattern to the static
case where the proposed method considerably outperforms
the rest in terms of the shortest path generation. In this
scenario, the positions of the obstacles in the figures represent
their ultimate coordinates after undergoing random motion
as indicated by the double-headed arrows, with middle
positions changing within a 2-meter radius every 0.2 s. The
corresponding convergence curves as shown in Fig. 9 further
emphasize the superior performance of the hybrid HHO-
AVOA approach as it only requires approximately 6 s to
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FIGURE 7. Box-plot depicting the comparison of travel durations
obtained through the proposed hybrid HHO-AVOA and other algorithms
across 50 trials in the static environment.

FIGURE 8. Optimal paths generated by the algorithms in the dynamic
environment from one of the trials.

reach the steady-state value. This consistent trend in fast
convergence and lower cost implies that the hybrid HHO-
AVOA algorithm retains its low computational complexity
even in dynamically changing environments. Moreover, the
ability to adapt swiftly and efficiently to alterations in the
environment positions the proposed algorithm as a promising
solution for real-time applications, particularly in dynamic
scenarios where quick decision-making is crucial.

Results from the Monte Carlo analysis for the dynamic
environment are showcased in Fig. 10, while the average
path length and standard deviation are presented in Figs.11
and 12 respectively. Comparing with the plots from the static
case in Fig.4 to Fig.6, a consistent trend can be clearly
observed. The proposed algorithm demonstrates superiority
by leading in the lowest median value as well as in average
path length and standard deviation. Additionally, it reveals the
smallest variability as can be seen from the whiskers’ length
in the box plot. These findings indicate that the performance
improvement offered by the proposed algorithm seamlessly
extends into dynamic environments.

FIGURE 9. Convergence curves corresponding to the paths shown in
Fig. 8. It is evident that the proposed method achieves a significantly
faster convergence with the lowest best cost compared to the other
methods.

FIGURE 10. Box-plot depicting the comparison of path lengths obtained
through the proposed hybrid HHO-AVOA and other algorithms across
50 trials in the dynamic environment.

FIGURE 11. Comparison of average path lengths obtained through the
proposed hybrid HHO-AVOA against other algorithms based on 50 trials
in the dynamic environment.

Fig.13 illustrates the Monte Carlo analysis on the time
taken for the DWMR to traverse the paths generated
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TABLE 3. Performance improvement based on the average path length and time taken for the DWMR to complete the path for each algorithm in each
environment.

FIGURE 12. Comparison of standard deviations obtained through the
proposed hybrid HHO-AVOA against other algorithms based on 50 trials
in the dynamic environment.

FIGURE 13. Box-plot depicting the comparison of travel durations
obtained through the proposed hybrid HHO-AVOA and other algorithms
across 50 trials in the dynamic environment.

by each algorithm in the dynamic environment. Similar
to the observations in Fig. 10, the proposed method
consistently exhibits superior performance across various
metrics, including median value and variability.

Table 3 provides a quantitative performance comparison
between the proposed hybrid HHO-AVOA and other
algorithms in both static and dynamic environments in terms
of average path length and travel duration. The last column
quantifies the performance improvement achieved by the

TABLE 4. The p-value of the Wilcoxon rank-sum test with 5% significance
level for both environments.

proposed algorithm in comparison to its strongest competitor
for each case, which is the AVOA algorithm. As can be
observed, there is a 14% reduction in path length and a
17% reduction in travel duration for the static case. Notably,
a substantial improvement is observed in the dynamic case,
where both path length and travel duration are reduced
by 27.64% and 27.2% respectively. These enhancements
are attributed to the hybridization of the HHO algorithm
with AVOA which contributes to an improved exploitation
strategy.

The results of the Wilcoxon rank-sum statistical test which
is conducted with a 5% significant level are documented in
Table 4. The table indicates that the computed p-value is
less than 0.05 which suggests that the proposed HHO-AVOA
algorithm effectively balances exploration and exploitation in
both static and dynamic environments. The p-value remains
consistent for both static and dynamic cases across almost
all algorithms as the relative positions of data points within
each group are very similar, despite potential differences in
raw values. Moreover, the data distribution closely resembles
each other in both conditions, resulting in closely aligned
ranks and similar values.

IV. CONCLUSION
In this study, we have presented a novel hybrid HHO-
AVOA optimization method that is tailored for path planning
of a DWMR navigating through both static and dynamic
environments while adhering to kinematic constraints. The
simulation results and Monte Carlo analysis highlight the
substantial improvement provided by the proposed hybrid
algorithm when compared to its individual components and
other state-of-the-art algorithms. In static scenarios, the
hybrid method shows an average 14% reduction in path
length and a 17% decrease in DWMR travel duration,
while in dynamic scenarios, it demonstrates significant
superiority with an average 27.6% reduction in path length
and a 27.2% decrease in travel duration. In addition, the
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proposed algorithm’s low computational complexity makes it
suitable for real-time implementations, especially in rapidly
changing environments that require quick decision-making.
In summary, this study establishes a robust foundation for
ongoing advancements in DWMR path planning, paving the
way for innovative solutions across various industries.

Future works include applications of the hybrid approach
to real-world robotic systems which entails exploration
to validate its practicality and adaptability. Conducting
comprehensive experiments will be paramount to assess
the algorithm’s performance and feasibility in practical
applications. For instance, deploying the hybrid approach
in an industrial setting with autonomous robots tasked with
navigating complex environments will offer valuable insights
into its real-world applicability. This empirical validation will
involve systematically testing the algorithm under various
conditions, such as dynamic and unpredictable scenarios,
to gauge its adaptability and robustness. Additionally, the
validation process may encompass the incorporation of
sensory data for dynamic obstacle detection and avoidance.
Conducting experiments in environments with moving
obstacles and dynamically changing conditions, such as
crowded public spaces or manufacturing floors with human-
robot collaboration, will be essential to verify the algorithm’s
efficacy in handling real-time obstacles.
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